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The field of explainable artificial intelligence (XAl) aims to bring
transparency to today’s powerful but opaque deep learning models. While

local XAl methods explain individual predictions in the form of attribution
maps, thereby identifying ‘where’ important features occur (but not
providing information about ‘what’ they represent), global explanation
techniques visualize what concepts amodel has generally learned to
encode. Both types of method thus provide only partial insights and leave
the burden of interpreting the model’s reasoning to the user. Here we
introduce the Concept Relevance Propagation (CRP) approach, which

combines the local and global perspectives and thus allows answering both
the ‘where’ and ‘what’ questions for individual predictions. We demonstrate
the capability of our method in various settings, showcasing that CRP leads
to more human interpretable explanations and provides deep insights

into the model’s representation and reasoning through concept atlases,
concept-composition analyses, and quantitative investigations of concept
subspaces and their role in fine-grained decision-making.

Considerable advances have been made in the field of machine learn-
ing (ML), with deep neural networks (DNNs)' in particular achieving
impressive performances onamultitude of domains®*. However, the
reasoning of these highly complex and nonlinear DNNsis generally not
obvious®®, and, as such, their decisions may be (and often are) biased
towards unintended or undesired features’'°. Thisin turn hampers the
transferability of ML models to many application domains of interest,
forexample, due to therisksinvolved in high-stakes decision-making’,
or the requirements setin governmental regulatory frameworks" and
guidelines brought forward®.

To alleviate the ‘black box’ problem and gain insights into the
model andits predictions, the field of explainable artificial intelligence
(XAI) has been established. In fact, a multitude of XAl methods have
been developed that are able to provide explanations of a model’s
decision while approaching the subject from different angles, for

example, based on gradients™', as modified backpropagation pro-

cesses” %, by probing the model’s reaction to changesin the input'*
or visualizing stimuli that specific neurons react strongly to?>?*. The
field can roughly be divided into local XAl and global XAl. Methods
from local XAl commonly compute attribution maps in input space
highlighting input regions or features, which carry some form of
importance to the individual prediction process (that is, with respect
to a specific sample). However, the visualization of important input
regionsis often of only limited informative value onits own, asit does
not tell us what features in particular the model has recognized in
those regions, as Fig. lillustrates. Furthermore, attribution maps can
be understood as a superposition of many different model-internal
decision subprocesses (for example, see ref. 24), working through
various transformations of the same input features and culminating
inthefinal prediction. Many intricacies are lost with local explanation
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Fig. 1| Glocal XAl can tell which features exist and how they are used for
predictions by unifyinglocal and global XAl. Left: local explanations visualize
whichinput pixels are relevant for the prediction. Here, the model focuses on
the eye region for all three predictions. However, what features in particular the
model has recognized in those regions remains open for interpretation by the
user. Right: by finding reference images that maximally represent particular
(groups of) neurons, global XAl methods give insight into the concepts generally
encoded by the model. However, global methods alone do not inform which
concepts are recognized, used and combined by the model in per-sample
inference. Centre: glocal XAl canidentify the relevant neurons for a particular
prediction (property of local XAl) and then visualize the concepts these neurons

Conditional heatmap

Only relevant parts
of reference samples

4-\

Collecting activations
and attributions

Conditioning
attribution flow
Global XAl
What features exist?

Feature visualization

8%

2%

7%

4%

8%

Global relevance scores

for each prediction
encode (property of global XAl). Furthermore, by using concept-conditional
explanations as a filter mask, the concepts’ defining parts can be highlighted in
the reference images, which largely increase interpretability and clarity. Here,
the topmost sample has been predicted into age group 3-7 due to the sample’s
large irides and round eyes, while the middle sample is predicted as 25-32, as
more of the sclerais visible and eyebrows are more apparent. For the bottom
sample, the model has predicted class 60+ based onits recognition of heavy
wrinkles around the eyes and on the eyelids, and pronounced tear sacs nextto a
large knobby nose. Credit: iStock.com/MStudiolmages, iStock.com/LSOphoto,
iStock.com/FG Trade.

techniques producingonly asingular attributionmapin theinputspace
per prediction outcome. The result might be unclear, imprecise or even
ambiguous explanations.

Assuming, for example, an image classification setting and an
attribution map computed for aspecific prediction, it might be clear
where (in terms of pixels) important information can be found, but
not what this information is, that is, what characteristics of the raw
input features the model has extracted and used during inference,
or whether this information is a singular characteristic or an over-
lapping plurality thereof. This introduces many degrees of freedom
to the interpretation of attribution maps generated by local XAl,
rendering a precise understanding of the models’ internal reasoning
adifficult task.

Global XAl, however, attempts to address the very issue of under-
standing the ‘what’ question, that is, which features or concepts have
beenlearned by amodel or have animportantroleinamodel’s reason-
ingingeneral. Some approaches from this category synthesize example
datatoreveal the conceptaparticular neuron activates for*>** %, but
donotinformwhich conceptisinuseinaspecific classification or how

itcanbelinked toaspecific output. Fromthese approaches, we can at
most obtain aglobal understanding of all possible features the model
can use, but how these features interact with each other given some
specific data sample and how the model infers a decision remain hid-
den. Other branches of global XAl propose methods, for example, to
testamodel’s sensitivity to a priori known, expected or pre-categorized
stimuli*®***, These approaches require labelled data, thus limiting, and
standing in contrast to, the exploratory potential of local XAl

Some recent works have begun to bridge the gap between local
and global XAl by, for example, drawing weight-based graphs that show
how features interact in a global, yet class-specific scale, but without
the capability to deliver explanations for individual data samples®*.
Others plead for creating inherently explainable models in the hope
of replacing black-box models®. These methods, however, require
either specialized architectures, data and labels, or training regimes
(oracombination thereof)*** and do not support the still widely used
off-the-mill end-to-end-trained DNN models with their extended expla-
nation capabilities. A detailed discussion of related work can be found
inSupplementary Note 1.
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Fig.2|Briefoverview over the methodological contributions of this work.

a, Traditional backpropagation-based methods such as LRP propagate relevance
scores backwards through the network culminating into a single attribution
map. b, By conditioning on a concept encoded by a hidden-layer channel of the
network, CRP allows to compute concept-conditional explanations.

¢, To provide a semantic meaning for latent model structures, we propose
with RelMax to visualize input samples where the latent structure was strongly
relevant for a prediction. We can further highlight the semantics by displaying
only the relevant input parts according to concept-specific explanations, as
introduced inb. Credit: iStock.com/Taku_S.

