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Decoding speech perception from 
non-invasive brain recordings

Alexandre Défossez    1 , Charlotte Caucheteux1,2, Jérémy Rapin1, Ori Kabeli3 & 
Jean-Rémi King    1,4 

Decoding speech from brain activity is a long-awaited goal in both healthcare 
and neuroscience. Invasive devices have recently led to major milestones 
in this regard: deep-learning algorithms trained on intracranial recordings 
can now start to decode elementary linguistic features such as letters, words 
and audio-spectrograms. However, extending this approach to natural 
speech and non-invasive brain recordings remains a major challenge. 
Here we introduce a model trained with contrastive learning to decode 
self-supervised representations of perceived speech from the non-invasive 
recordings of a large cohort of healthy individuals. To evaluate this approach, 
we curate and integrate four public datasets, encompassing 175 volunteers 
recorded with magneto-encephalography or electro-encephalography 
while they listened to short stories and isolated sentences. The results show 
that our model can identify, from 3 seconds of magneto-encephalography 
signals, the corresponding speech segment with up to 41% accuracy out 
of more than 1,000 distinct possibilities on average across participants, 
and with up to 80% in the best participants—a performance that allows the 
decoding of words and phrases absent from the training set. The comparison 
of our model with a variety of baselines highlights the importance of a 
contrastive objective, pretrained representations of speech and a common 
convolutional architecture simultaneously trained across multiple 
participants. Finally, the analysis of the decoder’s predictions suggests that 
they primarily depend on lexical and contextual semantic representations. 
Overall, this effective decoding of perceived speech from non-invasive 
recordings delineates a promising path to decode language from brain 
activity, without putting patients at risk of brain surgery.

Every year, traumatic brain injuries, strokes and neurodegenerative 
diseases cause thousands of patients lose their ability to speak or even 
communicate1–6. Brain–computer interfaces (BCIs) have raised high 
expectations for the detection4,5,7,8 and restoration of communication 
abilities in such patients9–14. Over recent decades, several teams have 
used BCIs to efficiently decode phonemes, speech sounds15,16, hand 
gestures11,12 and articulatory movements13,17 from electrodes implanted 

in the cortex or over its surface. For instance, Willett et al. 12 decoded 
90 characters per minute (with a 94% accuracy, that is, roughly 15–18 
words per minute) from a patient with a spinal-cord injury, recorded 
in the motor cortex during 10 hours of writing sessions. Similarly, 
Moses et al. 13 decoded 15.2 words per minute (with 74.4% accuracy, 
and using a vocabulary of 50 words) in a patient with anarthria and a 
BCI implanted in the sensori-motor cortex, recorded over 48 sessions 
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performances can reach high top-1 accuracy in the best performing par-
ticipants: for example, above 80% top-1 accuracy in the best participant 
of the Gwilliams 2022 dataset30 (Fig. 2a). For comparison, a model that 
predicts a uniform distribution over the vocabulary (‘random model’) 
only achieves less than 1% top-10 accuracy on the same MEG datasets. 
Decoding performance for EEG datasets is substantially lower: our 
model reaches 17.7% and 25.7% top-10 accuracy for the two EEG datasets 
currently analysed. While modest, these scores are much higher than 
the random baseline.

Is MEG really much better than EEG?
To investigate whether these performances depend on the total record-
ing duration and/or the number of recording sensors, we train our 
model on a subset of the data that homogenizes recording time, the 
number of sensors and the number of participants. For this, we discard 
the dataset of Brennan and Hale31, to avoid over-limiting the analysis 
dataset. Consequently, we match all datasets to the smallest number of 
channels of the three remaining datasets by keeping a random but fixed 
subset of channels (for example, 128). We keep only 19 participants per 
dataset, again aligning on the smallest for all three datasets. Finally, we 
keep the same average duration per participant for all three datasets, 
by dropping out some training segments (that is, the same segments 
are dropped for all participants or repetitions within one participant). 
All test segments are kept to maximize reliability. Overall, this subsam-
pling diminishes decoding performance (for example, top 10: 30.3% 
for the Schoffelen dataset32 and 31.7% for the Gwilliams dataset33), but 
MEG decoding remains much better than the EEG (Mann–Whitney 
across MEG and EEG participants: all P < 10−6). Although these results 
should be confirmed by presenting the same stimuli to participants 
recorded with both EEG and MEG, they suggest that the difference in 
decoding performance observed between studies is mainly driven by 
the type of device.

spanning over 22 hours. Finally, Metzger et al. 18 recently showed that a 
patient with severe limb and vocal-tract paralysis and a BCI implanted 
in the sensori-motor cortex could efficiently spell words using a code 
word that represented each English letter (for example, ‘alpha’ for ‘a’): 
this approach leads to a character error rate of 6.13% and a speed of 
29.4 characters per minute, and hence starts to provide a viable com-
munication channel for such patients.

However, such invasive recordings face a major practical chal-
lenge: these high-quality signals require brain surgery and can be dif-
ficult to maintain chronically. Several laboratories have thus focused on 
decoding language from non-invasive recordings of brain activity such 
as magneto-encephalography (MEG) and electro-encephalography 
(EEG). MEG and EEG are sensitive to macroscopic changes of electric 
and magnetic signals elicited in the cortex, and can be acquired with 
a safe and potentially wearable set-up19. However, these two devices 
produce notoriously noisy signals that vary greatly across sessions 
and across individuals20–22. It is thus common to engineer pipelines 
that output hand-crafted features, which, in turn, can be learned by a 
decoder trained on a single participant23–28.

