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Self-supervised learning of hologram 
reconstruction using physics consistency

Luzhe Huang1,2,3,5, Hanlong Chen1,2,3,5, Tairan Liu    1,2,3 & Aydogan Ozcan    1,2,3,4 

Existing applications of deep learning in computational imaging and 
microscopy mostly depend on supervised learning, requiring large-scale, 
diverse and labelled training data. The acquisition and preparation of such 
training image datasets is often laborious and costly, leading to limited 
generalization to new sample types. Here we report a self-supervised 
learning model, termed GedankenNet, that eliminates the need for 
labelled or experimental training data, and demonstrate its effectiveness 
and superior generalization on hologram reconstruction tasks. Without 
prior knowledge about the sample types, the self-supervised learning 
model was trained using a physics-consistency loss and artificial random 
images synthetically generated without any experiments or resemblance 
to real-world samples. After its self-supervised training, GedankenNet 
successfully generalized to experimental holograms of unseen biological 
samples, reconstructing the phase and amplitude images of different 
types of object using experimentally acquired holograms. Without access 
to experimental data, knowledge of real samples or their spatial features, 
GedankenNet achieved complex-valued image reconstructions consistent 
with the wave equation in free space. The GedankenNet framework also 
shows resilience to random, unknown perturbations in the physical 
forward model, including changes in the hologram distances, pixel size 
and illumination wavelength. This self-supervised learning of image 
reconstruction creates new opportunities for solving inverse problems in 
holography, microscopy and computational imaging.

Recent advances in deep learning have revolutionized computational 
imaging, microscopy and holography-related fields, with applications 
in biomedical imaging1, sensing2, diagnostics3 and three-dimensional 
(3D) displays4, also achieving benchmark results in various image trans-
lation and enhancement tasks, for example, super-resolution5–12, image 
denoising13–16 and virtual staining17–23, among others. The flexibility 
of deep learning models has also facilitated their widespread use in 
different imaging modalities, including bright-field24,25 and fluores-
cence8,11,12,15,26,27 microscopy. As another important example, digital 

holographic microscopy, a label-free imaging technique widely used 
in biomedical and physical sciences and engineering28–37, has also 
remarkably benefited from deep learning and neural networks4,38–49. 
Convolutional neural networks38–41,43,45,46,50,51 and recurrent neural net-
works47,52 have been used for holographic image reconstruction, pre-
senting unique advantages over classical phase retrieval algorithms, 
such as using fewer measurements and achieving an extended depth 
of field. Researchers have also explored deep learning-enabled image 
analysis53–58 and transformations18,19,25,59,60 on holographic images to 
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A common practice to enhance the imaging performance of a 
supervised model is to apply transfer learning52,69,75–77, which trains the 
learned model on a subset of the new test data. However, the features 
learned through supervised transfer learning using a limited train-
ing data distribution, for example, specific types of sample, do not 
necessarily advance external generalization to other types of sample, 
considering that the sample features and imaging set-up may differ 
substantially in the blind testing phase. Furthermore, transfer learning 
requires additional labour and time to collect fresh data from the new 
testing data distribution and fine-tune the pre-trained model, which 
might bring practical challenges in different applications.

In addition, deep learning-based solutions for inverse problems 
in computational imaging generally lack the incorporation of explicit 
physical models in the training phase; this, in turn, limits the compati-
bility of the network’s inference with the physical laws that govern the 
light–matter interactions and wave propagation. Recent studies have 
demonstrated physics-informed neural networks70,78–83, where a physi-
cal loss was formulated to train the network in an unsupervised manner 
to solve partial differential equations. However, physics-informed 
neural network-based methods that can match (or come close to) the 
performance of supervised learning methods have not been reported 
yet for solving inverse problems in computational imaging with suc-
cessful generalization to new types of sample.

Here we demonstrate a self-supervised learning (SSL)-based 
deep neural network for zero-shot hologram reconstruction, which 
is trained without any experimental data or prior knowledge of the 
types or spatial features of the samples. We term it GedankenNet as the 
self-supervised training of our network model is based on randomly 
generated artificial images with no connection or resemblance to real 
samples at the micro- or macroscale, and therefore the spatial frequen-
cies and the features of these images do not represent any real-world 
samples and are not related to any experimental set-up. As illustrated 
in Fig. 1a, the self-supervised learning scheme of GedankenNet adapts 

further leverage the quantitative phase information provided by digital 
holographic microscopy.

In these existing approaches, supervised learning models were 
utilized, demanding large-scale, high-quality and diverse training 
datasets (from various sources and types of object) with annotations 
and/or ground-truth experimental images. For microscopic imaging 
and holography, in general, such labelled training data can be acquired 
through classical algorithms that are treated as the ground-truth image 
reconstruction method38,39,43,47–49,52, or through registered image pairs 
(input versus ground truth) acquired by different imaging modali-
ties8,17,18,25. These supervised learning methods require substantial 
labour, time and cost to acquire, align and pre-process the training 
images, and potentially introduce inference bias, resulting in limited 
generalization to new types of object never seen during the training. 
Generally speaking, existing supervised learning models demonstrated 
on microscopic imaging and holography tasks are highly dependent 
on the training image datasets acquired through experiments, which 
show variations due to the optical hardware, types of specimen and 
imaging (sample preparation) protocols. Although there have been 
efforts utilizing unsupervised learning61–67 and self-supervised learn-
ing16,68–70 to alleviate the reliance on large-scale experimental train-
ing data, the need for experimental measurements or sample labels 
with the same or similar features as the testing samples of interest is 
not entirely eliminated. Using labelled simulated data for network 
training is another possible solution; however, generating simulated 
data distributions to accurately represent the experimental sample 
distributions can be complicated and requires prior knowledge of the 
sample features and/or some initial measurements with the imaging 
set-up of interest6,10,71–74. For example, supervised learning-based deep 
neural networks for hologram reconstruction tasks demonstrated 
decent internal generalization to new samples of the same type as in 
the training dataset, while their external generalization to different 
sample types or imaging hardware was limited38,46,52.
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Fig. 1 | Diagrams of GedankenNet and other existing methods for solving holographic imaging problems. a, Diagrams of classical iterative hologram reconstruction 
algorithms, the self-supervised deep neural network (GedankenNet) and existing supervised deep neural networks. b, Self-supervised training pipeline of GedankenNet 
for hologram reconstruction.
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a physics-consistency loss between the input synthetic holograms of 
random, artificial objects and the numerically predicted holograms 
calculated using the GedankenNet output complex fields, without 
any reference to or use of the ground-truth object fields during the 
learning process. After its training, the self-supervised GedankenNet  
directly generalizes to experimental holograms of various types  
of sample even though it never saw any experimental data or used 
any information regarding the real samples. When blindly tested on 
experimental holograms of human tissue sections (lung, prostate and 
salivary gland tissue) and Pap smears, GedankenNet achieved better 
image reconstruction accuracy compared with supervised learning 
models using the same training datasets. We further demonstrated that 
GedankenNet can be widely applied to other training datasets, includ-
ing simulations and experimental datasets, and achieves superior 
zero-shot generalization to unseen data distributions over supervised 
learning-based models.

