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A method for multiple-sequence-alignment- 
free protein structure prediction using a 
protein language model
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Protein structure prediction pipelines based on artificial intelligence, such 
as AlphaFold2, have achieved near-experimental accuracy. These advanced 
pipelines mainly rely on multiple sequence alignments (MSAs) as inputs 
to learn the co-evolution information from the homologous sequences. 
Nonetheless, searching MSAs from protein databases is time consuming, 
usually taking tens of minutes. Consequently, we attempt to explore the 
limits of fast protein structure prediction by using only primary structures 
of proteins. Our proposed method, HelixFold-Single, combines a large-scale 
protein language model with the superior geometric learning capability 
of AlphaFold2. HelixFold-Single first pre-trains a large-scale protein 
language model with thousands of millions of primary structures utilizing 
the self-supervised learning paradigm, which will be used as an alternative 
to MSAs for learning the co-evolution information. Then, by combining 
the pre-trained protein language model and the essential components of 
AlphaFold2, we obtain an end-to-end differentiable model to predict the 
three-dimensional coordinates of atoms from only the primary structure. 
HelixFold-Single is validated on datasets CASP14 and CAMEO, achieving 
competitive accuracy with the MSA-based methods on targets with large 
homologous families. Furthermore, HelixFold-Single consumes much 
less time than the mainstream pipelines for protein structure prediction, 
demonstrating its potential in tasks requiring many predictions.

Proteins participate in essentially all biological processes and play 
critical roles for an organism. The structures of proteins are highly 
correlated to their functions in biological processes. Determining the 
protein structures to understand their functions can make considerable 
contributions to life science.

In recent years, protein structure prediction technologies based 
on artificial intelligence have made sunstantial progress in prediction 
accuracy, demonstrating great prospects for the drug and vaccine 
industry. In particular, AlphaFold2 (ref. 1) has pushed the performance 

to a new frontier in the challenging 14th Critical Assessment of Protein 
Structure Prediction (CASP14) (ref. 2), approaching the accuracy of 
experimental determination methods. Mainstream protein struc-
ture prediction pipelines rely heavily on co-evolution information 
extracted from multiple sequence alignments (MSAs). MSAs can 
be simply regarded as protein chains similar to the target protein 
chain in sequence. An MSA is related to the co-evolution informa-
tion of protein sequences, which is crucial to predicting its structure. 
However, over-reliance on MSAs becomes the bottleneck of various 
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by AlphaFold, the capacities of the geometric models used by these 
methods, such as recursive models and residual neural networks, are 
also unsatisfactory in understanding the co-evolution and spatial rela-
tions between the residues in a single sequence.

Inspired by the progress of PLMs and AlphaFold2, we propose 
an end-to-end MSA-free protein structure prediction pipeline, 
HelixFold-Single. The model used in HelixFold-Single consists of two 
major components: a large-scale PLM as the foundation and the essen-
tial components from AlphaFold2 for folding. The PLM can encode the 
primary structure into single representation and pair representation 
to learn the domain knowledge. The Evoformer and Structure modules 
from AlphaFold2 are then integrated to process the representation, 
learn the geometric knowledge and then predict the coordinates of 
atoms. The two components are connected to give an end-to-end dif-
ferentiable model. HelixFold-Single contains two training stages. In the 
first stage, the large-scale PLM is trained with thousands of millions of 
unlabelled single sequences by the task of masked language prediction. 
In the second stage, we train the whole model with protein structures 
composed of experimental ground truth and augmentation structures 
generated by AlphaFold2.

We compare HelixFold-Single with AlphaFold2 and RoseTTAFold 
on datasets CASP14 and CAMEO (Continuous Automated Model Evalu-
ation). HelixFold-Single achieves accuracy competitive with that of the 
other methods on proteins with sufficient numbers of homologous 
sequences. We also analyse the performance of HelixFold-Single on tar-
gets with various numbers of homologous sequences: HelixFold-Single 
is capable of providing accurate structure predictions on most targets, 
especially targets with large homologous families. An ablation study 
comparing PLMs of different sizes demonstrates the importance of the 
size of the PLM for structure prediction. Furthermore, HelixFold-Single 
shows great superiority in prediction efficiency when compared with 
the MSA-based methods and could be applied to protein-related tasks 
demanding a great number of predictions. Specifically, we investigate 
HelixFold-Single’s precision on various types of representative protein, 
including peptides, antibodies and nanobodies, with the aim of assessing 
its potential for application in therapeutic protein design. Our results 
suggest that HelixFold-Single performs well in predicting flexible regions 
of these proteins, highlighting its strengths for such applications.