In sum, decoding language from brain activity is, so far, limited 
either to invasive recordings or to impractical tasks. Interestingly, both 
of these approaches tend to follow a similar method: that is, (1) training 
a model on a single participant and (2) aiming to decode a limited set 
of interpretable features (Mel spectrogram, letters, phonemes, small 
set of words).

Instead, here we propose to decode speech from non-invasive 
brain recordings by using (1) a single architecture trained across a large 
cohort of participants and (2) deep representations of speech learned 
with self-supervised learning on a large quantity of speech data. We 
focus the present work on speech perception in healthy volunteers 
rather than speech production in patients to design a deep-learning 
architecture that effectively addresses two core challenges: (1) the 
fact that non-invasive brain recording can be extremely noisy and 
variable across trials and across participants and (2) the fact that the 
nature and format of language representations in the brain remain 
largely unknown. For this, we introduce a ‘brain module’ and train 
it with contrastive learning to align its representations to those of a 
pretrained ‘speech module’, namely, wav2vec 2.0 (ref. 29) (Fig. 1). We 
train a single model for all participants, sharing most of the weights 
except for one participant-specific layer. Figure 1 provides a broad 
overview of our approach.

To validate our approach, we curate and integrate four public MEG 
and EEG datasets, encompassing the brain activity of 175 participants 
passively listening to sentences of short stories (see Table 1 for details). 
For each MEG and EEG recording, we evaluate our model on its ability 
to accurately identify the corresponding audio segment from a large 
set of more than 1,500 segments (that is, ‘zero shot’ decoding).

This study provides three main contributions for the development 
of a non-invasive method to decode speech from brain activity. First, 
it shows how pretrained speech models can leverage the decoding of 
speech in the brain, without exposing volunteers to a tedious repeti-
tion of every single word targeted by the decoder. Second, it shows 
how specific design choices—including contrastive learning and our 
multi-participant architecture—improve the processing of continuous 
EEG and MEG recordings. Finally, our results suggest that the speech 
decoder is primarily based on high-level and semantic representations 
of speech.

Results
Accurately decoding speech from MEG and EEG recordings
Our model predicts the correct segment, out of more than 1,000 pos-
sibilities, with a top-10 accuracy up to 70.7% on average across MEG 
participants (Table 2, top-1 accuracy up to 41.3%, and Extended Data 
Fig. 1). For more than half of the samples, the true audio segment is 
ranked first or second in the decoders’ predictions. Interestingly, these 
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Fig. 1 | Model approach. We aim to decode speech from the brain activity of 
healthy participants recorded with MEG or EEG while they listen to stories and/
or sentences. For this, our model extracts the deep contextual representations 
of 3 s speech signals (Y of F feature by T time samples) from a pretrained 
‘speech module’ (wav2vec 2.0: ref. 29) and learns the representations (Z) of 
the brain activity on the corresponding 3 s window (X of C recording channels 
by T time samples) that maximally align with these speech representations 
with a contrastive loss (CLIP: ref. 44). The representation Z is given by a deep 
convolutional network. At evaluation, we input the model with left-out sentences 
and compute the probability of each 3 s speech segment given each brain 
representation. The resulting decoding can thus be ‘zero shot’ in that the audio 
snippets predicted by the model need not be present in the training set. This 
approach is thus more general than standard classification approaches where the 
decoder can only predict the categories learnt during training.
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‘Speech module’ evaluation
To evaluate our approach, we compare these decoding performances 
to those obtained with models that target different representations 
of speech (Table 2). While a model trained to predict the Mel spectro-
gram with a regression objective (‘Base model’ in Table 2) is systemati-
cally higher than chance, the use of a contrastive loss (‘+ Contrastive’) 
leads to decoding gains that range from 2% (for the Brennan and Hale 
dataset31) to 42.7% (for the Gwilliams dataset33). This gain is further 
supplemented by targeting the latent representations of the Mel 
spectrogram (‘+ Deep Mel’). The latent representations of speech 
sounds, however, appear to be best identified with a pretrained 
speech module, that is, by using wav2vec 2.0, a model pretrained 
with self-supervised learning on speech sounds only, rather than by 
jointly learning speech and MEG and EEG representations (Table 2). 
Overall, these results show the importance, for decoding, of targeting 
deep representations of speech.

‘Brain module’ evaluation
To evaluate the elements of the brain module, we performed a series 
of ablation experiments, and trained the corresponding models on 
the same data (Extended Data Fig. 2). Overall, these ablations show 
that several elements impact performance: performance systemati-
cally decreases when removing skip connections, the spatial atten-
tion module, and the initial or final convolutional layers of the brain 
module. These results also show the importance of clamping the MEG 
and EEG signals. Finally, additional experiments show that the pre-
sent end-to-end architecture is robust to MEG and EEG artefacts, and 
requires little preprocessing of the MEG and EEG signals (Supplemen-
tary Sections A.3 and A.4).

Impact of the number of participants
To test whether our model effectively leverages the inter-individual 
variability, we trained it on a variable number of participants and com-
puted its accuracy on the first 10% of participants. As shown in Fig. 2c, 
decoding performance steadily increases as the model is trained with 
more participants on the two MEG datasets. This result shows that 
our model effectively learns neural representations that are common 
across participants, while also accommodating participant-specific 
representations through the participant layer described in Methods.