As GedankenNet’s self-supervised learning is based on a 
physics-consistency loss, its inference and the resulting output com-
plex fields are compatible with the Maxwell’s equations and accurately 
reflect the physical wave propagation phenomenon in free space. By 
testing GedankenNet with experimental input holograms captured at 
shifted (unknown) axial positions, we showed that GedankenNet does 
not hallucinate and the object field at the sample plane can be accu-
rately retrieved through wave propagation of the GedankenNet output 
field, without the need for retraining or fine-tuning its parameters. 
These results indicate that in addition to generalizing to experimental 
holograms of unseen sample types without seeing any experimental 
data or real object features, GedankenNet also implicitly acquired the 
physical information of wave propagation in free space and gained 
robustness towards defocused holograms or changes in the pixel size 

through the same self-supervised learning process. Furthermore, for 
phase-only objects (such as thin label-free samples), the GedankenNet 
framework also shows resilience to random unknown perturbations in 
the imaging system, including arbitrary shifts of the sample-to-sensor 
distances and unknown changes in the illumination wavelength, all of 
which make its generalization even broader without the need for any 
experimental data or ground-truth labels.

The success of GedankenNet eliminates three major challenges in 
existing deep learning-based holographic imaging approaches: (1) the 
need for large-scale, diverse and labelled training data, (2) the limited 
generalization to unseen sample types or shifted input data distribu-
tions, and (3) the lack of an interpretable connection and compatibility 
between the physical laws and models and the trained deep neural 
network. This work introduces a promising and powerful alternative 
to a wide variety of supervised learning-based methods that are cur-
rently applied in various microscopy, holography and computational 
imaging tasks.

Self-supervised learning of hologram 
reconstruction
The hologram reconstruction task, in general, can be formulated as 
an inverse problem44:

̂o = argmin
o

L(H(o), i) + R(o)

where i ∈ ℝMN2 represents the vectorized M measured holograms, each 
of which is of dimension N × N and o ∈ ℂN2  is the vectorized object 
complex field. H(⋅) is the forward imaging model, L(⋅) is the loss func-
tion and R(⋅) is the regularization term. Under spatially and temporally 
coherent illumination of a thin sample, H(⋅) can be simplified as:
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Fig. 2 | Hologram reconstruction performance of GedankenNet using 
multiple (M) input holograms. a, M holograms were selected from eight raw 
holograms as the inputs for GedankenNet. The ground-truth complex field (used 
only for comparison) was retrieved by MHPR using all the eight raw holograms. 
Scale bar, 50 μm. b, The amplitude and phase SSIM values between the 

reconstructed fields of GedankenNet and the ground-truth object fields. SSIM 
values were averaged on a testing set with 94 unique human lung tissue FOVs, and 
the SSIM standard deviations were calculated on 4 individual models for each M. 
c, Zoomed-in regions of the GedankenNet outputs and the ground-truth object 
fields. Scale bar, 20 μm.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | August 2023 | 895–907 898

Article https://doi.org/10.1038/s42256-023-00704-7

H (o) = f(Ho) + ϵ

where H ∈ ℂMN2×N2 is the free-space transformation matrix44,84, ϵ ∈ ℝMN2 
represents random detection noise and f(⋅) refers to the (opto- 
electronic) sensor-array sampling function, which records the  
intensity of the optical field.

Different schemes for solving holographic imaging inverse prob-
lems are summarized in Fig. 1. Existing methods for generalizable 
hologram reconstruction can be mainly classified into two categories, 
as shown in Fig. 1a: (1) iterative phase retrieval algorithms based on the 
physical forward model and iterative error-reduction; and (2) supervised 
deep learning-based inference methods that learn from training image 
pairs of input holograms i and the ground-truth object fields o. Similar 
to the iterative phase recovery algorithms listed under category 1,  
deep neural networks were also used to provide iterative approxima-
tions to the object field from a batch of hologram(s); however, these 
network models were iteratively optimized for each hologram batch 

separately, and cannot generalize to reconstruct holograms of other 
objects once they are optimized70,79,81 (Supplementary Note 2 and 
Extended Data Fig. 3).

Different from existing learning-based approaches, instead of 
directly comparing the output complex fields ( ̂o) and the ground-truth 
object complex fields (o), GedankenNet infers the predicted holograms 
̂i  from its output complex fields ̂o using a deterministic physical forward 

model, and directly compares ̂i  with i. Without the need to know the 
ground-truth object fields o, this forward model–network cycle estab-
lishes a physics-consistency loss (Lphysics-consistency) for gradient 
back-propagation and network parameter updates, which is defined as:

Lphysics−consistency ( ̂i, i) = αLFDMAE ( ̂i, i) + βLMSE ( ̂i, i) ,

where LFDMAE and LMSE are the Fourier domain mean absolute error 
(FDMAE) and the mean square error (MSE), respectively, calculated 
between the input holograms i and the predicted holograms ̂i . α and 
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Fig. 3 | External generalization of GedankenNet on human tissue sections 
and Pap smears, and comparison with existing supervised learning models 
and MHPR. a, External generalization results of GedankenNet on human lung, 
salivary gland, prostate and Pap smear holograms. b, External generalization 
results of supervised learning methods on the same test datasets. The supervised 

models were trained on the same simulated hologram dataset as GedankenNet 
used. c, MHPR reconstruction results using the same M = 2 input holograms.  
d, Ground-truth object fields retrieved using eight raw holograms of each FOV. 
Scale bar, 50 μm.
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β refer to the corresponding weights of each term (see Methods for 
the training and implementation details). The network architecture 
of GedankenNet is also detailed in Methods and Extended Data Fig. 1.

