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From attribution maps to human- 
understandable explanations through 
Concept Relevance Propagation

Reduan Achtibat    1,4, Maximilian Dreyer1,4, Ilona Eisenbraun1, Sebastian Bosse1, 
Thomas Wiegand1,2,3, Wojciech Samek    1,2,3  & Sebastian Lapuschkin    1 

The field of explainable artificial intelligence (XAI) aims to bring 
transparency to today’s powerful but opaque deep learning models. While 
local XAI methods explain individual predictions in the form of attribution 
maps, thereby identifying ‘where’ important features occur (but not 
providing information about ‘what’ they represent), global explanation 
techniques visualize what concepts a model has generally learned to 
encode. Both types of method thus provide only partial insights and leave 
the burden of interpreting the model’s reasoning to the user. Here we 
introduce the Concept Relevance Propagation (CRP) approach, which 
combines the local and global perspectives and thus allows answering both 
the ‘where’ and ‘what’ questions for individual predictions. We demonstrate 
the capability of our method in various settings, showcasing that CRP leads 
to more human interpretable explanations and provides deep insights 
into the model’s representation and reasoning through concept atlases, 
concept-composition analyses, and quantitative investigations of concept 
subspaces and their role in fine-grained decision-making.

Considerable advances have been made in the field of machine learn-
ing (ML), with deep neural networks (DNNs)1 in particular achieving 
impressive performances on a multitude of domains2–4. However, the 
reasoning of these highly complex and nonlinear DNNs is generally not 
obvious5,6, and, as such, their decisions may be (and often are) biased 
towards unintended or undesired features7–10. This in turn hampers the 
transferability of ML models to many application domains of interest, 
for example, due to the risks involved in high-stakes decision-making5, 
or the requirements set in governmental regulatory frameworks11 and 
guidelines brought forward12.

To alleviate the ‘black box’ problem and gain insights into the 
model and its predictions, the field of explainable artificial intelligence 
(XAI) has been established. In fact, a multitude of XAI methods have 
been developed that are able to provide explanations of a model’s 
decision while approaching the subject from different angles, for 

example, based on gradients13,14, as modified backpropagation pro-
cesses15–18, by probing the model’s reaction to changes in the input19–21 
or visualizing stimuli that specific neurons react strongly to22,23. The 
field can roughly be divided into local XAI and global XAI. Methods 
from local XAI commonly compute attribution maps in input space 
highlighting input regions or features, which carry some form of 
importance to the individual prediction process (that is, with respect 
to a specific sample). However, the visualization of important input 
regions is often of only limited informative value on its own, as it does 
not tell us what features in particular the model has recognized in 
those regions, as Fig. 1 illustrates. Furthermore, attribution maps can 
be understood as a superposition of many different model-internal 
decision subprocesses (for example, see ref. 24), working through 
various transformations of the same input features and culminating 
in the final prediction. Many intricacies are lost with local explanation 
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it can be linked to a specific output. From these approaches, we can at 
most obtain a global understanding of all possible features the model 
can use, but how these features interact with each other given some 
specific data sample and how the model infers a decision remain hid-
den. Other branches of global XAI propose methods, for example, to 
test a model’s sensitivity to a priori known, expected or pre-categorized 
stimuli28–31. These approaches require labelled data, thus limiting, and 
standing in contrast to, the exploratory potential of local XAI.

Some recent works have begun to bridge the gap between local 
and global XAI by, for example, drawing weight-based graphs that show 
how features interact in a global, yet class-specific scale, but without 
the capability to deliver explanations for individual data samples32,33. 
Others plead for creating inherently explainable models in the hope 
of replacing black-box models5. These methods, however, require 
either specialized architectures, data and labels, or training regimes 
(or a combination thereof)34,35 and do not support the still widely used 
off-the-mill end-to-end-trained DNN models with their extended expla-
nation capabilities. A detailed discussion of related work can be found 
in Supplementary Note 1.

techniques producing only a singular attribution map in the input space 
per prediction outcome. The result might be unclear, imprecise or even 
ambiguous explanations.

Assuming, for example, an image classification setting and an 
attribution map computed for a specific prediction, it might be clear 
where (in terms of pixels) important information can be found, but 
not what this information is, that is, what characteristics of the raw 
input features the model has extracted and used during inference, 
or whether this information is a singular characteristic or an over-
lapping plurality thereof. This introduces many degrees of freedom 
to the interpretation of attribution maps generated by local XAI, 
rendering a precise understanding of the models’ internal reasoning 
a difficult task.

Global XAI, however, attempts to address the very issue of under-
standing the ‘what’ question, that is, which features or concepts have 
been learned by a model or have an important role in a model’s reason-
ing in general. Some approaches from this category synthesize example 
data to reveal the concept a particular neuron activates for22,23,25–27, but 
do not inform which concept is in use in a specific classification or how 
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Fig. 1 | Glocal XAI can tell which features exist and how they are used for 
predictions by unifying local and global XAI. Left: local explanations visualize 
which input pixels are relevant for the prediction. Here, the model focuses on 
the eye region for all three predictions. However, what features in particular the 
model has recognized in those regions remains open for interpretation by the 
user. Right: by finding reference images that maximally represent particular 
(groups of) neurons, global XAI methods give insight into the concepts generally 
encoded by the model. However, global methods alone do not inform which 
concepts are recognized, used and combined by the model in per-sample 
inference. Centre: glocal XAI can identify the relevant neurons for a particular 
prediction (property of local XAI) and then visualize the concepts these neurons 

encode (property of global XAI). Furthermore, by using concept-conditional 
explanations as a filter mask, the concepts’ defining parts can be highlighted in 
the reference images, which largely increase interpretability and clarity. Here, 
the topmost sample has been predicted into age group 3–7 due to the sample’s 
large irides and round eyes, while the middle sample is predicted as 25–32, as 
more of the sclera is visible and eyebrows are more apparent. For the bottom 
sample, the model has predicted class 60+ based on its recognition of heavy 
wrinkles around the eyes and on the eyelids, and pronounced tear sacs next to a 
large knobby nose. Credit: iStock.com/MStudioImages, iStock.com/LSOphoto, 
iStock.com/FG Trade.
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In this work, we connect lines of local and global XAI research by 
introducing Concept Relevance Propagation (CRP) and Relevance Maxi-
mization (RelMax), a set of next-generation XAI techniques that explain 
individual predictions in terms of localized and human-understandable 
concepts. In contrast to the related state of the art, CRP and RelMax 
answer both the ‘where’ and ‘what’ questions of ML model inference, 
thereby providing deep insights into the model’s reasoning process. 
As post hoc XAI methods, CRP and RelMax can be applied to (almost) 
any ML model with no extra requirements on the data, model or train-
ing process. We demonstrate on multiple datasets, model architec-
tures and application domains that CRP-based analyses allow one to  
(1) gain insights into the representation and composition of concepts in 
the model as well as quantitatively investigate their role in prediction, 
(2) identify and counteract Clever Hans filters8 focusing on spurious 
correlations in the data, and (3) analyse whole concept subspaces and 
their contributions to fine-grained decision-making.