In this work, we connect lines of local and global XAl research by
introducing Concept Relevance Propagation (CRP) and Relevance Maxi-
mization (RelMax), aset of next-generation XAl techniques that explain
individual predictionsinterms of localized and human-understandable
concepts. In contrast to the related state of the art, CRP and RelMax
answer both the ‘where’ and ‘what’ questions of ML model inference,
thereby providing deep insights into the model’s reasoning process.
As post hoc XAl methods, CRP and RelMax can be applied to (almost)
any ML model with no extrarequirements on the data, model or train-
ing process. We demonstrate on multiple datasets, model architec-
tures and application domains that CRP-based analyses allow one to
(1) gaininsightsinto the representation and composition of conceptsin
the model as well as quantitatively investigate their role in prediction,
(2) identify and counteract Clever Hans filters® focusing on spurious
correlationsinthe data, and (3) analyse whole concept subspaces and
their contributions to fine-grained decision-making.

Analogously to Activation Maximization (ActMax)*°, our pro-
posed RelMax approach searches for the most important (in terms
of relevance, not activation) examples for latent encodings in, for
example, the training dataset. Together, CRP and RelMax show their
advantagesinaconducted user study comparing our proposed tech-
niques with various traditional attribution map-based approaches.
Finally, where transparency on unique samples is promptly required,
the computational efficiency and ease of application of CRP and RelMax
quickly provide valuable insights into the model’s representation and
decision-making to the human user.

In summary, by lifting XAl to the concept level, CRP and RelMax
open up new ways to analyse, debug and interact with ML models,
which can be particularly beneficial for safety-critical applications and
ML-supported investigations in the sciences.

)36

Methodsinbrief

This section provides a brief overview over the methodological contri-
butions of this work, thatis, CRP and RelMax. A more detailed descrip-
tion of our methods can be found in Methods.

CRPinbrief

Layer-wise Relevance Propagation (LRP)" is a popular method for
explaining the predictions of aneural network by attributing relevance
values toindividual input dimensions (for example, pixels of images).
In this process, relevance is propagated backwards through the net-
work, starting from the output until the input layer (Fig. 2a), which
also provides relevance values for each intermediate element of the

model (for example, channel of an intermediate layer). As the litera-
ture suggests that latent structures of neural networks are encoding
abstract human-understandable concepts with distinct semantics,
especially in higher layers®**~*°, the channel-wise relevance values
can be interpreted as scores quantifying the importance of the cor-
responding concepts in the inference process.

CRP is an extension of LRP, which disentangles the relevance
flows associated with concepts learned by the model via conditional
backpropagation. Thus, it allows to compute concept-conditional
relevance maps R(x|6), where X represents the data point the model has
predicted forand 6 describes aset of conditions (that s, specifying the
explained output category (for example, ‘dog’) and concepts as learned
and distinctly encoded by model components (for example, ‘fur’)),
determining the flow of relevance via controlled masking operations
in the backwards process (see Methods for technical details). These
concept-conditional explanations show us, for example, in which part
of the image the concepts (encoded in hidden-layer channels) ‘fur’ or
‘eye’ are present (the where question) and how much they contrib-
ute to the prediction. For the example in Fig. 2b, it turns out that the
concept ‘fur’is more relevant thanthe concept ‘eye’ for the prediction
‘dog’, which is not obvious when looking at explanations from LRP
(Fig.2a) or other local attribution methods (for example, refs.17,41-43),
where the contributions of all concepts are superimposed into asingle
attribution map.

Itisnoted that condition sets 6 canbe chosen by the human stake-
holder (that is, depending on the task), or as we prefer to do in this
paper, they can be configured automatically: per layer we configure
6 algorithmically by ranking the network units in descending order
of their relevance values for the current prediction, while choosing
layer indices uniformly and arbitrarily from the higher, middle or
bottom parts of the models throughout the paper for illustration out
of simplicity.

RelMax in brief

Although CRP allows to compute concept-specific attribution maps by
disentangling the backwards flow, our understanding of the semantics
of latent model structures largely remains elusive with local attribu-
tionsalone.In other words, the channel-wise relevance values and the
concept-conditional relevance maps do not provide the full answer
to which specific concept a particular channel is actually encoding
(the ‘what’ question). A canonical approach for gaining insight into
the meaning and function of latent model structures is ActMax>**"*
for generating or selecting samples as representations for concepts
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encoded in hidden space. We find, however, that (maximizing) the
activation of a latent encoding by a given data point does not always
correspond toits utility to the model in an inference context (see, for
example, ref. 44 or Supplementary Fig. 7), putting the faithfulness of
activation-based example selection for latent concept representation
into question.

We therefore introduce RelMax, as an alternative measure to
ActMax, with the objective to maximize the relevance criterion for
theselection of representative samples for latent model features (see
Methods for technical details). For each of the observed concepts,
Fig. 2c (right) shows 5 image segments from a holdout set, for which
for instance channel 274 of layer features.28 of a pretrained VGG-16
neural network model* encoding the concept ‘fur’ becomes maximally
relevant for the prediction of class ‘dog’. As relevance is, contrary to
activation, directly linked to amodel’s prediction output, the obtained
example sets per latent feature are also highly outcome specific. That
is, for a latent feature, we may obtain multiple sets of examples, each
illustrating how the model is using a particular feature for the predic-
tion of different outcomes, for example, classes.

Results

In this section, we first present approaches to study the role of
learned concepts in individual predictions using our glocal CRP and
RelMax-based approach. We then show how understanding of hidden
features and their function allows interaction with the model and to
test its robustness against feature ablation. Next we study concept
subspaces to identify (dis)similarities and roles of concepts in
fine-grained decision-making. Finally, we examine the benefits of CRP
over traditional local XAl methods in a user study.

More detailed investigations can be found in Supplementary
Notes 4, 5and 8.Inaddition, Supplementary Note 9 provides an exam-
ple on how CRP can be leveraged to identify systematically learned
biases in male versus female face classification and Supplementary
Note 10 demonstrates the applicability of CRP to time-series data.

Understanding concept composition leading to prediction
Attribution maps provide only partial insights into the decision-making
process as they show only where the modelis focusing onand not which
conceptsare actually being used. Figure 3a shows an attribution map
computed for the prediction ‘Northern Flicker’. In this case, the bird’s
head—inparticular the black eye and red stripe—can be identified as the
mostrelevant part of theimage. However, it remains unclear fromthe
explanation whether the colour or the shape (or both) of the eye and
stripe were the decisive features for the model to arrive atits prediction,
and how much these body parts contribute, for example, compared
with the bird’s feathers. Furthermore, as shown in Supplementary
Fig.1b, attribution maps almost always point to the head or the upper
body of abird, irrespective of the bird explained. Thus, the non-trivial
task of interpreting what particular feature of the bird (for example,
colour, texture, body part shape or relative position of the body parts)
actually led to the decisionis put onto the human user, which canresult
in false conclusions.