As emphasized in Fig. 1, GedankenNet eliminates the need for 
experimental, labelled training data and thus presents unique advan-
tages over existing methods. The training dataset of GedankenNet only 
consists of artificial holograms generated from random images (with 
no connection or resemblance to real-world samples), which serve as 
the amplitude and phase channels of the object field (Methods and  
Fig. 1b). After its self-supervised training using artificial images without 
any experimental data or real-world specimens, GedankenNet can 
be directly used to reconstruct experimental holograms of various 
microscopic specimens, including, for example, densely connected 
tissue samples and Pap smears. GedankenNet also provides consider-
ably faster reconstructions in a single forward inference without the 
need for numerical iterations, transfer learning or fine-tuning of its 
parameters on new testing samples.

Superior generalization of GedankenNet
To demonstrate the unique features of GedankenNet, we trained a series 
of self-supervised network models that take multiple input holograms (M 
ranging from 2 to 7), following the training process introduced in Fig. 1.  
Each GedankenNet model for a different M value was trained using 
artificial holograms generated from random synthetic images based 
on M different planes with designated sample-to-sensor distances zi, 
i = 1, 2, …, M. In the blind testing phase illustrated in Fig. 2a, M experi-
mental holograms of human lung tissue sections were captured by a 
lens-free in-line holographic microscope (see Extended Data Fig. 1b and 
Methods for experimental details). We tested all the self-supervised 
GedankenNet models on 94 non-overlapping fields-of-view (FOVs) 
of tissue sections and quantified the image reconstruction quality in 
terms of the amplitude and phase structural similarity index measure 
(SSIM) values with respect to the ground-truth object fields (Fig. 2b).  
The ground-truth fields were retrieved by the multi-height phase 
retrieval (MHPR)85–87 algorithm using M = 8 raw holograms of each 
FOV. Our results indicate that all the GedankenNet models were able 
to reconstruct the sample fields with high fidelity even though they 
were trained using random, artificial images without any experimental 
data (Fig. 2c). In addition, Fig. 2 shows that the reconstruction quality 
of GedankenNet models increased with increasing number of input 
holograms M, which inherently points to a general trade-off between 
the image reconstruction quality and system throughput; depending 
on the level of reconstruction quality desired and the imaging applica-
tion needs, M can be accordingly selected and optimized. In addition 
to the number of input holograms, we investigated the relationship 
between the sample-to-sensor distances and the reconstruction 
quality of GedankenNet (Extended Data Fig. 2 and Supplementary 
Note 1). Due to the reduced signal-to-noise ratio of the experimental 
in-line holograms acquired at large sample-to-sensor (axial) distances, 
GedankenNet models trained with larger sample-to-sensor distances 
show a relatively reduced reconstruction quality compared with the 
GedankenNet models trained with smaller axial distances.

We also compared the generalization performance of self- 
supervised GedankenNet models against other supervised learning 
models and iterative phase recovery algorithms using experimental 

holograms of various types of human tissue section and Pap smears 
(Fig. 3). Although only seeing artificial holograms of random images in 
the training phase, GedankenNet (M = 2) was able to directly generalize 
to experimental holograms of Pap smears and human lung, salivary 
gland and prostate tissue sections. For comparison, we trained two 
supervised learning models using the same artificial image dataset, 
including the Fourier Imager Network (FIN)48 and a modified U-Net88 
architecture (Methods). These supervised models were tested on 
the same experimental holograms to analyse their external gener-
alization performance. Compared with these supervised learning 
methods, GedankenNet exhibited superior external generalization 
on all four types of sample (lung, salivary gland and prostate tissue 
sections and Pap smears), scoring higher enhanced correlation coef-
ficient (ECC) values (Methods). A second comparative analysis was 
performed against a classical iterative phase recovery method, that is, 
MHPR85–87: GedankenNet inferred the object fields with less noise and 
higher image fidelity compared with MHPR (M = 2) that used the same 
input holograms (Fig. 3a,c). In addition, we compared GedankenNet 
image reconstruction results against deep image prior-based approa
ches70,79,81,89, also confirming its superior performance (Extended Data 
Fig. 3 and Supplementary Note 2).

The inference time of each of these hologram reconstruction 
algorithms is summarized in Table 1, which indicates that GedankenNet 
accelerated the image reconstruction process by ~128 times compared 
with MHPR (M = 2). These holographic imaging experiments and result-
ing analyses successfully demonstrate GedankenNet’s unparalleled 
zero-shot generalization to experimental holograms of unknown, new 
types of sample without any prior knowledge about the samples or the 
use of experimental training data or labels.

GedankenNet’s strong external generalization is due to its 
self-supervised learning scheme that employs the physics-consistency 
loss, which is further validated by the additional comparisons we per-
formed between self-supervised learning and supervised learning 
schemes (Extended Data Fig. 4 and Supplementary Note 3). In addition 
to GedankenNet’s superior external generalization (from artificial 
random images to experimental holographic data), this framework 
can also be applied to other training datasets. To showcase this, we 
trained three GedankenNet models using (1) the artificial hologram 
dataset generated from random images, same as before; (2) a new 
artificial hologram dataset generated from a natural image dataset 
(common objects in context, COCO)90; and (3) an experimental hol-
ogram dataset of human tissue sections (see Methods for dataset 
preparation). Each one of these training datasets had ~100,000 training 
image pairs with M = 2, z1 = 300 μm and z2 = 375 μm. As shown in Fig. 4,  
these three individually trained GedankenNet models were tested 
on four testing datasets, including artificial holograms of (1) random 
synthetic images and (2) natural images as well as experimental holo-
grams of (3) lung tissue sections and (4) Pap smears. Our results reveal 
that all the self-supervised GedankenNet models showed very good 
reconstruction quality for both internal and external generalization 
(Fig. 4a,b). When trained using the experimental holograms of lung 
tissue sections, the supervised hologram reconstruction model FIN 
(solid red bar) scored higher ECC values (P value of 7.5 × 10−38) than 
the GedankenNet (solid blue bar) on the same testing set of the lung 
tissue sections. However, when it comes to external generalization, 