Analogously to Activation Maximization (ActMax)36, our pro-
posed RelMax approach searches for the most important (in terms 
of relevance, not activation) examples for latent encodings in, for 
example, the training dataset. Together, CRP and RelMax show their 
advantages in a conducted user study comparing our proposed tech-
niques with various traditional attribution map-based approaches. 
Finally, where transparency on unique samples is promptly required, 
the computational efficiency and ease of application of CRP and RelMax 
quickly provide valuable insights into the model’s representation and 
decision-making to the human user.

In summary, by lifting XAI to the concept level, CRP and RelMax 
open up new ways to analyse, debug and interact with ML models, 
which can be particularly beneficial for safety-critical applications and 
ML-supported investigations in the sciences.

Methods in brief
This section provides a brief overview over the methodological contri-
butions of this work, that is, CRP and RelMax. A more detailed descrip-
tion of our methods can be found in Methods.

CRP in brief
Layer-wise Relevance Propagation (LRP)15 is a popular method for 
explaining the predictions of a neural network by attributing relevance 
values to individual input dimensions (for example, pixels of images). 
In this process, relevance is propagated backwards through the net-
work, starting from the output until the input layer (Fig. 2a), which 
also provides relevance values for each intermediate element of the 

model (for example, channel of an intermediate layer). As the litera-
ture suggests that latent structures of neural networks are encoding 
abstract human-understandable concepts with distinct semantics, 
especially in higher layers23,31,37–40, the channel-wise relevance values 
can be interpreted as scores quantifying the importance of the cor-
responding concepts in the inference process.

CRP is an extension of LRP, which disentangles the relevance 
flows associated with concepts learned by the model via conditional 
backpropagation. Thus, it allows to compute concept-conditional 
relevance maps R(x∣θ), where x represents the data point the model has 
predicted for and θ describes a set of conditions (that is, specifying the 
explained output category (for example, ‘dog’) and concepts as learned 
and distinctly encoded by model components (for example, ‘fur’)), 
determining the flow of relevance via controlled masking operations 
in the backwards process (see Methods for technical details). These 
concept-conditional explanations show us, for example, in which part 
of the image the concepts (encoded in hidden-layer channels) ‘fur’ or 
‘eye’ are present (the where question) and how much they contrib-
ute to the prediction. For the example in Fig. 2b, it turns out that the  
concept ‘fur’ is more relevant than the concept ‘eye’ for the prediction  
‘dog’, which is not obvious when looking at explanations from LRP  
(Fig. 2a) or other local attribution methods (for example, refs. 17,41–43), 
where the contributions of all concepts are superimposed into a single 
attribution map.

It is noted that condition sets θ can be chosen by the human stake-
holder (that is, depending on the task), or as we prefer to do in this 
paper, they can be configured automatically: per layer we configure 
θ algorithmically by ranking the network units in descending order 
of their relevance values for the current prediction, while choosing 
layer indices uniformly and arbitrarily from the higher, middle or 
bottom parts of the models throughout the paper for illustration out 
of simplicity.

RelMax in brief
Although CRP allows to compute concept-specific attribution maps by 
disentangling the backwards flow, our understanding of the semantics 
of latent model structures largely remains elusive with local attribu-
tions alone. In other words, the channel-wise relevance values and the 
concept-conditional relevance maps do not provide the full answer 
to which specific concept a particular channel is actually encoding 
(the ‘what’ question). A canonical approach for gaining insight into 
the meaning and function of latent model structures is ActMax23,37–39 
for generating or selecting samples as representations for concepts 
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Fig. 2 | Brief overview over the methodological contributions of this work.  
a, Traditional backpropagation-based methods such as LRP propagate relevance 
scores backwards through the network culminating into a single attribution 
map. b, By conditioning on a concept encoded by a hidden-layer channel of the 
network, CRP allows to compute concept-conditional explanations.  

c, To provide a semantic meaning for latent model structures, we propose 
with RelMax to visualize input samples where the latent structure was strongly 
relevant for a prediction. We can further highlight the semantics by displaying 
only the relevant input parts according to concept-specific explanations, as 
introduced in b. Credit: iStock.com/Taku_S.
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encoded in hidden space. We find, however, that (maximizing) the 
activation of a latent encoding by a given data point does not always 
correspond to its utility to the model in an inference context (see, for 
example, ref. 44 or Supplementary Fig. 7), putting the faithfulness of 
activation-based example selection for latent concept representation 
into question.

We therefore introduce RelMax, as an alternative measure to  
ActMax, with the objective to maximize the relevance criterion for 
the selection of representative samples for latent model features (see 
Methods for technical details). For each of the observed concepts, 
Fig. 2c (right) shows 5 image segments from a holdout set, for which 
for instance channel 274 of layer features.28 of a pretrained VGG-16 
neural network model45 encoding the concept ‘fur’ becomes maximally 
relevant for the prediction of class ‘dog’. As relevance is, contrary to 
activation, directly linked to a model’s prediction output, the obtained 
example sets per latent feature are also highly outcome specific. That 
is, for a latent feature, we may obtain multiple sets of examples, each 
illustrating how the model is using a particular feature for the predic-
tion of different outcomes, for example, classes.

Results
In this section, we first present approaches to study the role of 
learned concepts in individual predictions using our glocal CRP and 
RelMax-based approach. We then show how understanding of hidden 
features and their function allows interaction with the model and to 
test its robustness against feature ablation. Next we study concept  
subspaces to identify (dis)similarities and roles of concepts in 
fine-grained decision-making. Finally, we examine the benefits of CRP 
over traditional local XAI methods in a user study.