By conditioning the explanation on relevant hidden-layer chan-
nels via CRP, we can assist in concept understanding and overcome
theinterpretation gap. Figure 3b shows the result of the CRP analysis.
The conditional heatmaps help to localize regions in input space for
each relevant concept, and at the same time reveal what the model
has picked upinthose regions by providing reference samples (thatis,
explaining by example) viaRelMax. Here, the concepts we identified as
‘redspot’and ‘black eyes’ (based on our subjective understanding of the
representative examples) can be assigned to the head of the Northern
Flicker bird. These concepts have a crucial role in the classification of
thebird, although, for example, the ‘black eyes’ concept naturally also
occurs inimages of cats and dogs. Furthermore, both ‘dots’ concepts
affecting the prediction can be assigned to the bird’s torso and the

‘elongated dots and stripes’ concept to the bird’s wings. Note that CRP
also allows to quantitatively determine the individual contribution of
each concept to the final classification decision by summation of the
conditional relevance scores (Methods). This additional information
is very valuable as it indicates, for example, that the dotted texture is
the most relevant feature for this particular prediction, or that colour
isaveryrelevant cue (for example, the masked reference samples for
channel 10 are allred and for channel 187 contain only black/brown eyes).

The concept atlas shown in Fig. 3¢ further eases comprehension
of the relevant concepts. Technically, the atlas visualizes which con-
cepts are most relevant (and here, second most relevant) in specific
input-image regions (for details, see Supplementary Note 2.3.5). By
choosing super-pixels as regions of interest, we can aggregate the
channel-conditional relevances per super-pixel into regional relevance
scores, asdiscussedinthe extended Methods sectionin Supplementary
Note 2.3.2. Here, the concept atlas indicates that the ‘red spot’ and
‘black eye’ concepts are most relevant at the bird’s head, while the two
‘dots’ concepts mostly fill the upper body part. Interestingly, a stripe
of red colour in the tail feathers of the bird is detected and used by
the model, as indicated by the ‘red spot’ concept being second most
relevant in this region. In Supplementary Note 5.1, an alternative way
to construct concept atlases using single pixelsinstead of super-pixels
isalso discussed. Alternatively toinvestigating the most relevant chan-
nelsoverall asinFig.3b, aregion of interest, for example asuper-pixel,
canbe chosenandits most relevant concepts studied. Acomparison of
relevant concepts regarding two regions of unrelated visual features
isshownin Supplementary Figs. 24-26.

With the selection of a specific neuron or concept, CRP allows
investigation of how relevance flows from and through the chosen
network unit to lower-level neurons and concepts, as is discussed in
Methods. This gives information about which lower-level concepts
carry importance for the concept of interest and how it is composed
of more elementary conceptual building blocks, which may further
improve the understanding of the investigated concept and model as
awhole. InFig. 3d, we visualize and analyse the backwards flow of the
relevance scores. The graph-like visualization reveals how concepts
inhigher layers are composed of lower-layer concepts. Here, we show
the top-two concepts influencing our concept of choice, the ‘animal
onbranch’conceptencodedin features.28 of aVGG-16 model trained
on ImageNet. Edges in red colour indicate the flow of relevance with
respect to the particular sample from class ‘Bee Eater’, shown on the
far right between the visualized filters with corresponding exam-
ples and (multi)-conditional heatmaps. The width of each red edge
describes therelative strength of contribution of lower-layer concepts
to their upper-layer neighbours. This example shows that different
pathsinthe network potentially activate thefilter. Here, concepts that
encode feathers, threads or fur together with horizontal structures are
responsible for the activation of filter 102 in the observed layer in this
particular case. In Supplementary Note 10, an example on time-series
dataisillustrated.

Understanding conceptimpact and reach
In this section, we demonstrate how CRP can be leveraged as a
human-in-the-loop solution for dataset analysis. In the first step, we
uncover aClever Hans artefact®, and suppress it by selectively eliminat-
ingthe most relevant conceptsto assess its decisiveness for the recog-
nition of the correct class of a particular datasample. Then, we utilize
class-conditional reference sampling (Methods) to performaninverse
search toidentify multiple classes making use of the filter encoding the
associated concept, both in abenign and a Clever Hans sense.

In Fig. 4a, we analyse a sample of the ‘safe’ class of ImageNet in
a pretrained VGG-16 BN (a VGG-16 with BatchNorm layers) model.
Initially, we obtain an input attribution map highlighting a centred
horizontal band of the image, where awatermarkislocated. If we take a
closerlook at layer features.30 and performalocal analysis (Methods)
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Fig.3|Understanding concepts and concept composition with CRP.

a, Given aninputimage for inference, a constitutes a traditional attribution map
indicating that various body parts of the bird are relevant for the prediction.

b, Channel-conditional explanations computed with CRP help to localize

and understand channel concepts by providing masked reference samples
(explaining by example with RelMax). ¢, CRP relevances can further be used

to construct a concept atlas, visualizing which concepts dominate in specific
regions in the input image defined by super-pixels. Here, the most relevant
channelsin layer layer3.0.conv2 can be identified with concepts ‘dots’ (channels
210and 130), ‘red spot’ (10), ‘black eyes’ (187) and ‘stripes-like’ (19).d, Concept-
composition graphs decompose a concept of interest given a particular
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(most relevant) heatmap

<Aava nce flow

prediction into lower-layer concepts, thus improving concept understanding.
Shown are relevant (sub)-concepts in features.24 and features.26 for concept
‘animal on branch’in features.28 for the prediction of class ‘Bee Eater’. The
relevance flow is highlighted in red, with the relative percentage of relevance
flow to the lower-level concepts. For each concept, the channelis given with
the relative global relevance score (with respect to channel 102 in features.28)
in parentheses. Following the relevance flow, concept ‘animal on branch’is
dependent on concepts describing the branch (for example, ‘wood (horizontal)’
and ‘brown, knobby’) and colourful plumage (for example, ‘colourful feathers’
and ‘colourful threads’). Additional examples can be found in Supplementary
Note 5. Credit: iStock.com/Thomas Marx, iStock.com/erniedecker.
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Fig. 4 |From concept-level explanations to model and data debugging.