HelixFold-Single
HelixFold-Single aims to take advantage of both the PLM and the 
main modules used in AlphaFold2 for single-sequence-based protein 

protein-related tasks. Compared with the time (usually a few seconds) 
required for model inference in the structure prediction pipeline, 
searching MSAs is time consuming, costing tens of minutes for a pro-
tein. The time-consuming search is destructive in tasks demanding 
high-throughput requests, such as protein design. In the design of 
therapeutic proteins, such as peptides and antibodies, large-scale 
virtual screening is typically used to sift through candidate protein 
datasets to identify potential drugs that can be further validated for a 
specific target protein. A precise and efficient protein structure pre-
diction method could potentially accelerate the development of new 
drugs for treating a variety of diseases.

Consequently, designing an accurate and efficient MSA-free pro-
tein structure prediction method to is likely to benefit and acceler-
ate the development of protein studies. We argue that a large-scale 
protein language model (PLM) can serve as an alternative to the 
MSAs to learn the co-evolution knowledge for MSA-free prediction. 
An MSA-based method uses the information retrieval technique to 
explicitly capture co-evolutionary information of a target protein from 
the protein sequence databases, while a PLM-based method embeds 
co-evolutionary information into the large-scale model parameters 
during training and performs an implicit retrieval through model 
inference, where the PLM can be regarded as a protein knowledge 
base3. An MSA-based method is less efficient in retrieving information 
and depends on the retrieval scheme designed manually. On the other 
hand, a PLM-based method is more efficient in information retrieval, 
and the quality of retrieval depends primarily on the model’s capacity 
or parameter size. The past few years have seen tremendous success of 
large-scale language models4–6 in natural language processing, a field 
that shares many characteristics with protein study. With an increasing 
number of model parameters, the capacity for learning language knowl-
edge grows substantially. Using self-supervised learning on large-scale 
unlabelled proteins, PLMs can reveal the long-range interactions along 
protein sequences and improve downstream protein-related tasks. 
Advanced works have attempted to adopt PLMs to enhance the perfor-
mance of multiple downstream tasks, such as estimating the secondary 
structures and the functions7–10. In particular, several studies11–13 have 
attempted to apply PLMs to protein structure prediction. Most works 
first predict the inter-residue two-dimensional geometry using neural 
networks and then reconstruct the three-dimensional (3D) structure 
on the basis of energy minimization, which cannot provide end-to-end 
3D structure prediction. Moreover, compared with the geometric 
learning capability of the Evoformer and Structure modules proposed 
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structure prediction. As exhibited in Fig. 1, HelixFold-Single consists 
of three components: PLM Base, Adaptor and Geometric Modelling. 
The large-scale PLM Base is employed to encode the co-evolution 
information in the parameters, which is used as an alternative to 
MSAs. Then, in Geometric Modelling, following AlphaFold2, we use 
modified Evoformer (named EvoformerS) and Structure modules to 
sufficiently exchange the information between the single representa-
tions and pair representations to capture the geometric information 
and recover the 3D coordinates of the atoms. We adopt an Adaptor 
layer to extract the co-evolution information from PLM to effectively 
generate the sequence and pair representations required as inputs 
to Geometric Modelling. The whole differentiable pipeline is trained 
by both self-supervised pre-training with bulks of unlabelled single 
sequences and supervised learning with geometric labels.