More detailed investigations can be found in Supplementary  
Notes 4, 5 and 8. In addition, Supplementary Note 9 provides an exam-
ple on how CRP can be leveraged to identify systematically learned 
biases in male versus female face classification and Supplementary 
Note 10 demonstrates the applicability of CRP to time-series data.

Understanding concept composition leading to prediction
Attribution maps provide only partial insights into the decision-making 
process as they show only where the model is focusing on and not which 
concepts are actually being used. Figure 3a shows an attribution map 
computed for the prediction ‘Northern Flicker’. In this case, the bird’s 
head—in particular the black eye and red stripe—can be identified as the 
most relevant part of the image. However, it remains unclear from the 
explanation whether the colour or the shape (or both) of the eye and 
stripe were the decisive features for the model to arrive at its prediction, 
and how much these body parts contribute, for example, compared 
with the bird’s feathers. Furthermore, as shown in Supplementary  
Fig. 1b, attribution maps almost always point to the head or the upper 
body of a bird, irrespective of the bird explained. Thus, the non-trivial 
task of interpreting what particular feature of the bird (for example, 
colour, texture, body part shape or relative position of the body parts) 
actually led to the decision is put onto the human user, which can result 
in false conclusions.

By conditioning the explanation on relevant hidden-layer chan-
nels via CRP, we can assist in concept understanding and overcome 
the interpretation gap. Figure 3b shows the result of the CRP analysis. 
The conditional heatmaps help to localize regions in input space for 
each relevant concept, and at the same time reveal what the model 
has picked up in those regions by providing reference samples (that is, 
explaining by example) via RelMax. Here, the concepts we identified as 
‘red spot’ and ‘black eyes’ (based on our subjective understanding of the 
representative examples) can be assigned to the head of the Northern 
Flicker bird. These concepts have a crucial role in the classification of 
the bird, although, for example, the ‘black eyes’ concept naturally also 
occurs in images of cats and dogs. Furthermore, both ‘dots’ concepts 
affecting the prediction can be assigned to the bird’s torso and the 

‘elongated dots and stripes’ concept to the bird’s wings. Note that CRP 
also allows to quantitatively determine the individual contribution of 
each concept to the final classification decision by summation of the 
conditional relevance scores (Methods). This additional information 
is very valuable as it indicates, for example, that the dotted texture is 
the most relevant feature for this particular prediction, or that colour  
is a very relevant cue (for example, the masked reference samples for 
channel 10 are all red and for channel 187 contain only black/brown eyes).

The concept atlas shown in Fig. 3c further eases comprehension 
of the relevant concepts. Technically, the atlas visualizes which con-
cepts are most relevant (and here, second most relevant) in specific 
input-image regions (for details, see Supplementary Note 2.3.5). By 
choosing super-pixels as regions of interest, we can aggregate the 
channel-conditional relevances per super-pixel into regional relevance 
scores, as discussed in the extended Methods section in Supplementary 
Note 2.3.2. Here, the concept atlas indicates that the ‘red spot’ and 
‘black eye’ concepts are most relevant at the bird’s head, while the two 
‘dots’ concepts mostly fill the upper body part. Interestingly, a stripe 
of red colour in the tail feathers of the bird is detected and used by 
the model, as indicated by the ‘red spot’ concept being second most 
relevant in this region. In Supplementary Note 5.1, an alternative way 
to construct concept atlases using single pixels instead of super-pixels 
is also discussed. Alternatively to investigating the most relevant chan-
nels overall as in Fig. 3b, a region of interest, for example a super-pixel, 
can be chosen and its most relevant concepts studied. A comparison of 
relevant concepts regarding two regions of unrelated visual features 
is shown in Supplementary Figs. 24–26.

With the selection of a specific neuron or concept, CRP allows 
investigation of how relevance flows from and through the chosen 
network unit to lower-level neurons and concepts, as is discussed in 
Methods. This gives information about which lower-level concepts 
carry importance for the concept of interest and how it is composed 
of more elementary conceptual building blocks, which may further 
improve the understanding of the investigated concept and model as 
a whole. In Fig. 3d, we visualize and analyse the backwards flow of the 
relevance scores. The graph-like visualization reveals how concepts 
in higher layers are composed of lower-layer concepts. Here, we show 
the top-two concepts influencing our concept of choice, the ‘animal 
on branch’ concept encoded in features.28 of a VGG-16 model trained 
on ImageNet. Edges in red colour indicate the flow of relevance with 
respect to the particular sample from class ‘Bee Eater’, shown on the 
far right between the visualized filters with corresponding exam-
ples and (multi)-conditional heatmaps. The width of each red edge 
describes the relative strength of contribution of lower-layer concepts 
to their upper-layer neighbours. This example shows that different 
paths in the network potentially activate the filter. Here, concepts that 
encode feathers, threads or fur together with horizontal structures are 
responsible for the activation of filter 102 in the observed layer in this 
particular case. In Supplementary Note 10, an example on time-series 
data is illustrated.

Understanding concept impact and reach
In this section, we demonstrate how CRP can be leveraged as a 
human-in-the-loop solution for dataset analysis. In the first step, we 
uncover a Clever Hans artefact8, and suppress it by selectively eliminat-
ing the most relevant concepts to assess its decisiveness for the recog-
nition of the correct class of a particular data sample. Then, we utilize 
class-conditional reference sampling (Methods) to perform an inverse 
search to identify multiple classes making use of the filter encoding the 
associated concept, both in a benign and a Clever Hans sense.