Table 1 | Holographic image inference time (for 1 mm2 sample area) for GedankenNet, supervised learning models and MHPR

Model GedankenNet (M = 2) GedankenNet-Phase (M = 2) FIN (M = 2) U-Net (M = 2) MHPR (M = 2)

Inference time without parallelization (s mm−2) 0.21 1.36 0.20 0.084 4.1

Inference time with parallelization (s mm−2) 0.032 0.53 0.034 0.0062 NA

Number of trainable parameters (millions) 39.4 5.7 11.5 31.0 NA

NA, Not Available.
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as shown in Fig. 4b, GedankenNet (the blue shadow bar) achieved 
superior imaging performance (P value of 8.5 × 10−10) compared with 
FIN (the red shadow bar) on natural images (from the COCO dataset). 
One can also notice the overfitting of the supervised model (FIN) by 
the large performance gap observed between its internal and external 

generalization performance shown with the red bars in Fig. 4b. On 
the contrary, the self-supervised GedankenNet trained with artificial 
random images (the blue bars) showed very good generalization per-
formance for both test datasets covering natural macroscale images 
as well as microscale tissue images. Also see Extended Data Fig. 5 and 
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Supplementary Note 4 for additional results supporting the superior 
generalization performance of GedankenNet.

Compatibility of GedankenNet with the wave 
equation
Besides its generalization to unseen testing data distributions  
and experimental holograms, the inference of GedankenNet is also 
compatible with the wave equation. To demonstrate this, we tested 
the GedankenNet model (trained with the artificial hologram dataset 
generated from random synthetic images) on experimental holo-
grams captured at shifted unknown axial positions z′1 ≅ z1 + Δz  and 
z′2 ≅ z2 + Δz , where z1 and z2 were the training axial positions and Δz  
is the unknown axial shift amount. The same model as in Fig. 3 was used 
for this analysis and blindly tested on lung tissue sections (that is, exter-
nal generalization). Due to the unknown axial defocus distance (Δz), 
the direct output fields of GedankenNet do not match well with the 
ground truth, indicated by the orange curve in Fig. 5a. However, as 
GedankenNet was trained with the physics-consistency loss, its output 
fields are compatible with the wave equation in free space. Thus, the 
object fields at the sample plane can be accurately retrieved from  
the GedankenNet output fields by performing wave propagation  
by the corresponding axial defocus distance. After propagating the 
output fields of GedankenNet by −Δz using the angular spectrum 
approach, the propagated fields (blue curve) matched very well with 

the ground-truth fields across a large range of axial defocus values, Δz. 
These results are important because (1) they once again demonstrate 
the success of GedankenNet in generalizing to experimental holograms 
even though it was trained only by artificial holograms of random syn-
thetic images; and (2) the physics-consistency based self-supervised 
training of GedankenNet encoded the wave equation into its inference 
process so that instead of hallucinating and creating non-physical 
random optical fields when tested with defocused holograms,  
GedankenNet outputs correct (physically consistent) defocused com-
plex fields. In this sense, GedankenNet not only shows superior external 
generalization (from experiment- and data-free training to experi mental 
holograms) but also very well generalized to work with defocused 
experimental holograms. To the best of our knowledge, these features 
have not been demonstrated before for any hologram reconstruction 
neural network in the literature.

Figure 5b shows another example of GedankenNet’s superior 
external generalization and its compatibility with the wave equation. 
The same trained GedankenNet model of Fig. 5a was blindly tested on 
experimental holograms of unstained (label free) human kidney tis-
sue sections, which can be considered phase-only samples. Besides 
the success of GedankenNet’s generalization to experimental data of 
biological samples, the results shown in Fig. 5b demonstrate Gedank-
enNet’s zero-shot generalization to another physical class of objects 
(that is, phase-only samples) that exhibit different physical properties 
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Fig. 5 | Compatibility of GedankenNet output images with the wave equation 
in free space. The GedankenNet model was trained to reconstruct M = 2 input 
holograms at z1 = 300 μm and z2 = 375 μm, but blindly tested on input holograms 
captured at z′1 = 300+ Δzμm and z′2 = 375+ Δzμm (orange curve). The resulting  
GedankenNet output complex fields are propagated in free space by −Δz using  
the wave equation, revealing a very good image quality (blue curve) across a  
wide range of axial defocus distances. The GedankenNet-Phase (green curve)  
was trained to reconstruct sample fields with M = 2 input holograms at arbitrary, 
unknown axial positions within [275, 400] μm. a, External generalization on 

stained human lung tissue sections. A, B represent testing results with Δz = −30 
and 50 μm, respectively. b, External generalization on unstained, label-free 
human kidney tissue sections. C, D represent testing results with Δz = −30 and  
40 μm, respectively. These results demonstrate that the GedankenNet framework  
not only has a superior external generalization to experimental holograms (using 
experiment- and data-free training) but also very well generalized to work with 
defocused experimental holograms, and encoded the wave equation into its 
inference process using the physics-consistency loss. Scale bars, 50 μm.
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than the synthetic, artificial random complex fields used in the training, 
which included random phase and amplitude patterns. Stated differ-
ently, although GedankenNet’s artificially generated random training 
images did not include any phase-only objects, it successfully recon-
structed the experimental holograms of phase-only objects—the first 
time that they were seen. Furthermore, similar to Fig. 5a, we observe 
in Fig. 5b that by digitally propagating the GedankenNet outputs for 
defocused input holograms of the label-free tissue samples (orange 
curve) by an axial distance of −Δz, the resulting phase reconstructions 
(blue curve) showed good fidelity to the ground-truth phase images 
of the same samples.

Also refer to the Supplementary Note 5 and Extended Data  
Figs. 6–10 on the analysis of GedankenNet’s resilience to various sources 
of unknown perturbations, including the pixel pitch, signal-to-noise 
ratio, axial distances and the illumination wavelength. As detailed in 
Supplementary Note 5, this resilient performance of GedankenNet can 
be further enhanced using phase-only object priors; we termed this new 
model for phase-only object reconstruction as GedankenNet-Phase, 
which shows external generalization, reconstructing experimental 
holograms of unseen sample types, while simultaneously achieving 
autofocusing (Supplementary Note 5.3 and Extended Data Fig. 9).