Results
Overall comparison
To compare the overall accuracy of HelixFold-Single with several base-
line structure prediction pipelines, including MSA-based and MSA-free 
methods, we used CASP14 (refs. 1,14,15) with 87 domain targets and 
CAMEO16 with 371 targets collected from 4 September 2021 to 19 Feb-
ruary 2022. AlphaFold2 (ref. 1) and RoseTTAFold17, which rely on MSAs 
to provide predictions, are currently the most advanced methods for 
protein structure prediction. We evaluated the prediction perfor-
mance of AlphaFold2 and RossTTAFold with and without homologous 
sequences (denoted by AlphaFold2 (input: MSA), RoseTTAFold (input: 
MSA), AlphaFold2 (input: single) and RoseTTAFold (input: single)). We 
also trained an MSA-free version of AlphaFold2, denoted by Alpha-
Fold2-Single, by only using the single sequences as input. To evaluate 
the accuracy of HelixFold-Single and other methods, we utilized a com-
monly used metric, that is, the template modelling score (TM-score)18.

Figure 2 exhibits the test results of our proposed HelixFold-Single 
and the compared methods on CASP14 and CAMEO. On the basis of the 
results, we make the following observations.

 (1) In general, HelixFold-Single significantly surpasses all the 
MSA-free methods on CASP14 and CAMEO and is competitive 
with the MSA-based methods in certain scenarios. Notably, the 
accuracy of HelixFold-Single on CAMEO is comparable to that 
of AlphaFold2 (input: MSA) and outshines another baseline, 
RoseTTAFold (input: MSA). HelixFold-Single demonstrates the 
great potential of incorporating PLM into geometric modelling 
for protein structure prediction.

 (2) HelixFold-Single can be on a par with the MSA-based methods on 
targets with large homologous families, for example, on CASP14 
template-based modelling (TBM)-easy domain targets with a 
median of 7,000 homologous sequences (MSA depth = 7,000) 
and on CAMEO targets with more than 1,000 homologous se-
quences (MSA depth > 1,000). These results indicate that the 
accuracy of HelixFold-Single is correlated to the richness of 
homologous sequences, revealing that the large-scale PLM 
adopted by HelixFold-Single is capable of embedding the infor-
mation, for example, co-evolution knowledge, of MSAs used by 
the MSA-based methods.

 (3) Comparing HelixFold-Single with other MSA-free methods, 
HelixFold-Single exhibits its great superiority in all the catego-
ries of CASP14 and CAMEO. Since AlphaFold2 and RoseTTAFold 
rely on MSAs as input during the training process, it is challeng-
ing for these methods to provide accurate predictions when tak-
ing only single sequences as input. Even for AlphaFold2-Single, 
which uses only single protein sequences as input for training, 
its precision is unsatisfactory without the assistance of the PLM.

Effect of number of homologous sequences
The results on CASP14 and CAMEO indicate that the accuracy of 
HelixFold-Single is related to the number of homologous sequences. We 

further compare the performance of HelixFold-Single and other meth-
ods on the targets with variant MSA depths. We have collected a fresh 
test dataset, MSA-Depth-Test, comprising targets that were released 
between May 2020 and October 2021 from the Research Collaboratory 
for Structural Bioinformatics Protein Data Bank (PDB). Specifically, we 
selected targets that exhibit relatively sparse homologous sequences. 
We blended these targets with the data of CASP14 and CAMEO as a new 
evaluation set. Figure 3a compares the TM-scores of HelixFold-Single 
and the baseline methods on the evaluation set, grouped by the number 
of homologous sequences (MSA depths). Figure 3b shows the distri-
bution of the proteins in different groups in this evaluation set. We 
can see that as the available homologous sequences grow the aver-
age TM-scores of both HelixFold-Single and the MSA-based methods 
increase, while the scores of the other MSA-free methods decrease. 
For the proteins with sparse homologous sequences, the TM-scores 
of all the compared methods are unsatisfactory. For the proteins with 
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Fig. 2 | Overall comparison of HelixFold-Single and other methods on CASP14 
and CAMEO. a,b, AlphaFold2 (input: MSA) and RoseTTAFold (input: MSA) are 
MSA-based methods, while the others use the primary structures as input. Data 
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larger homologous families, especially those with more than thousands, 
HelixFold-Single can compete with the MSA-based methods. In general, 
it appears that HelixFold-Single is more sensitive to the presence of evo-
lutionary information when compared with MSA-based methods such 

as AlphaFold (input: MSA) or RoseTTAFold (input: MSA). Given that 90% 
of the targets in PDB have more than 1,024 homologous sequences, we 
can reasonably extrapolate that HelixFold-Single can achieve satisfying 
accuracy on the most frequently investigated proteins.