Decoded representations best correlate with phrase 
embeddings
What type of representation does our model use to decode speech from 
brain signals? This interpretability question is notoriously difficult 
to address22,34. Figure 3 illustrates this issue: it shows the probability 
of each word given the MEG data of five representative participants 
listening to the phrase ‘Thank you for coming, Ed’. Extended Data  
Fig. 3 shows additional predictions for five representative segments 
of the Gwilliams dataset 33. In both cases, it can be difficult to judge 

whether the decoder’s error tends to be related to the phonology or 
to the semantics of the actual sentence.

To address this issue, we analyse the single-word and 
single-segment predictions of our model with a linear model.

Specifically, we train a linear regression to predict the softmax 
probability of the true word estimated by the decoder, given different 
set of features, ranging from low-level representations (for example, 
phonemes) to high-level representations (for example, phrase embed-
ding; see Methods for details). The results, shown in Fig. 4, show that the 
part-of-speech (P < 0.004), word embedding (P < 10−8), bag-of-words 
embedding (P < 10−23) and phrase embedding (P < 10−23) significantly 
predict the single-trial decoding predictions. Overall, the higher level 
the representation, the more it accounts for the decoder’s predictions. 
Given that phrase embeddings are known to capture semantic and 
syntactic representations35–37, these results suggest that our decoder 
primarily relies on high-level and semantic representations of speech.

Methods
We formalize the general task of neural decoding and then describe and 
motivate the different components of our model, before describing 
the datasets, preprocessing, training and evaluation.

Problem formalization
We aim to decode speech from a time series of high-dimensional brain 
signals recorded with non-invasive MEG or EEG while healthy volun-
teers passively listened to spoken sentences in their native language. 
How spoken words are represented in the brain is largely unknown37–39. 
Thus, it is common to train decoders in a supervised manner to predict 
a latent representation of speech known to be relevant to the 
brain16,34,40–42. For example, the Mel spectrogram is often targeted for 
neural decoding because it represents sounds similar to the cochlea43. 

Table 1 | Datasets

Training set Test set

Dataset Language Type Sensors Participants Duration Segments Vocabulary Segments Vocabulary Word 
overlap (%)

Broderick 2019 English EEG 128 19 19.2 h 2,645 1,418 1,842 764 67

Brennan and Hale 
2019

English EEG 60 33 6.7 h 1,211 513 190 148 60

Schoffelen 2019 Dutch MEG 273 96 80.9 h 5,497 1,754 1,270 745 85

Gwilliams 2022 English MEG 208 27 56.2 h 4,417 1,810 1,363 846 64

We study four datasets, two using MEG signals and two using EEG signals. We name each dataset by its author and year. For each dataset, we report the number of channels, the number of 
participants and the total duration in hours. Furthermore, we report the number of unique 3 s segments of words and vocabulary size over the training and test sets. ‘Word overlap’ indicates the 
percentage of the lexicon in the test set that is also present in the training set. We also have a validation set, roughly half the size of the test set used for early stopping. We define the training, 
validation and test split such that the same sentence for different participants is always in the same split.

Table 2 | Results

Model Brennan 
(EEG)

Broderick 
(EEG)

Gwilliams 
(MEG)

Schoffelen 
(MEG)

Random model 5.3 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.8 ± 0.1

Base model 6.0 ± 0.9 1.0 ± 0.3 12.4 ± 1.2 20.6 ± 1.8

+ Contrastive 8.0 ± 4.8 9.7 ± 1.0 55.1 ± 0.7 55.1 ± 0.9

+ Deep Mel 24.7 ± 3.2 15.4 ± 1.6 64.4 ± 0.8 61.2 ± 0.6

+ wav2vec 2.0 25.7 ± 2.9 17.7 ± 0.6 70.7 ± 0.1 67.5 ± 0.4

Top-10 segment-level accuracy (%) for a random baseline model that predicts a uniform 
distribution over the segments (‘random’), a convolutional network trained to predict the 
Mel spectrograms with a regression loss (‘base’), the same model trained with a contrastive 
CLIP loss (‘+ Contrastive’) and our model, which is trained to predict the features of wav2vec 
2.0 with a contrastive loss (‘+ wav2vec 2.0’). We also report the performance obtained with 
training, from scratch, a deep learning based speech representation using a contrastive 
loss (‘+ Deep Mel’). Values are mean ±s.d. across three random initializations of the model’s 
weights. The best accuracy across methods is indicated in bold.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | October 2023 | 1097–1107 1100

Article https://doi.org/10.1038/s42256-023-00714-5

We formalize this problem as follows. Let X ∈ ℝC×T  be a segment of a 
brain recording of a given participant while she listens to a speech 
segment of the same duration, with C the number of MEG or EEG sen-
sors and T the number of time steps. Let Y ∈ ℝF×T  be the latent repre-
sentation of speech, using the same sample rate as X for simplicity, here 

the Mel spectrogram with F frequency bands. In this formalization, 
supervised decoding consists of finding a decoding function: 
freg ∶ ℝC×T → ℝF×T  such that freg predicts Y given X. We denote by 
̂Y = freg(X) the representation of speech decoded from the brain. When 

freg belongs to a parameterized family of models like deep neural 

0.8

0.7

0.6

To
p-

10
 a

cc
ur

ac
y

0.5

0.4

0.8

0.7

0.6

0.5

0.4

1010050100806040200 20

Broderick (EEG)

Gwilliams (MEG)

Scho�elen (MEG)

Number of
segments

Maximum
50

Number of
segments

Maximum
50

Brennan and Hale (EEG)

Brennan and Hale (EEG)

Broderick (EEG)

Gwilliams (MEG)

Scho�elen (MEG)

Top-1 accuracy (%)

100806040200

Top-10 accuracy (%)

Number of participants
in the training set

Number of participants
in the training set

Scho�elen (MEG)a

b

c Gwilliams (MEG)

Fig. 2 | Decoding accuracy across subjects and datasets. a, Each dot represents 
the top-10 accuracy of a single participant, as estimated either with the full test 
set (blue) or with 50 possible segments (orange). b, The same as in a, but for top-1 

accuracy. c, Top-10 accuracy as a function of the number of participants in the 
training set (blue line) as evaluated on the first 10% of the participants. The error 
bars indicate the s.e.m. across participants (grey lines).