In Fig. 4a, we analyse a sample of the ‘safe’ class of ImageNet in 
a pretrained VGG-16 BN (a VGG-16 with BatchNorm layers) model. 
Initially, we obtain an input attribution map highlighting a centred 
horizontal band of the image, where a watermark is located. If we take a 
closer look at layer features.30 and perform a local analysis (Methods) 
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and understand channel concepts by providing masked reference samples 
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210 and 130), ‘red spot’ (10), ‘black eyes’ (187) and ‘stripes-like’ (19). d, Concept-
composition graphs decompose a concept of interest given a particular 

prediction into lower-layer concepts, thus improving concept understanding. 
Shown are relevant (sub)-concepts in features.24 and features.26 for concept 
‘animal on branch’ in features.28 for the prediction of class ‘Bee Eater’. The 
relevance flow is highlighted in red, with the relative percentage of relevance 
flow to the lower-level concepts. For each concept, the channel is given with 
the relative global relevance score (with respect to channel 102 in features.28) 
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dependent on concepts describing the branch (for example, ‘wood (horizontal)’ 
and ‘brown, knobby’) and colourful plumage (for example, ‘colourful feathers’ 
and ‘colourful threads’). Additional examples can be found in Supplementary 
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on the watermark, we notice that the five most relevant filters are 203, 
361, 483, 454, 414 and 486. Visualizing them using ActMax as illustrated 
in Supplementary Fig. 46, we conclude that they approximately encode 
for white strokes. Using our proposed RelMax approach, which uses 
CRP to identify the most relevant samples, we gain a deeper insight 
into the model’s preferred usage of the filters and discover that the 

model utilizes them to detect white strokes in ‘written characters’.  
A detailed comparison between ActMax and RelMax can be found in 
Supplementary Note 4.1. To test the robustness of the model against 
this Clever Hans artefact, we successively set the activation output 
map of the 20 most relevant filters activating on the watermark to 
zero. In Fig. 4a (bottom right), we record the change of classification 
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confidence of the four classes with the highest prediction confidence 
for this sample. From the graph, it can be inferred that the Clever Hans 
filters focusing on the watermark help the model in prediction, but 
they are not decisive for correct classification. Thus, the model relies 
on other potential non-Clever Hans features to detect the safe, verify-
ing the correct functioning of the model in cases of samples without 
watermarks. Another example with strong dependency on Clever Hans 
artefacts is found in Supplementary Note 8.2.

In an inverse search, we can now explore for which samples and 
classes these filters also generate high relevance. This allows us to 
understand the behaviour of the filter in more detail and to find other 
possible contaminated classes. Figure 4b shows the seven most relevant 
classes for filter 361. Surprisingly, many classes including ‘whistle’, 
‘mop’, ‘screw’, ‘mosquito net’, ‘can opener’ and ‘safe’ (among others) 
in the ImageNet Challenge 2014 data are contaminated with similar 
watermarks encoded via filter 361 of features.30, which is used for the 
correct prediction of samples from those classes. To verify our finding, 
we locate via CRP the source of the filters’ relevance with respect to 
the true classes in input space and confirm that these filters indeed 
are used to recognize the characters. This implies that the model has 
learned a shared Clever Hans artefact spanning over multiple classes 
to achieve higher accuracy in classification. The high number of con-
tamination of samples with the identified artefactual feature could 
be explained by the fact that watermarks are sometimes difficult to 
see with the naked eye (location marked with a black arrow) and thus 
slip any quality-ensuring data inspection. The impact of this image 
characteristic can, however, be clearly marked using the CRP heatmap. 
Although the filter is mainly used to detect characters, there are also 
valid use cases for the model, such as for the puma’s whiskers or the 
spider’s web. This suggests that the complete removal of Clever Hans 
concepts through pruning may harm the model in its ability to predict 
other classes that make valid use of the filter, and that a class-specific 
correction10 might be more appropriate.

Understanding concept subspaces, (dis)similarities and roles
So far in our experiments, we have treated single filters as functions 
assumed to (fully) encode the learned concept. Consequently, we have 
visualized examples and quantified effects based on per-filter granu-
larity. While previous work has suggested that individual neurons or 
filters often encode for a single human comprehensible concept, it 
can generally be assumed that concepts are encoded by sets of filters 
(Supplementary Note 1). The learned weights of potentially multiple 
filters might correlate and thus redundantly encode the same concept, 
or the directions described by several filters situated in the same layer 
might span a concept-defining subspace. In this section, we aim to 
investigate the encodings of filters of a given neural network layer for 
similarities in terms of activation and use within the model.

Figure 5a shows an analysis result focusing on a cluster around 
filter 446 from features.40 of a VGG-16 network with BatchNorm  
layers trained on ImageNet. The reference samples show various types 
of typewriter and rectangular laptop keyboard buttons and roofing 
shingles photographed in oblique perspective, as well as round but-
tons of typewriters, remote controls for televisions, telephone keys 
and round turnable dials of various devices and machinery. Thus, the 
filters around filter 446 seem to cover different aspects of a shared 
‘button’ or ‘small tile’ concept. The filters located in this cluster have 
been identified as similar due to their similar activations over sets of 
analysed reference samples (Methods). Assuming redundancy based 
on the filter channels’ apparently similar activation behaviour, a human 
could merge them to one encompassing concept, thereby simplify-
ing interpretation by reducing the number of filters in the model. We 
therefore further investigate the filters 7, 94, 446 and 357 (all showing 
buttons or keys) to find out (1) whether they encode a concept col-
laboratively, (2) whether they are partly redundant or (3) whether the 
cluster serves some discriminative purpose. Figure 5b visualizes the 

reference samples of these four filters for the most relevant classes 
‘laptop computer’ and ‘remote control’. We compute filter activa-
tions during a forward pass through the model using instances of both 
classes as input, as well as filter-conditioned CRP maps for the samples’ 
respective ground-truth class label. Regardless of whether an instance 
from class ‘laptop’ or ‘remote control’ is chosen as input, the activation 
maps across the observed channels are in part similar per image, for 
example, they all activate on the centre diagonal part for the left input 
image. The per-channel CRP attribution map, however, reveals that 
while all filters react to similar stimuli in terms of activations, the model 
seems to use the subtle differences among the observed concepts to 
distinguish between the classes ‘laptop’ and ‘remote control’. In both 
cases, buttons are striking and defining features, and all observed 
filters activate for button features. However, when computing the 
conditional heatmaps with CRP for class ‘remote control’, the activat-
ing filters representing round buttons (filters 7 and 94) dominantly 
receive positive attribution scores, while filter 357 clearly representing 
typical keyboard button layouts receives negative relevance scores and 
filter 446 does not receive any relevance despite being reactive to the 
given input. For samples of class ‘laptop’, the computation of relevance 
scores with respect to their true class yields almost opposite attribu-
tions, indicating that filters encoding round buttons and dials (filters 
94 and 7) provide evidence against class ‘laptop’, while the activation 
of channel 357 clearly speaks for the analysed class as visible in the 
conditional heatmaps. In both relevance analyses, however, filter 446 
receives weak negative to no attributions, presumably as it represents 
a particular expression of both round and angular buttons that fits  
(or contradicts) neither of the compared classes particularly well.  
In fact, filter 446 is highly relevant for class ‘typewriter keyboard’ 
instead.