(1, 4) (4, 16) (16, 64) (64, 256) (256, 1,024) (1,024, 4,096) (4,096, 16,384) (16,384, +∞)

MSA depth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TM
-s

co
re

AlphaFold2 (input: MSA) RoseTTAFold (input: MSA) AlphaFold2 (input: single)

RoseTTAFold (input: single) AlphaFold2-Single HelixFold-Single

0.54% 0.74% 1.66% 2.88% 4.76%
21.66%

66.84%

0.92%
0

10

20

30

40

50

60

70

80

90

100

(1,
 4)

(4, 16
)

(16
, 6

4)

(64, 2
56)

(25
6, 1,

024
)

(1,
024

, 4
,096)

(4,096, 16
,384)

(16
,384,+∞

)

Pr
op

or
tio

n 
(%

)

MSA depth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000 10,000 100,000 1,000,000

TM
-s

co
re

MSA depth

CASP14 CAMEO MSA-Depth-Test Logarithmic trend

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1,000 10,000 100,000 1,000,000

Pe
rp

le
xi

ty

MSA depth

CASP14 CAMEO MSA-Depth-Test Logarithmic trend

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20

TM
-s

co
re

Perplexity

CASP14 CAMEO MSA-Depth-Test Linear trend

a

b c

d e

Fig. 3 | Analysis of the impact of homologous sequences (MSA depths), 
and investigation of the relations between MSA depths, TM-scores and 
perplexity of the PLM. a, Comparison between HelixFold-Single and the 
baseline methods on 1,251 protein targets with various numbers of homologous 

sequences (MSA depths). b, Distribution of proteins with different homologous 
sequences in PDB. c, Relations between MSA depths and TM-scores of HelixFold-
Single. d, Relations between MSA depths and perplexity of PLM. e, Relation 
between perplexity of PLM and TM-scores of HelixFold-Single.
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To further investigate the relationship between the capacity of 
the PLM, the accuracy of protein structure prediction and the size of 
the homologous family, we utilized the targets in CASP14 and CAMEO 
datasets to exhibit their relations, as shown in Fig. 3c–e. As we expected, 
from Fig. 3c, a protein’s structure accuracy (TM-score) is correlated 
to the size of its homologous family (MSA depth), and the results are 
consistent with those in Fig. 3b. Moreover, we use a probability metric, 
perplexity19, to indicate the capacity of the PLM. Perplexity is a metric 
widely used in natural language processing to quantify the level of 
uncertainty a language model has in predicting text (which corre-
sponds to the protein sequences in PLM). A lower perplexity score indi-
cates a higher degree of accuracy for the language model. The results 
in Fig. 3d show that the perplexity of the PLM and the MSA depths 
are negatively correlated. We reasonably inferred that a PLM would 
prioritize learning the patterns of high-frequency proteins (which 
typically have more homologous sequences) rather than long-tail 
proteins (which usually only have a few homologous sequences) from 
the large-scale unlabelled protein sequences. These results also explain 
why the PLM-based HelixFold-Single is more sensitive to MSA depth 
when predicting protein structures. Moreover, the perplexity of the 
PLM and the TM-scores of HelixFold-Single are also negatively corre-
lated. These results indicate that if the PLM Base module can predict 
(model) a protein sequence well, then there is a high probability that 

the PLM module can learn the co-evolution information of this protein 
and serves as an alternative to MSAs. Thus, the Geometric Modelling 
module can leverage the co-evolution embedded in the PLM to provide 
a more accurate structure for that protein.