Word 1

Pa
rt

ic
ip

an
t 6

Pa
rt

ic
ip

an
t 1

4
Pa

rt
ic

ip
an

t 1
8

Pa
rt

ic
ip

an
t 2

2
Pa

rt
ic

ip
an

t 2
3

Word 2 Word 3 Word 4 Word 5

Fig. 3 | Word-level predictions. Word-level predictions for five representative 
participants (between the 20% (top) and the 80% percentiles (bottom) of the 
cohort) of the Gwilliams dataset33 while they listened to the sentence ‘Thank 

you for coming, Ed’. Blue words correspond to the correct word and black 
words correspond to negative candidates. Text size is proportional to the log-
probability output by our model.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | October 2023 | 1097–1107 1101

Article https://doi.org/10.1038/s42256-023-00714-5

networks, it can be trained with a regression loss Lreg(Y, ̂Y) (for example, 
the mean square error)

min
freg

∑
X,Y
Lreg(Y, freg(X)). (1)

This direct regression approach appears to be dominated by a 
non-distinguishable broadband component when speech is present 
(Extended Data Fig. 4a,b). This challenge motivates our three main 
contributions: the introduction of a contrastive loss, a pretrained deep 
speech representation and a dedicated brain decoder.

Model
Contrastive loss. We reasoned that regression may be an ineffective 
loss because it departs from our objective—that is, it requires maximally 
distinguishing different speech segments apart. Indeed, a regression 
objective stems from the principle that all of the dimensions of the Mel 
spectrogram are (1) equally important and (2) are scaled appropriately: 
the L2 objective inclines the model to predict low and high frequencies 
equally well, even if (1) some frequencies (for example, very low) may 
be irrelevant to speech and (2) some frequencies may vary in orders of 
magnitudes lowers than others. To relax this constraint, we opted for 
a contrastive objective and thus replaced the regression loss with the 
‘CLIP’ loss (originally for Contrastive Language-Image Pre-Training) by 
ref. 44, which was originally designed to match latent representations 
in two modalities, text and images. Unlike the regression objective, 
this contrastive loss leads the model to find a combination of features 
that maximally discriminates samples in the batch. Consequently, the 
model is naturally inclined to focus on the informative dimensions of 
the Mel spectrograms and to scale them appropriately. We implement 
the CLIP loss as follows. Let X be a brain recording segment and Y ∈ ℝF×T  
the latent representation of its corresponding sound (also known as 
‘positive sample’). We sample N − 1 negative samples ̄Yj∈{1,…,N−1} over our 
dataset and we add the positive sample as ̄YN = Y . We want our model 
to predict the probabilities ∀j ∈ {1,… ,N},pj = ℙ [ ̄Yj = Y] . We thus train a 
model fclip mapping the brain activity X to a latent representation 
Z = fclip(X) ∈ ℝF×T. The estimated probability can then be approximated 
by the dot product of Z and the candidate speech latent representations 
Yj, followed by a softmax:

̂pj =
e⟨Z, ̄Yj⟩

∑N
j′=1 e

⟨Z, ̄Yj′ ⟩
, (2)

with 〈⋅, ⋅〉 the inner product over both dimensions of Z and ̂Y . We then 
train fclip with a cross-entropy between pj and ̂pj. Note that for a large 
enough dataset, we can neglect the probability of sampling twice the 
same segment, so that we have pj = j=N, and the cross-entropy simpli-
fies to

LCLIP(p, ̂p) = − log( ̂pN) = −⟨Z,Y⟩ + log(
N
∑
j′=1

e⟨Z, ̄Y
′
j ⟩) . (3)

Following ref. 44, we use the other elements of the batch as negative 
samples at train time. At test time, the negative samples correspond 
to all of the segments of the test set but the positive one.

Brain module. For the brain module, we introduce a deep neural net-
work fclip, input with raw MEG and EEG times series X and a one-hot 
encoding of the corresponding participant s, and outputs the latent 
brain representation Z, with the same sample rate as X. This architecture 
consists of (1) a spatial attention layer over the MEG and EEG sensors 
followed (2) by a participant-specific 1 × 1 convolution designed to 
leverage inter-individual variability, which input to (3) a stack of con-
volutional blocks. An overview of the model is given in the Extended 
Data Fig. 4e. In the following, given a tensor U, we note U(i,…) access to 
specific entries in the tensor.