In conclusion, we report that although several filters may show 
signs of correlation in terms of output activation, they are not neces-
sarily encoding redundant information or are serving the same pur-
pose. Conversely, using our proposed CRP in combination with the 
RelMax-based process for selecting reference examples representing 
seemingly correlating filters, we are able to discover and understand 
the subtleties a neural network has learned to encode in its latent 
representations. See Supplementary Note 8.4 for additional results 
in extension to this section.

Human evaluation study
This section presents the results of a human evaluation study, which we 
performed to assess the practical utility of the CRP and RelMax-based 
explanations to (non-expert) end users for understanding ML model 
behaviour. Human participants were asked to decide—based on expla-
nations—whether the model’s prediction has been influenced by the 
presence of a particular and known data artefact or not. We trained two 
image classifiers, of which one has learned to utilize a data artefact—a 
thick black border around the image (Fig. 6a). For both models, we then 
generate explanations (Fig. 6b,c) on images containing the artefact, 
using the proposed CRP maps with RelMax examples as well as four 
popular XAI methods, namely, Integrated Gradients (IG)14, SHapley 
Additive exPlanations (SHAP)43, Gradient-weighted Class Activation 
Mapping (Grad-CAM)41 and LRP15. In the primary task, the participants 
are asked to assess whether the black border impacts the model predic-
tion according to the explanation (binary answer, yes or no). Further-
more, we ask secondary questions on how confident they are in their 
answer and about the perceived clarity of the presented explanations. 
For more details on the study set-up, we refer the reader to Methods.

The results of the study consistently show that participants were 
reliably able to detect whether the prediction was impacted by the bor-
der artefact when exposed to CRP and RelMax explanations (Fig. 6d). 
CRP shows the highest true positive (TPR) and true negative (TNR) rates 
of (89.1 ± 2.4)% and (72.6 ± 3.4)%, respectively, and thus results in an 
accuracy (with respect to the primary task) that is significantly higher 
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than that of all other methods (two-sample t-test P values of less than 
8 × 10−4), as shown in Supplementary Table 3. The study participants 
obtained the second best results when exposed to Grad-CAM explana-
tions with a TPR and TNR of (74.9 ± 3.3)% and (52.6 ± 3.8)%, respectively. 
Participants exposed to explanations from IG performed worst with a 
TPR and TNR of (53.7 ± 3.8)% and (49.7 ± 3.8)%, respectively. It is noted 
that random guessing would correspond to values of 50%, indicating 
that the insight obtainable from IG explanations is limited in this study. 
We note that in general it seems to be easier to detect a model’s use of 
the introduced border artefact through all evaluated XAI approaches 
than it is to correctly reject an impact of the artefact, as for all methods 
we observe TPR > TNR.

When inspecting the proclaimed confidence with which the  
participants made their prediction, a direct link does not seem to exist 
with the measured prediction performance when assessing the arte-
fact’s impact. Interestingly, participants exposed to the IG explanations 
report the highest confidence (approximately 77%)—while at the same 
time performing worst in the primary task—followed by CRP (approxi-
mately 76% self-rated confidence). These results support the findings 
of ref. 28 that traditional (that is, single per sample and class, as shown 
in Fig. 6b) saliency or attribution maps alone might be misleading 
and insufficient for understanding the reasoning of an ML predictor;  

for example, see the IG heatmap. Regarding clarity of the explanations 
as perceived by the participants, the fine-grained attribution maps 
of IG and LRP receive the highest scores. CRP and RelMax interest-
ingly result in the lowest reported clarity, which might be linked to the 
more complex nature of the method, potentially leaving some of the 
participants overwhelmed with the increased amount of information 
to process, and time required to do so. This result is consistent with 
the observation of ref. 46 that addressees prefer simple and concise 
explanations. Despite that, our results demonstrate that our proposed 
approach is the most effective option for the participants to solve the 
primary task of the study.

Discussion
In this work, we have introduced CRP, a post hoc explanation method 
that not only indicates which part of the input is relevant for an individ-
ual prediction but also communicates the meaning of involved latent 
representations by providing human-understandable examples. As 
CRP combines the benefits of the local and global XAI perspectives, it 
computes more detailed and contextualized explanations, considerably 
extending the state of the art. Among its advantages are the high com-
putational efficiency (within the order of a backwards pass to compute 
near-instantaneous local explanations for the most relevant concepts, and 
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a complete concept atlas visualization within the order of seconds) and 
the out-of-the-box applicability to (almost) any model without imposing 
constraints on the training process, the data and label availability, or the 
model architecture. Furthermore, CRP introduces the idea of conditional 
backpropagation tied to a single concept or a combination of concepts 
as encoded by the model, within or across layers. Via this ansatz, the con-
tribution of all neurons’ concepts in a layer can be faithfully attributed, 
localized in the input space, and finally their interaction can be studied. 
As shown in this work, such an analysis allows one to disentangle and 
separately explain the multitude of in-parallel partial forward processes, 
which transform and combine features and concepts before culminating 
into a prediction. Finally, with RelMax, we move beyond the decade-old 
practice of communicating latent features of neural networks based on 
examples obtained via maximized activation. In particular, we show that 
the examples that stimulate hidden features maximally are not necessarily 
useful for the model in an inference context, or representative for the data 
the model is familiar and confident with. By providing examples based on 
relevance, however, the user is presented with data with characteristics 
that actually have an important role in the prediction process. As the user 
can select examples with respect to any (that is, not necessarily the ground 
truth) output class, our approach constitutes a new tool to systematically 
investigate latent concepts in neural networks.