Effect of sizes of PLMs
To comprehensively study the ability of the PLMs of different sizes to 
learn the co-evolution information, we compare a pre-trained PLM of 
one billion parameters (denoted by PLM-1B) and another pre-trained 
PLM of 100 million (denoted by PLM-100M). Figure 4a exhibits the 
perplexity of PLM-1B and PLM-100M on the targets from datasets 
CASP14 and CAMEO. In general, the smaller the perplexity is, the 
stronger the capacity of the PLM is. Thus, PLM-1B with more model 
parameters performs better than PLM-100M with fewer parameters 
on both datasets CASP14 and CAMEO. In addition, we apply PLM-1B 
and PLM-100M to the task of protein residue contact prediction to 
compare their performance on the downstream tasks. We simply fit a 
logistic regression that takes the attention weights, that is, 
[zzz(1),zzz(2),… ,zzz(nPLM)], from the PLMs as input and predict the contact of 
residues on the targets in datasets CASP14 and CAMEO. Following  
refs. 7,20, we use the top L/5 long-range contact precision, denoted by 
P@L/5, where L is the protein length, as the evaluation metric, and the 
results are shown in Fig. 4b. As we can see, PLM-1B is significantly 
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superior to PLM-100M on the contact prediction task. The results from 
Fig. 4a and Fig. 4b both support the hypothesis that the larger the size 
of the PLM, the stronger its capacity. Therefore, it can be reasonably 
inferred that the performance of the PLM will continue to improve as 
the size of the PLM increases further.

Prediction speed comparison
Massive time consumption for searching MSAs is one of the bottlenecks 
of MSA-based folding, and accelerating the speed of protein structure 
prediction can considerably broader its applications. The MSA-free 
HelixFold-Single has a tremendous advantage in inference efficiency 
by avoiding MSA searching. Figure 5 exhibits the computation time cost 
of (1) MSA searching, (2) the whole inference pipeline of AlphaFold2 
and (3) the inference of HelixFold-Single. All the tests are executed 
on a single NVIDIA A100(40G) graphics processing unit. In general, 
HelixFold-Single consumes much less time than AlphaFold2, while 
the AlphaFold2 pipeline spends most of its time in MSA searching. For 
proteins less than 100 amino acids in length, HelixFold-Single’s predic-
tion time is only about one-thousandth of that of AlphaFold2. Even for 
the proteins with more than 800 amino acids, HelixFold-Single still has 
great efficiency superiority. The good efficiency of HelixFold-Single 
demonstrates the potential of its application in tasks with a high 
demand for structural prediction.

Study on multiple types of representative protein
One of the strengths of HelixFold-Single is its efficiency when com-
pared with MSA-based methods, which makes it well suited for 
high-throughput protein structure prediction tasks such as protein 
design. To investigate the performance of HelixFold-Single on thera-
peutic proteins, three representative types of protein were chosen: 
peptides, antibodies and nanobodies. Peptides are smaller protein 
molecules that can be used as drugs to target a variety of biological 
processes, while antibodies and nanobodies are used in immunother-
apy to target specific cells or molecules in the body. An antibody con-
tains two chains, a heavy chain and a light chain, and a nanobody only 
includes the heavy chain. We evaluate the MSA-free HelixFold-Single 
and MSA-based AlphaFold2 on multiple datasets—Recent-PDB, Pep-
tide, Antibody and Nanobody—to gain insights into the applicability of 
these methods to different types of protein and their potential use in 
protein design. Recent-PDB can be seen as the control group contain-
ing recently released proteins from PDB, while the remaining datasets 
represent experimental groups that are more relevant to therapeutic 
applications. Antibody-VH and Antibody-VL respectively represent the 
sets of heavy chains and light chains of collected antibodies.

The results presented in Fig. 6a are intriguing, as they demonstrate 
that HelixFold-Single can perform as well as, or even outperform, 
AlphaFold2 in certain scenarios. While HelixFold-Single’s performance 
slightly lags behind that of AlphaFold2 on the Peptide dataset, the 
precision gap between the two methods is considerably narrower than 
that on the Recent-PDB dataset. This indicates that HelixFold-Single 
is better suited for predicting the structures of short and highly flex-
ible peptides. For the antibody-related datasets, HelixFold-Single 
performs competitively with AlphaFold2 on datasets Antibody-VL and 
Nanobody, and surpasses AlphaFold2 on Antibody-VH. We surmise that 
HelixFold-Single is better equipped to capture the intricate patterns of 
the complementarity-determining regions (CDRs) from the large-scale 
protein sequence data, where the CDRs of antibodies are crucial for 
the specificity of an antibody and are known to be highly variable and 
difficult to predict. Therefore, we conducted a detailed analysis of 
HelixFold-Single’s performance on the CDRs, as illustrated in Fig. 6b,c. 
HelixFold-Single performs comparably to AlphaFold2 in terms of the 
whole chains (VH, VL and VHH) and all the CDRs, with a slight advantage 
in predicting the CDR-H3 (widely recognized as the most diverse and 
critical CDRs) of the antibodies and nanobodies. Given the high vari-
ability of short peptides and the CDRs of antibodies, it is reasonable 