Discussion
Compared with the existing supervised learning methods, Gedanken-
Net has several unique advantages. It eliminates the dependence on 
labelled experimental training data in computational microscopy, 
which often come from other imaging modalities or classical algorithms 
and, therefore, inevitably introduce biases for external generalization 
performance of the trained network. The self-supervised, zero-shot 
learning scheme of GedankenNet also considerably relieves the cost 
and labour of collecting and preparing large-scale microscopic image 
datasets. For the inverse problem of hologram reconstruction, the 
reported physics-consistency loss that we used in self-supervised 
learning outperforms traditional structural loss functions commonly 
employed in supervised learning as they often overfit to specific image 
features that appear in the training dataset, resulting in generalization 
errors, especially for new types or classes of sample never seen before 
(Extended Data Fig. 4). In general, the residual errors that stochasti-
cally occur during the network training would be non-physical errors 
that are incompatible with the wave equation, for example, noise-like 
errors that do not follow wave propagation. In contrast to traditional 
structural loss functions that penalize these types of residual error 
based on the statistics of the sample type of interest (which requires 
experimental data and/or knowledge about the samples and their fea-
tures), the physics-consistency loss function that we used focuses on 
physical inconsistencies, which is at the heart of the superior external 
generalization of GedankenNet framework as such physical errors are 
universally applicable, regardless of the type of sample or its physical 
properties or features (also refer to Supplementary Note 6). Further-
more, this physics-consistency loss benefits from multiple hologram 
planes (that is, M ≥ 2) so that it can also filter out twin-image-related 
artefacts that would normally appear in conventional in-line hologram 
reconstruction methods due to lack of direct phase information; stated 
differently, an artificial twin image that would be superimposed onto 
the complex-valued true image of the sample would be attacked by 
our self-consistency loss as it will create physical inconsistencies on at 
least M − 1 hologram planes as a result of the wave propagation step for 
M ≥ 2 planes. In addition to this, the large degrees of freedom provided 
by the artificially synthesized image datasets, with random phase and 
amplitude channels, also contribute to the effectiveness of the Gedank-
enNet framework, as also highlighted in the ‘Superior Generalization 
of GedankenNet’ subsection, Extended Data Fig. 5 and Supplementary 
Note 4. Limited by the optical system, the experimental holographic 
imaging process applies a low-pass filter to the ground-truth object 
fields. Furthermore, the recurrent spatial features within the same type 

of sample further reduce the diversity of the experimental datasets. 
Thus, adapting simulated holograms of random, artificial image data-
sets presents a more effective solution when access to large amounts 
of experimental data is impractical (Fig. 4 and Extended Data Fig. 5). 
In addition, GedankenNet exhibits superior generalization to unseen 
data distributions than supervised models, and achieves better holo-
graphic image reconstruction for unseen, new types of sample (see, 
for example, Figs. 3 and 4).

Methods
Sample preparation and imaging
Human tissue samples used in this work were prepared and provided by 
the University of California Los Angeles (UCLA) Translational Pathology 
Core Laboratory. A fraction of tissue slides were stained with haema-
toxylin and eosin to reveal structural features in the amplitude chan-
nel and the other slides remained unstained to serve as phase-only 
objects. Stained Pap smears were acquired from the UCLA Department 
of Pathology. All slides were deidentified and prepared from existing 
specimens without links or identifiers to the patients.

The experimental holograms were captured on stained human 
lung, prostate, salivary gland, kidney, liver and oesophagus tissue 
sections, Pap smears, and unstained label-free human kidney tis-
sue sections. Holographic microscopy imaging was implemented 
using a lens-free, in-line holographic microscope as illustrated in 
Extended Data Fig. 1b. The custom-designed microscope was equipped 
with a tunable light source (WhiteLase Micro, NKT Photonics) and 
an acousto-optic tunable filter. In the reported experiments, the 
acousto-optic tunable filter was set to filter the illumination light at 
λ0 = 530 nm wavelength unless otherwise specified. Raw holograms 
(~4,600 × 3,500 pixels) were recorded by a complementary metal–
oxide semiconductor with a pixel size of 1.12 μm (IMX 081 RGB, Sony). 
A 6-axis 3D positioning stage (MAX606, Thorlabs) controlled the 
complementary metal–oxide semiconductor sensor to capture raw 
holograms consecutively for each FOV at various sample-to-sensor 
distances, which ranged from ~300 μm to ~600 μm in this work with an 
axial spacing of ~10–15 μm. A computer connected all the devices and 
automatically controlled the image acquisition process through a Lab-
View script (LabView 2012, version 12.0) and AYA software tool (Sony).

Artificial hologram preparation and preprocessing
The artificial holograms used in this work for the training were simu-
lated from either random images or natural images (from the COCO 
dataset). Random images (with no connection or resemblance to 
real-world samples) were generated using a Python package rand-
image, which coloured the pixels along a path found from a random 
grey-valued image to generate an artificial RGB image. Then we mapped 
the generated random RGB images to greyscale. Two independent 
images randomly selected from the dataset served as the amplitude 
and phase of the complex object field, and a small constant was added 
to the amplitude channel to avoid zero transmission and undefined 
phase issue. For the artificial random phase-only object fields, only the 
phase image was selected, and the amplitude was set as 1 everywhere. 
The object field was then propagated by the given sample-to-sensor 
distances using the angular spectrum approach84, and the intensity of 
the resulting complex field was calculated. The resulting holograms 
were cropped into 512 × 512 patches. Each of the two datasets (from 
either random images or COCO natural images) used ~100,000 images 
for training and a set of 100 images for validation and testing, which 
were excluded from training. All models in this work used the amplitude 
of the measured fields as the inputs.