Our experiments have qualitatively and quantitatively demon-
strated the additional value of the CRP approach for common datasets 
and end-to-end-trained models. Specifically, we showed that reference 
samples selected with relevance-based criteria, concept heatmaps and 
atlases, as well as concept-composition graphs, open up the ability to 
understand model reasoning on a more abstract and conceptual level. 
These insights then allowed us to identify Clever Hans concepts, to 
investigate their impact and finally to correct for these misbehaviours. 
Furthermore, using our relevance-based reference sample sets, we were 
able to identify concept themes spanned by sets of filters in latent space. 
Although channels of a cluster have a similar function, they seem to be 
used by the model for fine-grained decisions regarding details in the data, 
such as the particular type of buttons to partially decide whether an image 

shows a laptop keyboard, a mechanical typewriter or a TV remote control. 
In addition, we have demonstrated the usefulness of CRP in the non-image 
data domain, where traditional attribution maps are often difficult to 
interpret and comprehend by the user. Our experiments on time-series 
data have shown that as long as a visualization of the data can be found, the 
meaning of latent concepts can be communicated via reference examples. 
Finally, we did conduct a user study that validates a substantial increase 
in utility of our glocal CRP and RelMax-based approach above traditional 
post hoc local XAI methods for understanding a model’s inference behav-
iour by human assessors. For completeness, we make the reader aware 
of two factors possibly affecting the outcome of our study, namely, the 
potentially varying degree of technical and in-domain training of the 
study participants, and the given prior knowledge about the nature of 
the data artefact potentially affecting the model. Both factors should 
therefore be addressed and evaluated individually in future work, for 
example, to assess the potential of (g)local XAI approaches for assessing 
yet unexplored model behaviour based on feedback for single-instance 
predictions, across different levels of expert knowledge.

Overall, we believe that the tools we have proposed in this work, 
and the resulting increase in semantics and detail to be found in 
sample-specific neural network explanations, will advance the applica-
bility of post hoc XAI to novel or previously difficult to handle models, 
problems and data domains.

Methods
This section presents the techniques used and introduced in this paper. 
For a more elaborate introduction and discussion, please refer to Supple-
mentary Notes 2 and 3. For an estimation of run-time requirements, the 
computational steps involved and guidelines on the interpretation of the 
output obtained by our techniques, please refer to Supplementary Note 6.

Concept Relevance Propagation
In the following, we introduce CRP, a backpropagation-based attribu-
tion method extending the framework of LRP15. As such, CRP inherits 
the basic assumptions and properties of LRP.
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computed via the methods LRP, SHAP, Grad-CAM and IG. c, An explanation 
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results of participant predictions whether the border artefact has an impact on 
the prediction outcome, based on the given explanation. Confusion matrices 
illustrating true positive (TPR), false positive (FPR), true negative (TNR) and false 
negative (FNR) rates per XAI method. Credit: iStock.com/mauro_grigollo.
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LRP revisited. Assuming a predictor with L layers

f(x) = fL ∘ ⋯ ∘ f1(x), (1)

LRP follows the flow of activations computed during the forward pass 
through the model in opposite direction, from the final layer fL back to 
the input mapping f1. Given a particular mapping f*(⋅), we consider its 
pre-activations zij mapping inputs i to outputs j and their aggregations 
zj at j. Commonly in neural network architectures such a computation 
is given with

zij = aiwij (2)

zj = ∑
i
zij (3)

aj = σ(zj), (4)

where ai are the layer’s inputs and wij its weight parameters. Finally, 
σ constitutes a (component-wise) nonlinearity producing input acti-
vation for the succeeding layer(s). The LRP method distributes rel-
evance quantities Rj corresponding to aj and received from upper layers 
towards lower layers proportionally to the relative contributions of zij 
to zj, that is

Ri←j =
zij
zj
Rj. (5)

Lower neuron relevance is obtained by losslessly aggregating all incom-
ing relevance messages Ri←j as

Ri = ∑
j
Ri←j. (6)

This process ensures the property of relevance conservation between 
a neuron j and its inputs i, and thus adjacent layers. LRP is mathemati-
cally founded in deep Taylor decomposition47.

Disentangling explanations with CRP. CRP extends the formalism 
of LRP by introducing conditional relevance propagation determined 
by a set of conditions θ. Each condition c ∈ θ can be understood as an 
identifier for neural network elements, such as neurons j located in 
some layer, representing latent encodings of concepts of interest. 
One such condition could, for example, represent a particular network 
output to initiate the backpropagation process from. Within the CRP 
framework, the basic relevance decomposition formula of LRP given 
in equation (5) then becomes

R(l−1,l)i←j (x|θ ∪ θl) =
zij
zj

∑
cl∈θl

δjcl Rl
j(x|θ), (7)

following the potential for a ‘filtering’ functionality briefly discussed 
in ref. 48. Here, Rl

j(x|θ)  is the relevance assigned to layer output j  
given from the CRP process performed in upper layers under conditions 
θ, to be distributed to lower layers. The sum-loop over cl ∈ θl then 
‘selects’ via the Kronecker-delta δjcl neurons j of which the relevance is 
to be propagated further, given j corresponds to concepts as specified 
in set θl specific to layer l. The result is the concept-conditional rele-
vance message R(l−1,l)i←j (x|θ ∪ θl) carrying the relevance quantities with 
respect to the prediction outcome on x conditioned to θ and θl. Note 
that the sum is not particularly necessary in equation (7), but serves as 
a means to compare all possible cl for identity to the current j. In prac-
tice, CRP can be implemented efficiently as a single backpropagation 
step by binary masking of relevance tensors, and is compatible to the 
recommended rule composites for relevance backpropagation49,50. We 

provide an efficient implementation of CRP based on Zennit51 at https://
github.com/rachtibat/zennit-crp.