to assume that HelixFold-Single excels in predicting highly variable 
regions where MSAs may not be effective. To support this hypothesis, 
we performed additional analyses on the secondary structures of 
peptides and antibodies. Our results showed that HelixFold-Single 
is capable of accurately predicting the regions with the more flexible 
secondary structures of ‘turn’ or ‘coil’. For more information, please 
refer to Supplementary Section 5.

Related works
Protein language models
Large-scale language models4 with the self-supervised learning para-
digm, such as masked language modelling5 and autoregression21, have 
achieved extraordinary success in natural language processing tasks. 
Recent progress has revealed that their capabilities are strongly related 
to the scale of the model parameters: the larger the scale of the param-
eters, the better the performance6. The community has not yet seen any 
sign of growth stopping on moving from billions to hundreds of billions 
of parameters. These language models are capable of memorizing 
and generalizing massive common-sense knowledge and professional 
expertise implicitly included in the large-scale unlabelled data. Inspired 
by these achievements, PLMs tried to transfer language models and 
self-supervised learning tasks to protein modelling. A protein can be 
represented by an amino-acid sequence, similar to the sequences of 
words or tokens in natural language processing. Previous works7–10 
have shown that, by pre-training with only single sequences without 
much supervision, PLMs can reveal the protein classification, stabil-
ity and lower-level structure information (including secondary and 
tertiary structures and two-dimensional contact maps). However, the 
accuracy of these models in structure prediction is still far from that 
of the mainstream folding models supervised by the ground-truth 
protein structure.

Protein structure prediction
Mainstream pipelines22–25 rely on extracting the co-evolution infor-
mation from MSAs to predict the protein structures. Earlier works 
manually designed the features derived from MSAs, such as inverse 
covariance matrices. Then, deep neural networks—for example, con-
volutional networks—are utilized to model the relations between the 
residues. Advanced studies1,24, directly take the MSAs as input and 
apply deep neural networks to predict the 3D coordinates of the pro-
teins. In particular, the appearance of AlphaFold2 (ref. 1) has markedly 
narrowed the accuracy gap between the experimentally determined 
structures and model-estimated structures, employing the Evofor-
mer module to enhance the interaction between MSA sequences and 
pairwise geometric information and the Structure module to directly 
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predict the atoms’ coordinates. However, the reliance on MSA inevi-
tably impedes the computation efficiency and accurate prediction of 
orphan proteins and designed proteins, as well as downstream tasks 
such as protein design.

Although the structure of a protein is dependent on its primary 
structure, it is incredibly challenging to train an accurate model that 
can infer the protein structures with only the primary structures. 
Only a small number of samples, that is, experimentally determined 

structures recorded in the PDB database, are available for model train-
ing. Several works attempt to incorporate PLMs for MSA-free protein 
structure prediction. RGN2 (ref. 11) employs a PLM (AminoBERT) with 
a recurrent geometric network that utilizes Frenet–Serret frames to 
generate the backbone structure. Moreover, advanced studies12,13 
combine pre-trained PLMs, such as ProT5 (ref. 8) and ESM-1b (ref. 26), 
with residual neural networks to predict two-dimensional structures 
(for example, a contact map of a protein), yielding superior perfor-
mance in orphan proteins. Nonetheless, the overall accuracy of those 
works is still unsatisfactory due to the limited capacity of the model 
architectures used.