Spatial attention. The brain data are first remapped onto D1 = 270 
channels with a spatial attention layer based on the location of the 
sensors. The three-dimensional sensor locations are first projected on 
a two-dimensional plane obtained with the MNE-Python function 
find_layout45, which uses a device-dependent surface designed to 
preserve the channel distances. Their two-dimensional positions are 
finally normalized to [0, 1]. For each output channel, a function over 
[0, 1]2 is learnt, parameterized in the Fourier space. The weights over 
the input sensors are then given by the softmax of the function evalu-
ated at the sensor locations. Formally, each input channel i has a loca-
tion (xi, yi) and each output channel j is attached a function aj over [0, 1]2 
parameterized in the Fourier space as zj ∈ ℂK×K  with K = 32 harmonics 
along each axis, that is

aj(x, y) =
K
∑
k=1

K
∑
l=1

Re(z(k,l)j ) cos (2π(kx + ly)) + Im(z(k,l)j ) sin (2π(kx + ly)) . (4)

The output is given by a softmax attention based on the evaluation of 
aj at each input position (xi, yi):

∀j ∈ {1,… ,D1}, SA(X)
(j) = 1

∑C
i=1 e

aj(xi ,yi)
(
C
∑
i=1

eaj(xi ,yi)X(i)) (5)

with SA the spatial attention. In practice, as aj is periodic, we scale 
down (x, y) to keep a margin of 0.1 on each side. We then apply a spatial 
dropout by sampling a location (xdrop, ydrop) and removing from the 
softmax each sensor that is within a distance of ddrop = 0.2 of the sam-
pled location. The initial motivation for spatial attention was to allow 
for a cross-dataset model to be defined in a way that would generalize 
across a diverse number location and set of sensors. Interestingly, we 
observed this layer to introduce an inductive bias that is beneficial to 
the prediction accuracy (Extended Data Fig. 2). See Extended Data Fig. 
4 for a visualization of the learnt attention maps over each dataset. 
We then add a 1 × 1 convolution (that is, with a kernel size of 1) without 
activation and with the same number D1 of output channels.
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Fig. 4 | Decoding predictions mainly rely on high-level semantic features. The R values quantify the extent to which phonemes, word frequency, part-of-speech, 
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Participant layer. To leverage inter-individual variability, we learn a 
matrix Ms ∈ ℝD1 ,D1  for each participant s ∈ [S] and apply it after the 
spatial attention layer along the channel dimension. This is similar to 
but more expressive than the participant embedding used by ref. 46 
for MEG encoding, and follows decade of research on participant 
alignment47,48.

Residual dilated convolutions. We then apply a stack of five blocks 
of three convolutional layers. For the kth block, the first two convolu-
tions are applied with residual skip connections (except for the very 
first one where the number of dimension potentially doesn’t match), 
outputs D2 = 320 channels and are followed by batch normalization49 
and a GELU (Gaussian Error Linear Unit) activation50. The two convolu-
tions are also dilated to increase their receptive field, by 22kmod5 and 
22k+1mod5 (with k zero indexed), respectively. The third layer in a block 
outputs 2D2 channels and uses a GLU (Gated Linear Unit) activation51, 
which halves the number of channels. All convolutions use a kernel size 
of 3 over the time axis, a stride of 1 and sufficient padding to keep the 
number of time steps constant across layers. The output of the model 
is obtained by applying two final 1 × 1 convolutions: first with 2D2 out-
puts, followed by a GELU and finally with F channels as output, thus 
matching the dimensionality of speech representations. Given the 
expected delay between a stimulus and its corresponding brain 
responses, we further shift the input brain signal by 150 ms into the 
future to facilitate the alignment between Y and Z. The impact of this 
offset is considered in the Supplementary Section A.5.

Speech module. The Mel spectrogram is a low-level representation of 
speech inspired from the cochlea and is thus unlikely to match the rich 
variety of cortical representations38. Consequently, we replaced the 
Mel spectrograms with latent representations of speech. For this, we 
propose either to learn these representations end-to-end (‘Deep Mel’ 
model) or to rely on those learnt by an independent self-supervised 
speech model (wav2vec 2.0; ref. 29).

End-to-end speech representations with Deep Mel. The ‘Deep Mel’ 
module uses the same deep convolutional architecture to the brain 
module devoid of the participant block, and thus simultaneously learns 
to extract speech and MEG and EEG representations such that they are 
maximally aligned. By definition, and unlike wav2vec 2.0, Deep Mel sees 
only the audio used in the MEG and EEG datasets. As this end-to-end 
approach proved to be less efficient than its pretrained counterpart 
based on wav2vec 2.0, we will thereafter focus on the latter.

Pretrained speech representations with wav2vec 2.0. Wav2vec 
2.0 is trained with audio data only to transform the raw waveform 
with convolutional and transformer blocks to predict masked parts 
of its own latent representations. A previous study29 showed that the 
resulting model can be efficiently fine-tuned to achieve state-of-the-art 
performance in speech recognition. Besides, this model effectively 
encodes a wide variety of linguistic features52,53. In particular, recent 
studies have shown that the activations of wav2vec 2.0 linearly map 
onto those of the brain54,55. Consequently, we here test whether this 
model effectively helps the present decoding task. In practice, we use 
the wav2vec2-large-xlsr-53 (ref. 56), which has been pretrained on 
56,000 hours of speech from 53 different languages.