The effect of CRP over LRP and other attribution methods is an 
increase in detail of the obtained explanations. Given a typical image 
classification convolutional neural network (CNN), one may assume 
the computation of three-dimensional latent tensors, where the first 
two axes span the application coordinates of n spatially invariant con-
volutional filters, which generate output activations stored in the 
n channels of the third axis. For simplicity, one can further assume 
that each filter channel is associated with exactly one latent concept. 
Neurons j can thus be grouped into spatial and channel axes to restrict 
the application of CRP conditions θl to the channel axis only, that is

R(l−1,l)i←(p,q, j)(x|θ ∪ θl) =
zi(p,q, j)
z(p,q, j)

∑
cl∈θl

δjcl Rl
(p,q, j)(x|θ). (8)

Here, the tuple (p, q, j) uniquely addresses an output voxel of the activa-
tion tensor z(p,q,j) computed during the forward pass with p and q indicat-
ing the spatial tensor positions and j the channel. Figure 2a contrasts the 
attribution-based explanation with respect to class ‘dog’ only (which 
also is possible with LRP and other attribution methods) as θd = {dogL}, 
to the attributions for, for example, ‘dog ∧ fur’ as θdf = {dogL, furl} (pos-
sible with CRP only) by conditionally masking channels responsible for 
fur pattern representations. Alternatively, conditions can be notated 
in the form of θdf = {L: {dog}, l: {fur}}, to provide a more explicit nota-
tion specifying the affiliation of concepts to distinct layers. Here we 
use the terms ‘fur’ and ‘dog’ describing latent or labelled concepts, 
respectively, as proxy representations for network element identifiers 
c. We further assume that in any layer l′ without explicit designation of 
conditions all δ* operators always evaluate to 1 to not restrict the flow 
of attributions through these layers.

Due to the conservation property of CRP inherited from LRP, the 
global relevance of individual concepts to per-sample inference can 
be measured by summation over input units i as

Rl(x|θ) = ∑
i
Rl
i(x|θ), (9)

in any layer l where θ has taken full effect. This can easily be extended 
to a localized analysis of conceptual importance, by restricting the 
relevance aggregations to regions of interest ℐ

Rl
ℐ(x|θ) = ∑

i∈ℐ
Rl
i(x|θ), (10)

as also illustrated in Supplementary Fig. 3. In addition, as shown in Sup-
plementary Fig. 4, an aggregation of the relevance messages may be 
utilized to identify dependencies of a concept c encoded by channels j,  
to concepts encoded by channels i in a lower layer, in context of the 
prediction of a sample x and CRP conditions θ. With an expansion of the 
indexing of downstream target voxels with respect to equation (9) as

R(l−1,l)(u,v,i)←(p,q, j)(x|θ) =
z(u,v,i)(p,q, j)
z(p,q, j)

Rl
(p,q, j)(x|θ), (11)

the tuple (u, v, i) addresses the spatial axes with u and v, and the channel 
axis i at layer l − 1. An aggregation over spatial axes with

R(l−1,l)i←j (x|θ) = ∑
u,v
∑
p,q

R(l−1,l)(u,v,i)←(p,q, j)(x|θ) (12)

communicates the dependency between channel j to lower-layer chan-
nel i, and thus related concepts, in terms of relevance in the prediction 
context of sample x. Following the LRP methodology, an adaptation of 
the CRP approach beyond CNN, for example, to recurrent52 or graph53 
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neural networks, is possible. Further details on our proposed CRP 
method are given in Supplementary Note 2.

Selecting reference examples
In the following, we discuss the widely used ActMax approach to 
procuring representations for latent neurons, and present our novel 
CRP-based RelMax technique to improve concept identification and 
understanding. An in-depth introduction to all details of our proposed 
technique is given in Supplementary Note 3, with various modes of 
application and analyses being discussed in Supplementary Note 4.

Activation Maximization. A large part of feature visualization tech-
niques rely on ActMax, where in its simplest form, input images are 
sought that give rise to the highest activation value of a specific network 
unit. Recent work35,54 proposed to select reference samples from exist-
ing data for feature visualization and analysis. In the literature, the 
selection of reference samples for a chosen concept c manifested in 
groups of neurons is often based on the strength of activation induced 
by a sample. For data-based reference sample selection, the possible 
input space 𝒳𝒳  is restricted to elements of a particular finite dataset 
𝒳𝒳d ⊂ 𝒳𝒳. The authors of ref. 35 assumed convolutional layer filters to be 
spatially invariant. Therefore, entire filter channels instead of single 
neurons are investigated for convolutional layers. One particular 
choice of maximization target 𝒯𝒯(x) is to identify samples x⋆ ∈ 𝒳𝒳d, which 
maximize the sum over all channel activations, that is

𝒯𝒯act
sum(x) = ∑

i
zi(x). (13)

resulting in samples x⋆ act
sum, which are likely to show a channel’s concept 

in multiple (spatially distributed) input features, as maximizing the 
entire channel also maximizes 𝒯𝒯act

sum. However, while targeting all channel 
neurons, reference samples including both concept-supporting and 
contradicting features might result in a low function output of 𝒯𝒯act

sum, as 
negative activations are taken into account by the sum. Alternatively, 
a nonlinearity can be applied on zi(x), for example, a rectified linear 
unit (ReLU), to only consider positive activations. A different choice is 
to define maximally activating samples by observing the maximum 
channel activation

𝒯𝒯 act
max (x) = max

i
zi(x), (14)

leading to samples x⋆ act
max  with a more localized and strongly activating 

set of input features characterizing a channel’s concept. These samples 
x⋆ act

max  might be more difficult to interpret, as only a small region of a 
sample might express the concept.

To collect multiple reference images describing a concept, the 
dataset 𝒳𝒳d consisting of n samples is first sorted in descending order 
according to the maximization target 𝒯𝒯(x), that is

𝒳𝒳⋆ = {x⋆1 ,… ,x⋆n } = arg sort
x∈𝒳𝒳d

desc𝒯𝒯(x). (15)

Subsequently, we define the set

𝒳𝒳⋆
k = {x⋆1 ,… ,x⋆k } ⊆ 𝒳𝒳⋆ (16)

containing the k ≤ n samples ranked first according to the maximization 
target to represent the concept of the filter(s) under investigation. We 
denote the set of samples obtained from 𝒯𝒯act

sum as 𝒳𝒳k
⋆ act
sum  and the set 

obtained from 𝒯𝒯act
max as 𝒳𝒳k

⋆ act
max.