a, Local analysis on the attribution map reveals several channels (203,361, 483,
454,414,486 and more) in layer features.30 of a VGG-16 model with BatchNorm
pretrained on ImageNet that encode for a Clever Hans feature exploited by the
model to detect the safe class. Top left: input image and heatmap. Top right:
reference samples X5 rel o for thesix most relevant channels in the selected region
indescending order oftheir relevance contribution. Bottom: relevance
contribution of the 20 most relevant filters inside the region (bottom left). These
filters are successively set to zero and the change in prediction confidence of
different classes is recorded (bottom right). b, The previously identified Clever

Hans filter 361 has arole for samples of different classes (most relevant reference
samples shown). Here, black arrows point to the location of a Clever Hans
artefact, thatis, awhite, delicate font overlaid onimages (best tobe seenina
digital format). In the case of class ‘puma’ or ‘spiderweb’, the channel is used to
recognize the puma’s whiskers or the web itself, respectively. Below the reference
samples, the CRP heatmaps conditioned on filter 361 and the respective true
class yillustrate which part of their attribution map would result from filter 361.
Credit: iStock.com/Andyworks, iStock.com/farakos, iStock.com/GP232, iStock.
com/neamov, iStock.com/Stock Depot, iStock.com/t_kimura, shutterstock.com/
Peter Zijlstra, shutterstock.com/Ground Picture.

onthewatermark, we notice that the five most relevant filters are 203,
361,483,454,414 and 486. Visualizing them using ActMax asillustrated
inSupplementary Fig. 46, we conclude that they approximately encode
for white strokes. Using our proposed RelMax approach, which uses
CRP to identify the most relevant samples, we gain a deeper insight
into the model’s preferred usage of the filters and discover that the

model utilizes them to detect white strokes in ‘written characters’.
A detailed comparison between ActMax and RelMax can be found in
Supplementary Note 4.1. To test the robustness of the model against
this Clever Hans artefact, we successively set the activation output
map of the 20 most relevant filters activating on the watermark to
zero. In Fig. 4a (bottom right), we record the change of classification
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confidence of the four classes with the highest prediction confidence
for thissample. From the graph, it can be inferred that the Clever Hans
filters focusing on the watermark help the model in prediction, but
they are not decisive for correct classification. Thus, the model relies
onother potential non-Clever Hans features to detect the safe, verify-
ing the correct functioning of the model in cases of samples without
watermarks. Another example with strong dependency on Clever Hans
artefactsis found in Supplementary Note 8.2.

In aninverse search, we can now explore for which samples and
classes these filters also generate high relevance. This allows us to
understand the behaviour of the filter in more detail and to find other
possible contaminated classes. Figure 4b shows the seven most relevant
classes for filter 361. Surprisingly, many classes including ‘whistle’,
‘mop’, ‘screw’, ‘mosquito net’, ‘can opener’ and ‘safe’ (among others)
in the ImageNet Challenge 2014 data are contaminated with similar
watermarks encoded viafilter 361 of features.30, whichis used for the
correct prediction of samples from those classes. To verify our finding,
we locate via CRP the source of the filters’ relevance with respect to
the true classes in input space and confirm that these filters indeed
are used to recognize the characters. This implies that the model has
learned a shared Clever Hans artefact spanning over multiple classes
to achieve higher accuracy in classification. The high number of con-
tamination of samples with the identified artefactual feature could
be explained by the fact that watermarks are sometimes difficult to
see with the naked eye (location marked with a black arrow) and thus
slip any quality-ensuring data inspection. The impact of this image
characteristic can, however, be clearly marked using the CRP heatmap.
Although the filter is mainly used to detect characters, there are also
valid use cases for the model, such as for the puma’s whiskers or the
spider’s web. This suggests that the complete removal of Clever Hans
concepts through pruning may harm the modelinits ability to predict
other classes that make valid use of the filter, and that a class-specific
correction'® might be more appropriate.

Understanding concept subspaces, (dis)similarities and roles
So far in our experiments, we have treated single filters as functions
assumed to (fully) encode the learned concept. Consequently, we have
visualized examples and quantified effects based on per-filter granu-
larity. While previous work has suggested that individual neurons or
filters often encode for a single human comprehensible concept, it
can generally be assumed that concepts are encoded by sets of filters
(Supplementary Note 1). The learned weights of potentially multiple
filters might correlate and thus redundantly encode the same concept,
orthedirections described by severalfilters situated in the same layer
might span a concept-defining subspace. In this section, we aim to
investigate the encodings of filters of a given neural network layer for
similarities in terms of activation and use within the model.

Figure 5a shows an analysis result focusing on a cluster around
filter 446 from features.40 of a VGG-16 network with BatchNorm
layers trained onImageNet. The reference samples show various types
of typewriter and rectangular laptop keyboard buttons and roofing
shingles photographed in oblique perspective, as well as round but-
tons of typewriters, remote controls for televisions, telephone keys
and round turnable dials of various devices and machinery. Thus, the
filters around filter 446 seem to cover different aspects of a shared
‘button’ or ‘small tile’ concept. The filters located in this cluster have
been identified as similar due to their similar activations over sets of
analysed reference samples (Methods). Assuming redundancy based
onthefilter channels’ apparently similar activation behaviour,ahuman
could merge them to one encompassing concept, thereby simplify-
ing interpretation by reducing the number of filters in the model. We
therefore furtherinvestigate thefilters 7,94, 446 and 357 (all showing
buttons or keys) to find out (1) whether they encode a concept col-
laboratively, (2) whether they are partly redundant or (3) whether the
cluster serves some discriminative purpose. Figure 5b visualizes the

reference samples of these four filters for the most relevant classes
‘laptop computer’ and ‘remote control’. We compute filter activa-
tions during aforward pass through the model using instances of both
classes asinput, as well asfilter-conditioned CRP maps for the samples’
respective ground-truth classlabel. Regardless of whether aninstance
fromclass ‘laptop’ or ‘remote control’is chosen asinput, the activation
maps across the observed channels are in part similar per image, for
example, they all activate on the centre diagonal part for the leftinput
image. The per-channel CRP attribution map, however, reveals that
whileall filters react to similar stimuliin terms of activations, the model
seems to use the subtle differences among the observed concepts to
distinguish between the classes ‘laptop’ and ‘remote control’. In both
cases, buttons are striking and defining features, and all observed
filters activate for button features. However, when computing the
conditional heatmaps with CRP for class ‘remote control’, the activat-
ing filters representing round buttons (filters 7 and 94) dominantly
receive positive attribution scores, while filter 357 clearly representing
typical keyboard button layouts receives negative relevance scores and
filter 446 does not receive any relevance despite being reactive to the
giveninput. For samples of class ‘laptop’, the computation of relevance
scores with respect to their true class yields almost opposite attribu-
tions, indicating that filters encoding round buttons and dials (filters
94 and 7) provide evidence against class ‘laptop’, while the activation
of channel 357 clearly speaks for the analysed class as visible in the
conditional heatmaps. Inboth relevance analyses, however, filter 446
receives weak negative to no attributions, presumably asit represents
a particular expression of both round and angular buttons that fits
(or contradicts) neither of the compared classes particularly well.
In fact, filter 446 is highly relevant for class ‘typewriter keyboard’
instead.