Conclusion and future work
On the one hand, mainstream protein structure prediction methods, 
such as AlphaFold2 and RoseTTAFold, rely on the MSAs to extract 
the homologous information. However, searching MSAs is time 
consuming, limiting the application of those methods to broader 
protein-related tasks. On the other hand, a large-scale PLM learns 
the protein correlations from a great number of unlabelled proteins 
through self-supervised learning tasks. By utilizing large-scale param-
eters to embed the homologous information, we prove that it can be 
used as an alternative to MSAs to reduce the time required by the pro-
tein structure prediction methods. HelixFold-Single attempts to take 
advantage of both the PLM and the geometric modelling, predicting 
the protein structures end to end with only the primary structures. 
HelixFold-Single can be on a par with the MSA-based methods on tar-
gets with large homologous families and is much more efficient than 
the MSA-based methods, demonstrating its application prospects for 
protein study.

In the future, as the experimental results indicate that a larger size 
of PLM can achieve superior performance, we will continue investigat-
ing PLMs with a larger size for protein structure prediction. In addition, 
the accuracy on the targets with only a few homologous sequences is 
still unsatisfactory. Thus we will try to introduce more diverse training 
data to alleviate this problem.

Methods
Large-scale PLM Base
Inspired by large-scale pre-trained language models, we follow previous 
works on pre-training a PLM. The PLM processes the primary protein 
sequences (that is, the amino-acid sequences) and extracts the knowl-
edge needed for further geometric modelling. A protein of length L can 
be uniquely represented by a sequence of types of amino acid denoted 
by x = (x1, x2, …, xL). An embedding layer E(xl) maps the type identifier 
to dPLM-dimensional embedding vectors:

x(0) = (E(x1), E(x2),… , E(xL)).

Notice that x(k) ∈ ℝL×dPLM  is the representation of the amino-acid 
sequence.

We then apply the widely used Transformer-style blocks4 to pro-
cess the embedding vectors, denoted by

x(k+1) = DisentangledAttentionTransformer(x(k)). (1)

Accurately predicting the contacts between the residues, especially the 
long-rage contacts, is critical for protein structure prediction. Taking 
into account that the contact between the residues is more dependent 
on the relative positions rather than the absolute positions (counted 
from the start of the sequence), we employ DisentangledAttention-
Transformer from DeBerTa27 to focus on the modelling of interactions 
between the residue representations and the relative positions. Dis-
entangledAttentionTransformer adopts the attention mechanism to 
learn the interactions between the residues as well as the interactions 
of the interaction–position pairs.
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Moreover, we take advantage of multihead self-attention weights 
in DisentangledAttentionTransformer to construct the initial pair 
representation. The attention weights of the kth block are denoted by 
z(k) ∈ ℝL×L×hPLM, where hPLM is the number of heads of self-attention.

We add an additional Adaptor to map the output of PLM Base to 
the input of the Geometric Modelling module.

̃x(0) = Linear(x(nPLM)),

̃z(0) = Linear([z(1), z(2),… , z(nPLM)]),
(2)

where nPLM is the number of blocks in PLM Base, and the operator [] 
refers to concatenation. ̃x(0) ∈ ℝL×dsingle and ̃z(0) ∈ ℝL×L×dpair are the initial 
single representations and pair representations of the Geometric 
Modelling module, respectively.

Geometric modelling
We employ the Evoformer and Structure modules proposed in Alpha-
Fold2 (ref. 1) to model the relations between the residues and then esti-
mate the 3D coordinates of the atoms in the proteins. We slightly modify 
the original Evoformer to match our settings. We name the revised Evo-
former EvoformerS (Evoformer with single representations). First, the 
original Evoformer takes the MSA representation and pair representa-
tion, encoded from the searched MSAs, as input. As an alternative, Evo-
formerS takes the output of Adaptor (including the single representations 
( ̃x(0)) and pair representations ( ̃z(0))). Second, Evoformer adopts various 
attention mechanisms to exchange the information within the single 
and pair representations to learn the spatial relationships. Note that, in 
contrast to the original version of Evoformer proposed by AlphaFold2, 
we remove the column-wise gated self-attention because HelixFold-Single 
focuses on MSA-free protein structure prediction and there is no need 
to exchange the messages within the MSAs. We follow the other geomet-
ric components of AlphaFold2, including the Structure module, which 
takes the single representation and pair representation yielded by Evo-
formerS and exploits invariant point attention and other geometric 
transformation operators to predict end to end the 3D coordinates of 
the atoms. Also, following AlphaFold2, we recycle the whole Geometric 
Modelling module to refine the predicted structures iteratively.