Relevance Maximization. We introduce the method of RelMax as a 
complement to ActMax. Regarding RelMax, we do not search for images 
that produce a maximal activation response. Instead, we aim to find 
samples, which contain the relevant concepts for a prediction. To select 

the most relevant samples, we define maximization targets 𝒯𝒯 rel
∗ (x)  

by using the relevance Ri(x∣θ) of neuron i for a given prediction, instead 
of its activation value zi. Specifically, the maximization targets are  
given as

𝒯𝒯rel
sum(x) = ∑

i
Ri(x|θ) and 𝒯𝒯rel

max(x) = max
i

Ri(x|θ). (17)

By utilizing relevance scores Ri(x∣θ) instead of relying on activa-
tions only, the maximization target 𝒯𝒯rel

sum or 𝒯𝒯rel
max is class-specific (true, 

predicted or arbitrarily chosen, depending on θ), model-specific and 
potentially concept-specific (depending on θ), as is also illustrated in 
Supplementary Fig. 7a. The resulting set of reference samples thus 
includes only samples that depict facets of a concept that are actually 
useful for the model during inference (Supplementary Fig. 7b). How 
differences in resulting reference sets 𝒳𝒳⋆

k
act

 and 𝒳𝒳⋆
k

rel
 can occur is 

depicted in Supplementary Fig. 7c,d. One can see that relevances are 
not strictly correlated to activations, because they also depend on the 
downstream relevances propagated from higher layers affected by 
feature interactions at the current and following layers. For further 
details and evaluations, we refer the interested reader to Supplemen-
tary Notes 3 and 4.

Comparing feature channels with averaged cosine similarity 
on reference samples
We propose a simple but qualitatively effective method for comparing 
filters in terms of activations based on reference samples, for grouping 
similar concepts in CNN layers. Based on the notation in previous sec-
tions, 𝒳𝒳∗

(k,q) denotes a set of k reference images for a channel q in layer 
l and zlq(W,xm) the ReLU-activated outputs of channel q in layer l for the 
mth input sample xm of the dataset with all required network param-
eters W for its computation. Specifically, for each channel q and its 
associated full-sized (that is, not cropped to the channels’ filters’ recep-
tive fields; compare with Supplementary Note 3.4) reference samples 
xm ∈ 𝒳𝒳⋆

k,q
rel
sum

, we compute zqm = zlq(W,xm), as well as zpm = zlp(W,xm)  for  
all other channels p ≠ q, by executing the forward pass, yielding activa-
tion values for all spatial neurons for the channels. We then define the 
averaged cosine similarity ρqp between two channels q and p in the same 
layer l as

ρqp =
1
2 (cos (ϕ)qp + cos (ϕ)pq) (18)

with

cos (ϕ)qp =
1
k

∑
xm∈𝒳𝒳⋆

(k,q)
rel

sum

zqm ⋅ zpm
||zqm|| ⋅ ||z

p
m||

. (19)

Note that we symmetrize ρqp in equation (18) as the cosine similarities 
cos (ϕ)qp and cos (ϕ)pq are in general not identical, due to the potential 
dissimilarities in the reference sample sets 𝒳𝒳∗

(k,q) and 𝒳𝒳∗
(k,p). Thus, cos (ϕ)qp 

measures the cosine similarity between filter q and filter p with respect 
to the reference samples representing filter q. From equation (18), the 
resulting symmetric similarity measures ρqp = ρpq ∈ [0, 1] can now be 
clustered, and visualized via a transformation into a distance measure 
dqp = 1 − ρqp serving as an input to t-distributed stochastic neighbor 
embedding (t-SNE)55, which visually clusters similar filters together in, 
typically, ℝ2. Note that normally, the output value of the cosine distance 
covers the interval [−1, 1], where for −1 the two measured vectors are 
exactly opposite to one another, for 1 they are identical and for 0 they 
are orthogonal. In case output channels of dense layers are analysed, 
that is, scalar values, the range of output values reduces to the set 
{−1, 0, 1}, as both values are either of same or different signs, or at least 
one of the values is zero. As we process layer activations after the ReLU 
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nonlinearities of the layer, this yields only positive values for zqm and 
zpm. This results in ρpq ∈ [0, 1], and a conversion to a canonical distance 
measure dqp ∈ [0, 1].

Human evaluation study details
In the following, we provide further details on the conduction of the 
human study in the ‘Human evaluation study’ section. All participants 
were recruited on the Amazon Mechanical Turk platform, representing 
people from all backgrounds that do not necessarily have any back-
ground knowledge from the field of artificial intelligence. As such, the 
participants reflect the general non-expert population in interaction 
with (X)AI. It is noted, however, that on this platform, participants 
might work on other unrelated studies for several hours, which can have 
a negative impact on their performance. The study did not consider the 
sex, gender, race, ethnicity or other socially relevant groupings of the 
participants, as they were not relevant to the research. Consequently, 
no corresponding data have been collected.

The study was conducted using a between-subject design from 
19–26 September 2022. Each participant was assigned randomly to one 
of the groups (25 participants per group) associated with one of the XAI 
methods. The sample size of 25 is chosen such that the differences in 
terms of accuracy between our method and the other methods become 
significant (according to two-sample t-test probabilities). For the 
analysis, we only considered studies fully finished by the participants.

Regarding the computation and visualization of explanations, 
we used the publicly available ImageNet56 dataset, and fine-tuned two 
VGG-1657 DNNs, with parameters pretrained on ImageNet as obtained 
from the PyTorch58 model zoo. The interested reader can find additional 
details about the design and the evaluation of the conducted study in 
Supplementary Note 7 and on GitHub (https://github.com/maxdreyer/
crp-human-study), providing Python code for generating explanations 
as well as HTML templates for Amazon Mechanical Turk.

Ethics approval
The Ethics Commission Faculty IV TU Berlin provided guidelines for the 
study procedure and determined that no protocol approval is required. 
Informed consent has been obtained from all participants.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The study was conducted using the publicly available ImageNet56  
dataset. Code, models and samples used for the execution of our user 
study can be found at https://github.com/maxdreyer/crp-human-study. 
More information about data and models utilized in other experiments 
can be found in Supplementary Note 12. The license to re-use and repro-
duce have been granted for the images shown in the figures of this paper 
and its Supplementary Information to the authors by the respective 
copyright holders by iStock, Shutterstock, Pixabay and Pexels. Addi-
tional results obtained on the openly available benchmark datasets, 
such as ImageNet or Caltech-UCSD Birds 200, can be found in ref. 59.

Code availability
We provide an open-source CRP toolbox for the scientific community 
written in Python and based on PyTorch58 and Zennit51. The GitHub 
repository containing our implementations of CRP and RelMax is  
publicly available at https://github.com/rachtibat/zennit-crp  
(ref. 60). All experiments were conducted with Python 3.8, zennit-crp 
v0.6, Zennit v0.4.6 and PyTorch v1.13.1.
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