Given a randomly selected amplitude (A) image and phase (ϕ) 
image, the simulated hologram i(x, y;z) at axial position z is generated 
by free-space propagation (FSP):

i (x, y; z) = ||FSP ((A + δ) ⊙ eiπϕ; z) + ϵ||
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where δ∈ℝ  stands for the added small constant, ⨀ represents 
element-wise multiplication and ϵ ∈ ℂN×N is the additional white Gauss-
ian noise. For the phase-only objects, the simulated holograms can be 
expressed as:

i (x, y; z) = |FSP (eiπϕ; z) + ϵ|

The FSP is implemented based on the angular spectrum propaga-
tion method84 by taking into account all the travelling waves in free 
space. The angular spectrum of a light field U(x, y;z0) at the axial posi-
tion z0 can be expressed as

Ã (ξ,η; z0) =ℱ {U (x, y; z0)}

The angular spectrum of the propagated field at z is related to 
A(ξ, η; z0) by

Ã (ξ,η; z) = { e
i(z−z0)√k2−ξ 2−η2 Ã (ξ,η; z0) , if ξ 2 + η2 < k2

0, otherwise

Here ℱ  and ℱ−1 are the fast Fourier transform (FFT) pairs (forward 
versus inverse). x, y and ξ, η are spatial and frequency domain coordi-
nates, respectively. k is the wave number of the illumination light in the 
medium. The FSP then infers the propagated field at z by:

FSP (U (x, y; z0) ; z − z0) = ℱ−1 {Ã (ξ,η; z)} .

Experimental hologram dataset preparation and processing
Raw experimental holograms were pre-processed through pixel 
super-resolution and autofocusing algorithms to retrieve subpixel fea-
tures of the samples. For this, a pixel super-resolution algorithm85,91 was 
applied to raw experimental holograms to obtain high-resolution holo-
grams, resulting in a final effective pixel size of 0.37 μm. Then, an edge 
sparsity-based autofocusing algorithm92 was employed to determine 
the sample-to-sensor distances for each super-resolved hologram. The 
ground-truth sample field was retrieved from M = 8 super-resolved holo-
grams of the same FOV using the MHPR algorithm85–87. The MHPR algo-
rithm retrieves the sample complex field through iterations between 
eight input holograms. The initial guess of the sample complex field is 
propagated to each measurement plane using FSP and the correspond-
ing sample-to-sensor distance. Then, the propagated field is updated 
by replacing the amplitude with the measured one and retaining the 
phase. One iteration is completed after all eight holograms have been 
used. The algorithm generally converges after 100 iterations.

Input–target pairs of 512 × 512 pixels were cropped from the 
super-resolved holograms and their corresponding retrieved ground- 
truth fields, forming the experimental hologram datasets. Standard data 
augmentation techniques were applied, including random rotations 
by 0°, ±45° and ±90°, and random vertical and horizontal flipping. The 
multi-height experimental hologram dataset of tissue sections contains 
~100,000 input–target pairs of stained human lung, prostate, salivary 
gland, kidney, liver and oesophagus tissue sections. A subset of the lung, 
prostate, salivary gland slides from new patients and Pap smears were 
excluded from the training dataset and used as testing datasets, contain-
ing 94, 49, 49 and 47 unique FOVs, respectively. The holograms of the 
unstained (label free) kidney tissue thin sections (~3–4 μm thick) were 
used as our phase-only object test dataset containing 98 unique FOVs.

Network architecture
A sequence of M holograms is concatenated as the input image with M 
channels and the real and imaginary parts of the object complex field 
are generated at the output of GedankenNet. GedankenNet contains a 
series of spatial Fourier transformation (SPAF) blocks and a large-scale 
residual connection, in addition to two 1 × 1 convolution layers at the 
head and the tail of the network (Extended Data Fig. 1a). In each SPAF 

block, input tensors pass through two recursive SPAF modules with 
residual connections, which share the same parameters before entering 
the parametric rectified linear unit (PReLU) activation layer93. The PReLU 
activation function with respect to an input value x∈ℝ is defined as:

PReLU (x) = max (0, x) + a ×min(0, x)

where a∈ℝ  is a learnable parameter. Another residual connection 
passes the input tensor after the PReLU layer. The SPAF module consists 
of a 3 × 3 convolution layer and a branch performing linear transforma-
tion in the Fourier domain (Extended Data Fig. 1a). The input tensor 
with c channels to the SPAF module is first transformed into the fre-
quency domain by a two-dimensional FFT and truncated by a window 
with a half size k to filter out higher-frequency components. The linear 
transformation in the frequency domain is realized through pixel-wise 
multiplication with a trainable weight tensor W ∈ ℝc×(2k+1)×(2k+1), that is

F′j,u,v = Wj,u,v ⋅
c
∑
i=1

Fi,u,v, u, v = 0, ±1,… ,±k, j = 1,… , c

where F ∈ ℂc×(2k+1)×(2k+1) are the truncated frequency components. The 
resulting tensor F′ is then transformed into the spatial domain through 
an inverse two-dimensional FFT. The same pyramid-like setting of half 
window size k as in ref. 82 was applied here such that k decreases for 
deeper SPAF blocks. This pyramid-like setting provides a mapping of 
the high-frequency information of the holographic diffraction patterns 
to low-frequency regions in the first few layers and passes this 
low-frequency information to the subsequent layers with a smaller 
window size, which better utilizes the spatial features at multiple scales 
and at the same time considerably reduces the model size, avoiding 
potential overfitting and generalization issues.

The architecture of GedankenNet was extended for two addi-
tional models, namely GedankenNet-Phase and GedankenNet-Phaseλ, 
as detailed in the Supplementary Note 5 and Extended Data Fig. 8a. 
Similar to GedankenNet, these models use a sequence of M holo-
grams concatenated as the input image with M channels, but, instead 
of outputting real and imaginary parts, the GedankenNet-Phase and 
GedankenNet-Phaseλ only generate phase-only output images. The 
dynamic SPAF (dSPAF) modules49 inside GedankenNet-Phase and 
GedankenNet-Phaseλ exploit a shallow U-Net to dynamically generate 
weights W for each input tensor, and enable the capabilities of autofo-
cusing and adapting to unknown shifts or changes in the illumination 
wavelengths. The dense links provide an efficient flow of information 
from the input layer to the output layer, so that every output tensor of 
the dSPAF group is appended and fed to the subsequent dSPAF groups, 
resulting in an economic and powerful network architecture.