Model optimization
For the sake of leveraging the domain knowledge from the pro-
tein database, we operate two-stage parameter optimization on 
HelixFold-Single.

In the first stage, the PLM is pre-trained to capture the co-evolution 
information. The PLM is trained with about 300 million single 
sequences recorded in a protein database. To encourage PLM to 
observe the diverse single sequences as soon as possible, we cluster 
the proteins by similarity of single sequences and sample the proteins 
to balance the distributions of different clusters in our training data. We 
apply a self-supervised technique masked language model to optimize 
the parameters of the PLM, by randomly masking 15% of residues in the 
single sequences and then reconstructing these masked residues. More 
concretely, the masked language model attempts to predict P(xl∣x1, …,  
xl−1, xM, xl+1, …, xL) given the residue in the lth position xl being masked by 
xM. A crucial proposal of this work is that the PLM can learn the depend-
ence between the masked residue and the other residues, and thus 
represent the co-evolution information. Previous works7 have already 
verified that PLMs can reveal secondary structures of the proteins, but 
the relation between PLM and co-evolution has been little discussed. 
Co-evolution is the phenomenon that two residues in contact tend to 
evolve at the same time to preserve the structure and thus the function 
of the protein. In PLM, if a residue at another position s has a profound 
impact (if the residue at position s is changed, the masked residue will 
also change) on the masked residue, then these two residues are likely 
to evolve at the same time.

In the second stage, since merely relying on PLM to predict the 
structure is inadequate to capture the geometric information, PLM 
Base and Geometric Modelling modules in HelixFold-Single are jointly 
optimized. We utilize 100,000 experimentally determined protein 
structures. We also use an additional one million estimated protein 
structures for training in this stage (distilled from AlphaFold2). Fol-
lowing AlphaFold2, we train the network end to end with the main 
losses, including the frame aligned point error loss and other auxiliary 
losses. By combining the computationally efficient PLM Base module 
(compared with MSA search) and the Geometric Modelling module, 
HelixFold-Single is capable of providing efficient and precise protein 
structure prediction.

Datasets
We used UniRef30 (2021-03) (ref. 28), which clusters UniRef100 seed 
sequences from the UniProt Knowledgebase and selected UniProt 
Archive records29,30 at a 30% pairwise sequence identity level, to 
pre-train the PLM. Then, three datasets are used to train the whole 
network, including the proteins in PDB (refs. 31,32) released before 14 
May 2020 and two datasets constructed from Uniclust30 (v.2018-08) 
and AlphaFold Protein Structure Database (v.2022-01) (ref. 33), for 
knowledge distillation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
To pre-train the PLM, UniRef30 (2021-03) is publicly available at https://
wwwuser.gwdg.de/~compbiol/uniclust/2021_03/; to train the whole 
network, PDB can be downloaded at https://www.rcsb.org/docs/
programmatic-access/file-download-services and AlphaFold Protein 
Structure Database as the distillation dataset can be downloaded at 
https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/. The CAMEO dataset 
can be downloaded at https://www.cameo3d.org/modeling/ with dates 
between 4 September 2021 and 19 February 2022. The CASP14 and 
CASP15 dataset can be partially downloaded at https://predictioncenter.
org/download_area/. The MSA-Depth-Test, Recent-PDB and Peptide 
sets are filtered from PDB with conditions detailed in Supplementary 
Information. The Antibody and Nanobody sets can be downloaded at 
https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab/.

Code availability
The source code, trained weights and inference code of HelixFold-Single 
are freely available at GitHub (https://github.com/PaddlePaddle/Pad-
dleHelix/tree/dev/apps/protein_folding/helixfold-single) to ensure the 
reproduction of our experimental results. The version used for this pub-
lication is available at ref. 34. A web service of HelixFold-Single is also 
available at https://paddlehelix.baidu.com/app/drug/protein-single/
forecast to provide efficient protein structure predictions.

Data analysis used Python v.3.7, NumPy v.1.16.4 and MMseqs2 
release 13-45111. TMscore.cpp v20220227 (https://zhanggroup.org/
TM-score/) was used for computing TM-scores.
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