Datasets
We test our approach on four public datasets, two based on MEG record-
ings and two based on EEG recordings. All datasets and their corre-
sponding studies were approved by the relevant ethics committee and 
are publicly available for fundamental research purposes. Informed 
consent was obtained from each human research participant. We pro-
vide an overview of the main characteristics of the datasets in Table 1, 
including the number of training and test segments and vocabulary 

size over both splits. For all datasets, healthy adult volunteers pas-
sively listened to speech sounds (accompanied by some memory or 
comprehension questions to ensure participants were attentive), 
while their brain activity was recorded with MEG or EEG. In Schoffelen 
et al.32, Dutch-speaking participants listened to decontextualized Dutch 
sentences and word lists (Dutch sentences for which the words are 
randomly shuffled). The study was approved by the local ethics com-
mittee (the local Committee on Research Involving Human Subjects 
in the Arnhem–Nijmegen region). The data are publicly and freely 
available after registration on the Donders Repository. In Gwilliams 
et al. 33, English-speaking participants listened to four fictional stories 
from the Masc corpus57 in two identical sessions of 1 hour30. The study 
was approved by the institutional review board ethics committee of 
New York University Abu Dhabi. In Broderick et al. 58, English-speaking 
participants listened to extracts of The Old Man and the Sea. The study 
was approved by the ethics committees of the School of Psychology 
at Trinity College Dublin and the Health Sciences Faculty at Trinity 
College Dublin. In Brennan and Hale31, English-speaking participants 
listened to a chapter of Alice in Wonderland. See Supplementary Sec-
tion A.1 for more details. The study was approved by the University of 
Michigan Health Sciences and Behavioral Sciences institutional review 
board (HUM00081060).

Preprocessing
MEG and EEG are generally considered to capture neural signals from 
relatively low-frequency ranges20. Consequently, we first resampled 
all brain recordings down to 120 Hz with Torchaudio59 and then split 
the data into training, validation and testing splits with a size roughly 
proportional to 70%, 20% and 10%, respectively. We defined a ‘sample’ 
as a 3 s window of brain recording with its associated speech representa-
tion. A ‘segment’ is a unique 3 s window of speech sound. As the same 
segment can be presented to multiple participants (or even within the 
same participant in ref. 33), the splits were defined so that one segment 
is always assigned to the same split across repetitions. We ensured 
that there were no identical sentences across splits. Furthermore, we 
excluded all segments overlapping over different splits. For clarity, 
we restricted the test segments to those that contain a word at a fixed 
location (here 500 ms before word onset).

MEG and EEG data can suffer from large artefacts, for example, 
eye movements or variations in the electro-magnetic environment20. 
To limit their impact, we applied a ‘baseline correction’ (that is, we 
subtracted from each input channel its average over the first 0.5 s) and 
a robust scaler with scikit-learn60. We normalized the data and clamp 
values greater than 20 s.d. to minimize the impact of large outlier sam-
ples. In Supplementary Section A.3, we study the effect of clamping and 
show that it is essential to ensure proper training. In Supplementary 
Section A.4, we further show that this approach is as effective as more 
complex data-cleaning procedures such as autoreject61.

For the Mel spectrogram, we used 120 Mel bands (Supplementary 
Section A.6) (ref. 62), with a normalized STFT (short-time Fourier 
transform) with a frame size of 512 samples and hop length of 128 
samples, using audio sampled at 16 kHz. We applied log-compression, 
that is, log(ϵ +Mel), with ϵ = 10−5. When using wav2vec 2.0, we averaged 
the activations of the last four layers of its transformer. We used stand-
ard normalization for both representations.

Training
One training epoch is defined as 1,200 updates using Adam63 with a 
learning rate of 3 × 10−4 and a batch size of 256. We stopped training 
when no improvement was observed on the valid set for ten epochs and 
kept the best model based on the valid loss. For the direct regression 
of the Mel spectrogram, we used the MSE (mean square error) loss. We 
used two V100 graphics processing units with 16 GB of memory. See 
Supplementary Section A.7 for an analysis of the impact of the training 
hyperparameters.
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Evaluation
Mel reconstructions. In Extended Data Fig. 4, we illustrate some recon-
structed Mel spectrograms using different models. With a regression 
loss, the generation of the Mel spectrogram is made directly. With a 
CLIP loss, we plot the weighted average across all test segments, where 
the weight corresponds to the probability of the segment to be true esti-
mated with the CLIP loss. Specifically, given a segment and its matching 
audio (here the sentence ‘Thank you for coming Ed’), we retrieve the 
predicted distribution over the 1,363 segments given by equation (2). 
We then use this distribution to average the Mel spectrogram of each 
candidate segment.

Segment-level evaluation. The top-10 segment accuracy indicates 
whether the true segment is in the top-10 most likely segments pre-
dicted by the decoder. We favour reporting this metric over the stand-
ard top-1 accuracy, given the large number of possible segments as the 
model may be able to decode useful information, without necessarily 
guessing the exact speech segment.

Word-level evaluation. To evaluate the model at the word level, we 
select a 3 s segment for each word of the test set (from −500 ms to 
2.5 s). We input the model with the corresponding brain recordings, 
and output the probability distribution over all test segments. To obtain 
the distribution over the vocabulary, we group the candidate segments 
by the corresponding word (that is, starting at t = 0) and sum the prob-
abilities of the same words spoken in different segments. Top-1 and top-
10 word-level accuracy then quantify whether the true word is within 
the first or first 10 most likely predictions of the model, respectively.

Prediction analysis. To further inspect the predictions of the decoder, 
we quantify the extent to which they can be predicted from well-defined 
features ̃Y ∈ Rn×fi. For this, we extract the phonetic features (d = 60) with 
Phonemizer64, the ‘zipf ’ frequency (d = 1) with Wordfreq65, the 
part-of-speech tags (d = 15), the word embedding (d = 300) of each 
word with spaCy66 as well as the phrase embedding of the correspond-
ing 3 s speech segment (d = 1, 024) with Laser67. We refer to 
‘bag-of-words’ as the sum of word embeddings over the segment. We 
then train a ridge regression with scikit-learn’s default parameters60 to 
predict the softmax probability of the true word output by the decoder, 
and estimate, with a five-split cross-validation, the correspondence 
between these two values with Pearson’s R correlation. In sum, this 
analysis quantifies how well the feature predicts the probability of 
being selected by the decoder.