Algorithm implementation
GedankenNet, GedankenNet-Phase and GedankenNet-Phaseλ were 
implemented using PyTorch94. We calculated the loss values based on 
the hologram amplitudes, that is:

̂i = |FSP ( ̂o; z1, z2,⋯ , zM) |

The training loss consists of three individual terms: (1) FDMAE loss 
between the predicted holograms ̂i  and the input holograms i; (2) MSE 
loss between ̂i  and i; and (3) total variation (TV) loss on the output complex 
field ̂o. The first two terms constitute the physics-consistency loss, and 
the total loss is a linear combination of the three terms, expressed as:

Ltotal = Lphysics−consistency ( ̂i, i) + γLTV( ̂o)

= αLFDMAE ( ̂i, i) + βLMSE ( ̂i, i) + γLTV( ̂o)

where α, β and γ are loss weights empirically set as 0.1, 1 and 20.
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The FDMAE loss is calculated as:

LFDMAE( ̂i, i) =
1
N2

N
∑
ξ=1

N
∑
η=1

||ℱ { ̂i } (ξ,η) ⋅w (ξ,η) − ℱ {i} (ξ,η) ⋅w (ξ,η)||

Here w ∈ ℝN×N  is a two-dimensional Hann window95, and ξ, η are 
indices of frequency components. MSE and TV losses are computed 
using:

LMSE ( ̂i, i) = 1
N 2

N
∑
x=1

N
∑
y=1

|| ̂i (x, y) − i (x, y)||
2

LTV( ̂o) = 1
2N 2

N
∑
x=1

N
∑
y=1

|∇xRe{ ̂o} (x, y)| + ||∇yRe{ ̂o} (x, y)||

+ |∇xIm{ ̂o} (x, y)| + ||∇yIm{ ̂o}(x, y)||

Here x, y are spatial indices, ∇x, ∇y refer to the differentiation opera-
tion along the horizontal and vertical axes, Re{⋅}, Im{⋅} return the real 
and imaginary parts of the complex fields, respectively.

For the GedankenNet-Phase and GedankenNet-Phaseλ, which 
generate phase-only output fields, the predicted hologram was  
calculated using:

̂i = ||FSP (eiπ ̂p;z1, z2,… , zM)||

where ̂p  is the output phase field. The TV loss was calculated by  
using:

LTV( ̂p) = 1
N 2

N
∑
x=1

N
∑
y=1

|∇x ̂p (x, y)| + ||∇y ̂p (x, y)||

To avoid trivial ambiguities in phase retrieval96–98, the Gedanken-
Net’s output was normalized using its complex mean; the outputs of 
GedankenNet-Phase and GedankenNet-Phaseλ were subtracted from 
their corresponding mean.

All the trainable parameters in GedankenNet were optimized using 
the Adam optimizer99. The learning rate follows a cosine annealing 
scheduler with an initial rate of 0.002. All the models went through 
~0.75 million batches (equivalent to ~7.5 epochs) and the best model 
was preserved with the minimal validation loss. The training takes 
~48 h for an M = 2 model on a computer equipped with an i9–12900F 
central processing unit, 64 GB random-access memory and an RTX 
3090 graphics card. The inference time measurement (Table 1) was 
done on the same machine with GPU acceleration and a test batch 
size of 20 for GedankenNet, 12 for both GedankenNet-Phase and 
GedankenNet-Phaseλ.

The supervised FIN adopted the same architecture and parameters 
as in ref. 48. The U-Net architecture employed four convolutional 
blocks in the down-sampling and up-sampling paths separately, and 
each block contained two convolutional layers with batch normaliza-
tion and ReLU activation. The input feature maps of the first convolu-
tional block had 64 channels and each block in the down-sampling path 
doubled the number of channels. Supervised FIN and U-Net88 models 
adopted the same loss function as in ref. 48. The same Adam optimizer 
and learning rate were applied to the supervised learning models. Deep 
image prior adopted a U-Net architecture, an Adam optimizer and the 
loss function used in ref. 81.

Image reconstruction evaluation metrics
SSIM, root mean square error (RMSE) and ECC were used in our work to 
evaluate the reconstruction quality of the output fields with respect  
to the ground-truth fields. SSIM and RMSE are based on single- 
channel images. Denoting ̂o ∈ ℝN×N  as the reconstructed amplitude or 
phase image, and o ∈ ℝN×N  as the ground-truth amplitude or phase 

image, SSIM and RMSE values were calculated using the following 
equations:

SSIM ( ̂o,o) = (2μ ̂oμo + c1) (2σ ̂oo + c2)
(μ2 ̂o + μ2o + c1) (σ2 ̂o + σ2o + c2)

RMSE ( ̂o,o) =
√√√
√

1
N 2

N
∑
x=1

N
∑
y=1

( ̂o (x, y) − o (x, y))2

Here μ ̂o and μo stand for the mean of ̂o and o, respectively. σ2 ̂o and σ2o 
stand for the variance of ̂o and o, respectively, and σ ̂oo is the covariance 
between ̂o and o. c1 = 2.552 and c2 = 7.652 are constants used for 8-bit 
images. x and y are two-dimensional coordinates of the image pixels.

The ECC is calculated based on the reconstructed complex  
field and the ground-truth field. ̂o′ ∈ ℂN×N  is the reconstructed  
field obtained by subtracting ̂o with its mean value. o′ ∈ ℂN×N  is the 
corresponding ground-truth field. The ECC can be calculated as:

ECC ( ̂o′, o′) = Re{
vec( ̂o′)

H
⋅ vec (o′)

‖vec ( ̂o′) ‖ ⋅ ‖vec(o′)‖ }

Here vec( ̂o′)
H

 is the conjugate transpose of the vectorized ̂o′, and  
||⋅|| is the Euclidean norm.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
This study involved simulation data generated from the COCO data-
set (available at https://cocodataset.org/#home) and an artificial 
image dataset, as well as an experimental image dataset of human 
samples (from existing, anonymized specimens collected before 
this work). Simulation data used in the paper can be generated using 
the open-source code of the paper, public datasets and open-source 
Python libraries. The training artificial image dataset is available at 
https://github.com/PORPHURA/GedankenNet (ref. 100). A portion 
of the experimental dataset corresponding to human tissue samples 
is also shared and referenced in the code repository without any links 
or identifiers to the patients, which is made available at https://github.
com/PORPHURA/GedankenNet (ref. 100). Additional data are available 
from the corresponding author upon reasonable request.