In conclusion, we report that although several filters may show
signs of correlation in terms of output activation, they are not neces-
sarily encoding redundant information or are serving the same pur-
pose. Conversely, using our proposed CRP in combination with the
RelMax-based process for selecting reference examples representing
seemingly correlating filters, we are able to discover and understand
the subtleties a neural network has learned to encode in its latent
representations. See Supplementary Note 8.4 for additional results
in extension to this section.

Human evaluation study
Thissection presents the results of ahumanevaluation study, whichwe
performed to assess the practical utility of the CRP and RelMax-based
explanations to (non-expert) end users for understanding ML model
behaviour. Human participants were asked to decide—based on expla-
nations—whether the model’s prediction has been influenced by the
presence of a particular and known data artefact or not. We trained two
image classifiers, of which one has learned to utilize a data artefact—a
thick black border around the image (Fig. 6a). For both models, we then
generate explanations (Fig. 6b,c) on images containing the artefact,
using the proposed CRP maps with ReIMax examples as well as four
popular XAl methods, namely, Integrated Gradients (IG)", SHapley
Additive exPlanations (SHAP)*, Gradient-weighted Class Activation
Mapping (Grad-CAM)* and LRP". In the primary task, the participants
areasked to assess whether the black borderimpacts the model predic-
tionaccording to the explanation (binary answer, yes or no). Further-
more, we ask secondary questions on how confident they are in their
answer and about the perceived clarity of the presented explanations.
For more details on the study set-up, we refer the reader to Methods.
The results of the study consistently show that participants were
reliably able to detect whether the prediction wasimpacted by the bor-
der artefact when exposed to CRP and RelMax explanations (Fig. 6d).
CRPshows the highest true positive (TPR) and true negative (TNR) rates
of (89.1+2.4)% and (72.6 + 3.4)%, respectively, and thus results in an
accuracy (withrespect to the primary task) that is significantly higher
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Fig. 5| Similarity of concepts and analysis of fine-grained decision-making.

a, Left: channels from layer features.40 of a VGG-16 with BatchNorm, clustered
and embedded according to p similarity with t-SNE (Methods). Markers are
coloured according to their p similarity to filter 446. Centre and right: one
particular cluster around channel 446 is shown in more detail with five similarly
activating channels and their reference images x;;‘:'m obtained via RelMax.

As per the reference images, the overall concept of the cluster seems to be related
to keyboard keys, round buttons and rectangular roofing shingles. b, Relevance-
based investigation of the previously identified similarly activating channels.
Centre: reference examples for the identified filters with a similar underlying

theme. Left: exemplary input from class ‘remote control’ with per-channel
activation maps and respective ground-truth CRP relevance maps, as well as their
aggregation 6= {L: {}, features.40: {Coy, C;, C357, Caq6}} (Dottom left). Right:
exemplary input from class ‘laptop computer’ with per-channel activation maps
and respective true class CRP relevance maps, as well as their aggregation.
Conditional relevance attributions R(x|6) are normalized with respect to the
common maximum amplitude. Similarly activating channels do not necessarily
encode redundant information, but might be used by the model for making
fine-grained distinctions, which can be observed from the attributed relevance
scores. Credit: iStock.com/ezzall6, iStock.com/sgback.

than that of all other methods (two-sample ¢-test Pvalues of less than
8 x107), as shown in Supplementary Table 3. The study participants
obtained the second best results when exposed to Grad-CAM explana-
tionswithaTPRand TNR of (74.9 + 3.3)% and (52.6 + 3.8)%, respectively.
Participants exposed to explanations fromIG performed worst witha
TPRand TNRof (53.7 + 3.8)% and (49.7 + 3.8)%, respectively. Itis noted
that random guessing would correspond to values of 50%, indicating
that theinsight obtainable fromIG explanationsis limited in this study.
We note thatin general it seems to be easier to detect amodel’s use of
theintroducedborder artefact through all evaluated XAl approaches
thanitisto correctly rejectanimpact of the artefact, as for allmethods
we observe TPR>TNR.

When inspecting the proclaimed confidence with which the
participants made their prediction, adirect link does not seem to exist
with the measured prediction performance when assessing the arte-
fact’simpact. Interestingly, participants exposed to the IG explanations
reportthe highest confidence (approximately 77%)—while at the same
time performing worstin the primary task—followed by CRP (approxi-
mately 76% self-rated confidence). These results support the findings
of ref.28 that traditional (thatis, single per sample and class, as shown
in Fig. 6b) saliency or attribution maps alone might be misleading
and insufficient for understanding the reasoning of an ML predictor;

forexample, see the IG heatmap. Regarding clarity of the explanations
as perceived by the participants, the fine-grained attribution maps
of IG and LRP receive the highest scores. CRP and RelMax interest-
ingly resultinthe lowest reported clarity, which might be linked to the
more complex nature of the method, potentially leaving some of the
participants overwhelmed with the increased amount of information
to process, and time required to do so. This result is consistent with
the observation of ref. 46 that addressees prefer simple and concise
explanations. Despite that, our results demonstrate that our proposed
approachis the most effective option for the participants to solve the
primary task of the study.