Statistics. Statistical comparison was performed on the test set. We 
used a Wilcoxon test across participants to compare different models 
on the same datasets. We used a Mann–Whitney test across participants 
to compare different datasets.

Discussion
Our model accurately identifies, from three seconds of non-invasive 
recordings of brain activity, the corresponding speech segment with 
up to 41% accuracy out of more than 1,000 distinct possibilities. This 
performance, sometimes reaching 80% in the best participants, allows 
the decoding of perceived words and phrases that are absent from the 
training set.

To decode speech perception from MEG and EEG, two major chal-
lenges must be overcome. First, these signals can be very noisy, making 
it difficult to extract useful information. Second, it is unclear which 
features of speech are, in fact, represented in the brain. Here we dis-
cuss how our ‘brain’ and ‘speech’ modules respectively address these 
two issues in the case of speech perception. Finally, we evaluate the 
performance of our model compared with previous works and outline 
the necessary steps to be taken before hoping to deploy this approach 
for the decoding of speech production in clinical settings.

Efficiently extracting brain signals
Non-invasive recordings are notoriously noisy: these signals present 
large variations across trials and participants and they are often con-
taminated by large artefacts20–22. Historically, solving this problem 
has involved complex preprocessing pipelines that include a variety 
of techniques—independent component analysis, outlier detection, 
artefact correction—that end with a linear model specific to each 
participant68–70. More recently, several deep-learning architectures 
have proved successful in solving simple classification tasks trained 
on single-participant recordings71,72.

Building on these efforts, our end-to-end architecture requires 
minimal preprocessing of MEG and EEG signals and can be trained 
with a variety of participants, devices and stimuli. As decoding speech 
production can be challenged by the presence of muscular activity, we 
here evaluate this model on four public datasets where healthy partici-
pants listened to natural speech. Our analyses suggest that advanced 
MEG and EEG preprocessing does not provide a major advantage in the 
current decoding task and that a simple baseline correction followed 
by a robust scaler and clamping suffices. In addition, not only does our 
participant-specific layer improves decoding performance but also this 
performance increases with the number of participants present in the 
training set. These findings, combined with both the rise of publicly 
available datasets and the potential to learn informative features from 
unannotated data73,74, suggest that this brain module may be a stepping 
stone for building a foundational model of brain recordings.

How is language represented in the brain?
Separating noise and signal in brain recordings is not, however, the 
only challenge. The nature of these representations in terms of their 
acoustic, phonetic, lexical and semantic properties remains poorly 
known. Consequently, determining the representations most suitable 
for decoding is an unresolved problem. To tackle this issue, previous 
studies have primarily used supervised models targeting well-defined 
features of language, such as individual letters, phonemes or frequency 
bands of the audio spectrogram12,23,24,72,75–80. Although this approach has 
demonstrated clear successes, it may impede the speed at which words 
are decoded from brain activity: for instance, spelling out a word letter 
by letter could be a slow and laborious process. As an alternative, oth-
ers have proposed to learn to classify a small set of words26,28,81–83. This 
approach, however, is difficult to scale to a vocabulary size adequate 
for natural language. Finally, word semantics may be directly decoded 
from functional MRI signals84–89. However, the corresponding perfor-
mances currently remain modest at the single-trial level.

Here we show how a neural network pretrained on a large cor-
pus of speech sounds provides representations of language that are 
particularly valuable for brain decoding. Specifically, we leverage 
the recent discovery that these self-supervised speech models learn 
features that linearly relate to those of the brain54,55 to build our speech 
module. By applying contrastive learning, we can effectively identify 
the most appropriate features for identifying new speech segments. 
Our analyses confirm that this approach outperforms (1) a supervised 
decoding of the Mel spectrogram as well as (2) ‘Deep Mel’, that is, latent 
representations of the Mel spectrogram optimized for decoding solely 
from the present MEG and EEG datasets. Finally, the inspection of the 
decoding predictions suggests that our model primarily captures the 
lexical and contextual features captured by modern word embeddings 
and language models. So far, however, what these high-level features 
represent and how these representations are structured and manipu-
lated remain to be determined.

Comparison with previous works
Comparing the performance of our model to previous works is difficult 
because the variety of experimental paradigms is not compensated by 
a profusion of open datasets and reproducible code. Two elements 
may, nonetheless, substantiate such a comparison.
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First, the size of vocabulary currently considered exceeds previous 
attempts, often by several orders of magnitude. For example, MEG and 
EEG studies typically used supervised decoders to discriminate a very 
small set of words26,28,81–83 or sublexical classes (for example, phonemes, 
syllables, tones)23,24,77–80. For example, several studies90–92 developed a 
decoder to classify 11, 5 and 2 distinct imagined phonemes from EEG 
signals, respectively. Similarly, several studies25–27 developed an MEG 
decoder to classify 6 distinct part-of-speech (with 48% accuracy), 10 
words (83% accuracy) and 3 words (70% accuracy), respectively. The 
limited vocabulary used in these non-invasive studies contrast with 
the present approach, which demonstrably accurately distinguishes 
several hundreds of words. Furthermore, the performances of our 
model are based on vocabularies that do not fully overlap with those 
used in the training set (Table 1). For example, for the Gwilliams dataset, 
the decoding performance reaches 40% in spite of the fact that nearly 
36% of the words were never presented during training. Overall, such 
zero-shot decoding shows the versatility of this approach and opens 
the possibility to decode from even larger vocabulary.