Discussion

In this work, we have introduced CRP, a post hoc explanation method
that not only indicates which part of the input is relevant for an individ-
ual prediction but also communicates the meaning of involved latent
representations by providing human-understandable examples. As
CRP combines the benefits of the local and global XAl perspectives, it
computes more detailed and contextualized explanations, considerably
extending the state of the art. Among its advantages are the high com-
putational efficiency (within the order of a backwards pass to compute
near-instantaneous local explanations for the most relevant concepts, and
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Fig. 6| User study evaluating the informativeness of different explanation
methods withrespect to the model’s reliance on aborder artefact. a, An
exampleinputimage with anadded black border artefact. b, Attribution maps
computed via the methods LRP, SHAP, Grad-CAM and IG. ¢, An explanation
derived with CRP and RelMax. Inboth b and ¢, the model has been trained to

Predicted

be affected by the artefact showninaduringinference. d, Human evaluation
results of participant predictions whether the border artefact has animpact on
the prediction outcome, based on the given explanation. Confusion matrices
illustrating true positive (TPR), false positive (FPR), true negative (TNR) and false
negative (FNR) rates per XAl method. Credit: iStock.com/mauro_grigollo.

acomplete concept atlas visualization within the order of seconds) and
the out-of-the-box applicability to (almost) any model withoutimposing
constraintsonthetraining process, the dataandlabel availability, or the
modelarchitecture. Furthermore, CRPintroduces theidea of conditional
backpropagation tied to a single concept or acombination of concepts
asencoded by the model, within or across layers. Via this ansatz, the con-
tribution of all neurons’ concepts in a layer can be faithfully attributed,
localized in the input space, and finally their interaction can be studied.
As shown in this work, such an analysis allows one to disentangle and
separately explain the multitude of in-parallel partial forward processes,
whichtransformand combine features and concepts before culminating
into a prediction. Finally, with ReIMax, we move beyond the decade-old
practice of communicating latent features of neural networks based on
examples obtained viamaximized activation. In particular, we show that
theexamples that stimulate hidden features maximally are not necessarily
useful forthemodelinaninference context, or representative for the data
the modelis familiar and confident with. By providing examples based on
relevance, however, the user is presented with data with characteristics
thatactually have animportantrolein the prediction process. Asthe user
canselectexamples with respect to any (thatis, not necessarily the ground
truth) output class, our approach constitutes anew tool to systematically
investigate latent concepts in neural networks.

Our experiments have qualitatively and quantitatively demon-
strated the additional value of the CRP approach for common datasets
and end-to-end-trained models. Specifically, we showed that reference
samples selected with relevance-based criteria, concept heatmaps and
atlases, as well as concept-composition graphs, open up the ability to
understand model reasoning on a more abstract and conceptual level.
These insights then allowed us to identify Clever Hans concepts, to
investigate their impact and finally to correct for these misbehaviours.
Furthermore, using our relevance-based reference sample sets, we were
abletoidentify concept themes spannedby sets of filtersin latent space.
Although channels of a cluster have a similar function, they seem to be
used by the model for fine-grained decisions regarding detailsin the data,
suchasthe particular type of buttonsto partially decide whether animage

showsalaptop keyboard, amechanical typewriter ora TV remote control.
Inaddition, we have demonstrated the usefulness of CRPin the non-image
data domain, where traditional attribution maps are often difficult to
interpret and comprehend by the user. Our experiments on time-series
datahaveshownthataslongasavisualization of the datacanbefound, the
meaning of latent concepts canbe communicated viareference examples.
Finally, we did conduct a user study that validates asubstantial increase
inutility of our glocal CRP and RelMax-based approach above traditional
posthoclocal XAlmethods for understanding amodel’sinference behav-
iour by human assessors. For completeness, we make the reader aware
of two factors possibly affecting the outcome of our study, namely, the
potentially varying degree of technical and in-domain training of the
study participants, and the given prior knowledge about the nature of
the data artefact potentially affecting the model. Both factors should
therefore be addressed and evaluated individually in future work, for
example, to assess the potential of (g)local XAlapproaches for assessing
yet unexplored model behaviour based on feedback for single-instance
predictions, across different levels of expert knowledge.

Overall, we believe that the tools we have proposed in this work,
and the resulting increase in semantics and detail to be found in
sample-specific neural network explanations, will advance the applica-
bility of post hoc XAl to novel or previously difficult to handle models,
problems and data domains.

Methods

This section presents the techniques used and introduced in this paper.
Foramoreelaborateintroductionand discussion, please referto Supple-
mentary Notes 2 and 3. For an estimation of run-time requirements, the
computationalsteps involved and guidelines ontheinterpretation of the
output obtained by our techniques, please refer to Supplementary Note 6.

Concept Relevance Propagation

Inthe following, weintroduce CRP, abackpropagation-based attribu-
tion method extending the framework of LRP"”. As such, CRP inherits
the basic assumptions and properties of LRP.
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LRP revisited. Assuming a predictor with L layers

SX) = fi o0 fi(X), @®

LRP follows the flow of activations computed during the forward pass
through the modelin opposite direction, from the final layer f; back to
the input mappingf;. Given a particular mappingf.(-), we consider its
pre-activations z;mapping inputsito outputsjand their aggregations
z;atj. Commonly in neural network architectures suchacomputation
isgivenwith

zij = a,»wij (2)
z=27 G
a4 =o(z), )

where a; are the layer’s inputs and w its weight parameters. Finally,
o constitutes a (component-wise) nonlinearity producing input acti-
vation for the succeeding layer(s). The LRP method distributes rel-
evance quantities R;corresponding to a;and received from upper layers
towards lower layers proportionally to the relative contributions of z;;
toz, thatis

z..
qué@. 5)

Lower neuronrelevanceis obtained by losslessly aggregating allincom-
ing relevance messages R, ;as

Ri=Y Ry,

J

(6)

This process ensures the property of relevance conservation between
aneuronjanditsinputsi,and thus adjacentlayers. LRP is mathemati-
cally founded in deep Taylor decomposition®.

Disentangling explanations with CRP. CRP extends the formalism
of LRP by introducing conditional relevance propagation determined
by a set of conditions 6. Each condition ¢ € 8 can be understood as an
identifier for neural network elements, such as neurons located in
some layer, representing latent encodings of concepts of interest.
Onesuchcondition could, for example, representa particular network
output toinitiate the backpropagation process from. Within the CRP
framework, the basic relevance decomposition formula of LRP given
inequation (5) then becomes

) 2
RO(xI0U8) = T 3, 6o RIxI6), @

7 €6,

following the potential for a filtering’ functionality briefly discussed
in ref. 48. Here, Rj{(x|6) is the relevance assigned to layer outputj
givenfromthe CRP process performed inupper layers under conditions
0, to be distributed to lower layers. The sum-loop over ¢, € 6,then
‘selects’ viatheKronecker-delta 6, neuronsjof which therelevanceis
to be propagated further, givenjcorresponds to concepts as specified
in set @, specific to layer [. The result is the concept-conditional rele-
vance message R""?(x|6 u 6 carrying the relevance quantities with
respect to the pre(fiction outcome on x conditioned to # and 6,. Note
that the sumis not particularly necessary inequation (7), but serves as
ameans to compare all possible ¢, for identity to the current;. In prac-
tice, CRP can be implemented efficiently as a single backpropagation
step by binary masking of relevance tensors, and is compatible to the
recommended rule composites for relevance backpropagation*>*°. We

provide an efficientimplementation of CRP based on Zennit* at https://
github.com/rachtibat/zennit-crp.