Second, although our model’s performance remains modest, 
it may not be too distant from the performance obtained with inva-
sive recordings of brain activity. Indeed, decoding the perception 
of isolated words from a vocabulary of n = 50 words leads to a top-1 
accuracy of 22.7% on average, but up to 42.9% in the best participants 
(Supplementary Section A.9). In comparison, Moses et al. 13 reported 
decoding produced words from intracranial recordings with a top-1 
accuracy of 39.5% for isolated words out of n = 50 words. Similarly, 
still restricting the number of candidates to 50 and, this time, within 
the context of a sentence, our model decoding is above 72.5% top-1 
accuracy on average across participants, and the best participants 
reach between 92.2% (ref. 32) and 95.9% (ref. 30; Fig. 2b), where Moses 
et al. 13 reached a top-1 accuracy of 74%. While comparing the decoding 
of perceived versus produced words should be considered with cau-
tion given their different brain bases, the performance of the current 
model thus leads us to be optimistic about its potential applicability 
in a speech production context.

Remaining steps to decode speech production in the clinics
Our non-invasive approach focuses on speech perception. To reach the 
performance obtained with clinical recordings10,12,13,18,40,93–95, decoding 
intended communication will thus require addressing several chal-
lenges. Three specific challenges stand out.

First, the current model needs to be adapted to speech production. 
This can, in principle, be achieved by replacing the speech module with 
a neural network pretrained on production tasks such as handwriting 
or speech production.

Second, the current contrastive-learning objective can identify 
only the most likely word or speech segment from a predetermined set. 
The model thus needs to be supplemented with a generative module 
that can estimate the most likely phoneme, word or sentence given 
brain activity without requiring this set of candidates, similarly to what 
is being achieved with functional MRI89,96.

Finally, our study reveals striking differences between EEG and 
MEG. While EEG is known to be less precise than MEG, we did not expect 
such an important difference in decoding performance. Adapting cur-
rent MEG systems to the clinics will require substantial efforts, however: 
while new room-temperature sensors already show signal-to-noise 
ratio comparable to the superconducting quantum interference 
devices (SQUIDs) used in the present study, these systems are not 
commonly deployed in clinical settings, whose magnetic environ-
ment can be extremely noisy. Combined with artificial intelligence 
systems, these new devices could nevertheless contribute to improve 
the diagnosis, prognosis and restoration of language processing in 
non-communicating or poorly communicating patients without put-
ting them at risk of brain surgery. In that regard, we hope that the 
release of a reproducible pipeline will contribute to the development 

of safe and scalable non-invasive methods for decoding intended 
communication.

Data availability
The data from Schoffelen et al.32 were provided (in part) by the Donders 
Institute for Brain, Cognition and Behaviour with a ‘RU-DI-HD-1.0’ 
licence. The data for Gwilliams et al.33 are available under the CC0 1.0 
Universal licence. The data for Broderick et al.58 are available under 
the same licence. Finally, the data from Brennan and Hale31 are avail-
able under the CC BY 4.0 licence. All audio files were provided by the 
authors of each dataset.

Code availability
The complete source code for processing the datasets, training and 
evaluating the models and method presented here are available at 
github.com/facebookresearch/brainmagick. The code is provided 
under the CC-NC-BY 4.0 license.
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Extended Data Fig. 1 | Top-1 Accuracy. Segment-level top-1 accuracy related to Table 2.
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Extended Data Fig. 2 | Ablations of the brain module. Segment-level top-10 accuracy (%) for our model and its ablated versions. Stars indicate significant gain 
(p < 0.001) across participants (dataset dependent, see Table 1). Confidence intervals are SEM over 3 runs.
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Extended Data Fig. 3 | Word-level predictions for different sentences. Similar illustration to Fig. 3 in the main paper but for five representative speech segments. 
The top and bottom segments are the easiest and hardest to decode, respectively. For each segment, we plot the predictions obtained for the subject with the median 
decoding scores across the cohort.
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Extended Data Fig. 4 | Design choices and brain module. Design choices.A. 
Illustration of a 3 s speech sound segment (bottom) and its corresponding Mel 
spectrogram (top). B. Mel-spectrogram predicted with a direct regression loss of 
a brain decoder (orange). C. Replacing the regression loss with a contrastive loss 
improves reconstruction in the same subject, still using the mel-spectrogram as 
the speech representation. D. Now replacing the mel-spectrogram with wav2vec 
2.0. The probabilities given by Eq. (2) are used to rebuild a mel-spectrogram. 
E. Architecture of the brain module. Architecture used to process the brain 
recordings. For each layer, we note first the number of output channels, while 

the number of time steps is constant throughout the layers. The model is 
composed of a spatial attention layer, then a 1x1 convolution without activation. 
A ‘Subject Layer’ is selected based on the subject index s, which consists in a 1x1 
convolution learnt only for that subject with no activation. Then, we apply five 
convolutional blocks made of three convolutions. The first two use residual skip 
connection and increasing dilation, followed by a BatchNorm layer and a GELU 
activation. The third convolution is not residual, and uses a GLU activation (which 
halves the number of channels) and no normalization. Finally, we apply two 1x1 
convolutions with a GELU in between.
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Extended Data Fig. 5 | Attention weights. Red color indicate that the M/EEG sensors is, on average, associated with a higher spatial attention weight. At the exception 
of the Brennan dataset, the topographies highlight channels typically activated during auditory stimulation.
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