The effect of CRP over LRP and other attribution methods is an
increase in detail of the obtained explanations. Given a typical image
classification convolutional neural network (CNN), one may assume
the computation of three-dimensional latent tensors, where the first
two axes span the application coordinates of nspatially invariant con-
volutional filters, which generate output activations stored in the
n channels of the third axis. For simplicity, one can further assume
that each filter channel is associated with exactly one latent concept.
Neuronsjcanthusbe groupedinto spatialand channel axes torestrict
the application of CRP conditions 8,to the channel axis only, thatis

(-1,
Ri*(p,q,/)

Zip.a.)
XIOUO) = SEE2 N G Ry, (XIO). ®

.
»q,J c€0,

Here, thetuple (p, g,j) uniquely addresses an output voxel of the activa-
tiontensor z, ., computed during the forward pass with pand gindicat-
ing the spatial tensor positions and,j the channel. Figure 2a contrasts the
attribution-based explanation with respect to class ‘dog’ only (which
alsois possible with LRP and other attribution methods) as 6, = {dog'},
totheattributions for, for example, ‘dog A fur’as 84 = {dog?, fur’} (pos-
sible with CRP only) by conditionally masking channels responsible for
fur pattern representations. Alternatively, conditions can be notated
in the form of O4:= {L: {dog}, [: {fur}}, to provide a more explicit nota-
tion specifying the affiliation of concepts to distinct layers. Here we
use the terms ‘fur’ and ‘dog’ describing latent or labelled concepts,
respectively, as proxy representations for network elementidentifiers
c.Wefurther assume thatinany layer !’ without explicit designation of
conditions all . operators always evaluate to 1to not restrict the flow
of attributions through these layers.

Dueto the conservation property of CRP inherited from LRP, the
global relevance of individual concepts to per-sample inference can
be measured by summation over input unitsias

RI(x16) = 3, Ri(x(6), ©)

inany layer /where 6 has taken full effect. This can easily be extended
to a localized analysis of conceptual importance, by restricting the
relevance aggregations to regions of interest J

RL(xI0) = " Ri(x(6), (10)

ieJ

asalsoillustrated in Supplementary Fig. 3. Inaddition, as shownin Sup-
plementary Fig. 4, an aggregation of the relevance messages may be
utilized toidentify dependencies of aconcept cencoded by channelsj,
to concepts encoded by channels i in a lower layer, in context of the
prediction of asample x and CRP conditions 6. With an expansion of the
indexing of downstream target voxels with respect to equation (9) as
(11)

z - -
R(l—l,l) X x|0) = (u,u,l)(qu,/) Rl

(u,)<(p,q.J) Z(p,a.j) (.9.)) (xI6).

thetuple (u, v, i) addresses the spatial axes with u and v, and the channel
axisiatlayer/-1.Anaggregation over spatial axes with
R(l—l,l)(xle) — Z ZR([—I,I)

i—j (u,0,)<(p.,q.j
wv p.g

(xI0) 1

communicates the dependency between channeljto lower-layer chan-
neli,and thusrelated concepts, interms of relevance in the prediction
context of sample x. Following the LRP methodology, an adaptation of
the CRP approachbeyond CNN, for example, to recurrent™or graph®
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neural networks, is possible. Further details on our proposed CRP
method are givenin Supplementary Note 2.

Selecting reference examples

In the following, we discuss the widely used ActMax approach to
procuring representations for latent neurons, and present our novel
CRP-based RelMax technique to improve concept identification and
understanding. Anin-depthintroduction to all details of our proposed
technique is given in Supplementary Note 3, with various modes of
application and analyses being discussed in Supplementary Note 4.

Activation Maximization. A large part of feature visualization tech-
niques rely on ActMax, where in its simplest form, input images are
sought thatgiverisetothe highest activation value of aspecific network
unit. Recent work®** proposed to select reference samples from exist-
ing data for feature visualization and analysis. In the literature, the
selection of reference samples for a chosen concept ¢ manifested in
groups of neurons is often based on the strength of activationinduced
by a sample. For data-based reference sample selection, the possible
input space X is restricted to elements of a particular finite dataset
X4 c x.Theauthors of ref. 35 assumed convolutional layer filters to be
spatially invariant. Therefore, entire filter channels instead of single
neurons are investigated for convolutional layers. One particular
choice of maximization target 7 (x)is to identify samples x* € X, which
maximize the sum over all channel activations, thatis

TR0 = 32100, 13)

resultingin samples x*2%, which are likely to show a channel’s concept
in multiple (spatially distributed) input features, as maximizing the
entire channelalso maximizes 72<. However, while targeting all channel
neurons, reference samples including both concept-supporting and
contradicting features might resultin alow function output of J2S, as
negative activations are taken into account by the sum. Alternatively,
anonlinearity can be applied on z,(x), for example, a rectified linear
unit (ReLU), to only consider positive activations. A different choiceis
to define maximally activating samples by observing the maximum
channel activation

Teigx (X) = max z;(x), (14)
1

leading to samples x *2¢ with amorelocalized and strongly activating
setof input features characterizing achannel’s concept. These samples
x*2% might be more difficult to interpret, as only a small region of a
sample might express the concept.

To collect multiple reference images describing a concept, the
dataset 24 consisting of n samples is first sorted in descending order

according to the maximization target 7(x), thatis

* _ [yX *] _ desc
X _{xl,...,xn}_argigﬁ T(X). (15)
Subsequently, we define the set
= {xr,oxr e ax (16)

containing the k < nsamples ranked firstaccording to the maximization
target torepresent the concept of the filter(s) under investigation. We
denote the set of samples obtained from 735 as %+ and the set
obtained from 73t as ;%2

Relevance Maximization. We introduce the method of RelMax as a
complement to ActMax. Regarding ReIMax, we do not search forimages
that produce a maximal activation response. Instead, we aim to find
samples, which containthe relevant concepts for a prediction. To select

the most relevant samples, we define maximization targets 7; (x)
by using the relevance R(x|6) of neuroniforagiven prediction, instead
of its activation value z,. Specifically, the maximization targets are
givenas

I =

D Ri(x|0) and  FIEh(x) = max R(x|6). 17)

By utilizing relevance scores R,(x|0) instead of relying on activa-
tions only, the maximization target 7¢!, or 77l is class-specific (true,
predicted or arbitrarily chosen, depending on 6), model-specific and
potentially concept-specific (depending on 6), asis alsoillustrated in
Supplementary Fig. 7a. The resulting set of reference samples thus
includes only samples that depict facets of a concept that are actually
useful for the model during inference (Supplementary Fig. 7b). How
differences in resulting reference sets 2" and x4 can occur is
depicted in Supplementary Fig. 7c,d. One can see that relevances are
notstrictly correlated to activations, because they also depend onthe
downstream relevances propagated from higher layers affected by
feature interactions at the current and following layers. For further
details and evaluations, we refer the interested reader to Supplemen-
tary Notes 3and 4.

Comparing feature channels with averaged cosine similarity
onreference samples

We propose asimple but qualitatively effective method for comparing
filtersinterms of activations based on reference samples, for grouping
similar conceptsin CNN layers. Based on the notationin previous sec-
tions, X, , denotes a set of k reference images for a channel g in layer
[and (W, x,,,) the ReLU-activated outputs of channel gin layer [for the
mth input sample x,, of the dataset with all required network param-
eters W for its computation. Specifically, for each channel g and its
associated full-sized (that s, not cropped to the channels’filters’ recep-
tive f"elds compare withSupplementary Note 3.4) reference samples
Xpm € xkq , we compute zj, = z,(W,X,), as well as z), = z,(W, x,,) for
allother cr]annelsp #q,by executlng theforward pass, yleldmg activa-
tion values for all spatial neurons for the channels. We then define the
averaged cosine similarity p,, betweentwo channelsgand pinthe same
layer [as

1
Pap = 5 (€05 (@), + €O (@),) ()
with
1 7] -7,
Cos = - —_— 19
@)gp = Z w1zl -1zl )
X €XGi0) sum

Note that we symmetrize p,, in equation (18) as the cosine similarities
cos (¢),, and cos (), are in general not identical, due to the potential
dissimilaritiesin the reference sample sets 2 ,,and X . Thus, cos (),
measures the cosine similarity between filter g and filter p withrespect
tothereference samples representingfilter g. From equation (18), the
resulting symmetric similarity measures p,, = p,, € [0, 1] can now be
clustered, and visualized viaa transformation into a distance measure
d,,=1-p,,serving as an input to t-distributed stochastic neighbor
embedding (t-SNE)*, which visually clusters similar filters togetherin,
typically, R% Note that normally, the output value of the cosine distance
covers the interval [-1, 1], where for -1 the two measured vectors are
exactly opposite to one another, for 1they areidentical and for O they
are orthogonal. In case output channels of dense layers are analysed,
that is, scalar values, the range of output values reduces to the set
{-1, 0,1}, as both values are either of same or different signs, or at least
oneof'the valuesis zero. As we process layer activations after the ReLU
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nonlinearities of the layer, this yields only positive values for z/ and
z,. Thisresultsinp,, € [0, 1], and a conversion to a canonical distance
measured,, € [0, 1].

Human evaluation study details

In the following, we provide further details on the conduction of the
human study in the ‘Human evaluation study’ section. All participants
were recruited onthe Amazon Mechanical Turk platform, representing
people from all backgrounds that do not necessarily have any back-
ground knowledge from the field of artificial intelligence. As such, the
participants reflect the general non-expert population in interaction
with (X)AL It is noted, however, that on this platform, participants
mightwork on other unrelated studies for several hours, which can have
anegativeimpact on their performance. The study did not consider the
sex, gender, race, ethnicity or other socially relevant groupings of the
participants, as they were not relevant to the research. Consequently,
no corresponding data have been collected.

The study was conducted using a between-subject design from
19-26 September 2022. Each participant was assigned randomly to one
ofthe groups (25 participants per group) associated with one of the XAl
methods. The sample size of 25 is chosen such that the differences in
terms of accuracy between our method and the other methods become
significant (according to two-sample ¢-test probabilities). For the
analysis, we only considered studies fully finished by the participants.

Regarding the computation and visualization of explanations,
we used the publicly available ImageNet* dataset, and fine-tuned two
VGG-16" DNNs, with parameters pretrained on ImageNet as obtained
fromthe PyTorch** model zoo. Theiinterested reader can find additional
details about the design and the evaluation of the conducted study in
Supplementary Note 7 and on GitHub (https://github.com/maxdreyer/
crp-human-study), providing Python code for generating explanations
aswellas HTML templates for Amazon Mechanical Turk.

Ethics approval

The Ethics Commission Faculty IV TU Berlin provided guidelines for the
study procedure and determined that no protocol approvalisrequired.
Informed consent has been obtained from all participants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The study was conducted using the publicly available ImageNet™
dataset. Code, models and samples used for the execution of our user
study canbefoundat https://github.com/maxdreyer/crp-human-study.
Moreinformation about dataand models utilized in other experiments
canbefoundinSupplementary Note12. Thelicense to re-use and repro-
ducehavebeen granted for theimages shownin the figures of this paper
and its Supplementary Information to the authors by the respective
copyright holders by iStock, Shutterstock, Pixabay and Pexels. Addi-
tional results obtained on the openly available benchmark datasets,
such asImageNet or Caltech-UCSD Birds 200, can be found in ref. 59.

Code availability

We provide an open-source CRP toolbox for the scientific community
written in Python and based on PyTorch®® and Zennit®. The GitHub
repository containing our implementations of CRP and RelMax is
publicly available at https://github.com/rachtibat/zennit-crp
(ref. 60). All experiments were conducted with Python 3.8, zennit-crp
v0.6, Zennit v0.4.6 and PyTorch v1.13.1.
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|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.
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Instrument

Software

Cell population abundance
Gating strategy

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type
Design specifications

Behavioral performance measures

Imaging type(s)
Field strength
Sequence & imaging parameters

Area of acquisition

Diffusion MRI D Used D Not used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal
Volume censoring
Statistical modeling & inference
Model type and settings
Effect(s) tested

Specify type of analysis: [ | whole brain || ROI-based  [_] Both




Statistic type for inference

(See Eklund et al. 2016)
Correction

Models & analysis

n/a | Involved in the study
|:| D Functional and/or effective connectivity

|:| D Graph analysis

|:| |:| Multivariate modeling or predictive analysis
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Functional and/or effective connectivity

Graph analysis
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Multivariate modeling and predictive analysis
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in
the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0,
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