Code availability
The codes for the deep learning models used in this work (written in 
Python 3.9.6 and PyTorch 1.9.0) are publicly available at https://github.
com/PORPHURA/GedankenNet (ref. 100). The trained model and 
demo data are uploaded and available in the same code repository. The 
code for analysing the results was written in Python using standard, 
open-source Python libraries.
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Extended Data Fig. 1 | Training and testing pipelines, and the network 
architecture of GedankenNet. (a) GedankenNet training using the artificial 
hologram dataset generated from random images. GedankenNet consists of a 

series of spatial Fourier (SPAF) blocks and a long residual connection.  
(b) GedankenNet testing on experimental holograms of various human  
tissue sections and Pap smears. Scale bar: 50 μm.
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Extended Data Fig. 2 | Comparison of GedankenNet models trained with 
different sample-to-sensor axial distances. Three GedankenNet models were 
trained on simulated holograms of the same artificial random complex fields 
propagated by (z1, z2) = (300,375)μm, (z1, z2) = (350,425)μm and (z1, z2) = (575,650)
μm, respectively. (a) External generalization of these three GedankenNet models 
on experimental Pap smear holograms captured at different axial positions.  

(b) External generalization of the three models on experimental holograms of 
human lung tissue sections. The ground truth object fields of each FOV were 
reconstructed by using 8 raw holograms. ECC mean +/- standard deviation values 
are presented and were calculated on Pap smear and lung test datasets with 47 
and 94 unique FOVs, respectively. Scale bar: 50 μm.
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Extended Data Fig. 3 | Comparison between GedankenNet and a deep neural 
network-based algorithm (DIP, that is, deep image prior). (a) The 
reconstruction output of DIP on Pap smear FOV 1 after ~10 K iterations. The 
internal and external generalization of the converged DIP on the other two FOVs 
of Pap smear sample and lung tissue section. The input holograms (M = 2) and the 

outputs of MHPR for each FOV are also shown for comparison. (b) External 
generalization results of GedankenNet (trained on artificial holograms of 
random synthetic objects) blindly tested on the same input holograms of each 
FOV. (c) The ground truth object fields were retrieved from 8 holograms of each 
FOV. Scale bar: 50 μm.
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Extended Data Fig. 4 | Generalization comparison between GedankenNet and 
a supervised learning model (FIN). (a) GedankenNet and FIN were trained on 
the same simulated hologram dataset generated from random artificial images, 
and tested on experimental holograms of Pap smear and human lung tissue 
sections. (b) External generalization results of GedankenNet and FIN trained on 
the same simulated hologram dataset generated from natural images (COCO 

dataset). (c, d) Mean ECC values of the outputs of the two models in (a, b) on the 
two testing datasets. The Pap smear and lung test datasets contain 47 and 94 
unique FOVs, respectively. (e) The ground truth object fields of the testing FOVs 
were retrieved from 8 raw holograms of each FOV. Zoomed-in regions are 
highlighted by the yellow boxes. Scale bar: 50 μm (20 μm in the zoomed-in 
images).
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Extended Data Fig. 5 | Comparison of the standard GedankenNet model 
trained using identically and independently distributed (i.i.d) random 
amplitude and phase profiles (synthetically generated without any 
experiments or resemblance to real-world samples) and a GedankenNet 
model trained with correlated amplitude and phase profiles. (a) External 
generalization of the two models on experimental holograms of human lung 
tissue sections and Pap smear samples. Ground truth sample fields were 

retrieved from M = 8 raw holograms. (b) Schematic diagram illustrating artificial 
complex fields with i.i.d. amplitude and phase profiles, and artificial complex 
fields with correlated amplitude and phase profiles. (c) Quantitative evaluation 
of the reconstruction accuracy of the two GedankenNet models. ECC values were 
averaged on the lung test set with 94 unique FOVs and the Pap smear test set with 
47 unique FOVs. Scale bar: 50 μm.
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Extended Data Fig. 6 | Robustness of GedankenNet models to different pixel 
pitches. (a) Pixel binning-based generation of lower-resolution (LR) holograms 
with a pixel size of kp from high-resolution (HR) holograms that have a pixel size 
of p. The LR holograms (after the resolution loss due to the pixel binning) were 
then interpolated and fed into a GedankenNet trained with pixel size p.  

(b) Quantitative evaluation of the reconstruction accuracy of the GedankenNet 
with respect to the hologram pixel pitch. ECC values were calculated on the lung 
test dataset with 94 unique FOVs. (c) Zoom-in regions of the reconstructed 
sample fields by GedankenNet using LR holograms with various pixel pitches. 
Yellow squares highlight the zoom-in regions. Scale bar: 50 μm.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | SNR comparison between GedankenNet and a 
supervised deep neural network FIN. (a) The ground truth object fields and the 
zoomed-in regions marked by the yellow boxes. (b) Simulated holograms using 
natural images (from COCO dataset) with and without the presence of random 
noise. The noise-added holograms have 20 dB and 14 dB SNR, respectively.  
(c) The zoomed-in outputs of GedankenNet and FIN inference on the simulated 
test holograms shown in (b). Both models shared the same artificial hologram 

training dataset (generated from random images) and the same network 
architecture. (d) The zoomed-in outputs of another supervised FIN model 
(trained using the experimental lung tissue holograms) blindly tested on the 
same simulated test holograms shown in (b). (e) Quantitative performance 
comparisons of GedankenNet and supervised FIN models. Metrics were averaged 
using 100 unique FOVs. Scale bar: 50 μm, 20 μm for zoomed-in images.
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Extended Data Fig. 8 | Training and testing workflow and the network 
architecture of GedankenNet-Phase. (a) GedankenNet-Phase training used 
simulated holograms generated from random artificial phase-only objects at 
random sample-to-sensor distances within an axial range of [275, 400]μm. 

GedankenNet-Phase is based on a DenseNet-like architecture consisting of a 
series of dSPAF blocks and dense links. (b) The trained GedankenNet-Phase can 
generalize to experimental holograms captured at random, unknown axial 
positions within the training range. Scale bar: 50 μm.
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Extended Data Fig. 9 | Autofocusing performance of GedankenNet-Phase for 
experimental holograms of unstained human kidney tissue sections 
captured at various sample-to-sensor distances. (a) Reconstructed sample 
phase by GedankenNet-Phase. (b) Phase RMSE of the reconstructed phase images 

by GedankenNet-Phase with respect to the ground truth. Phase RMSE values were 
averaged on the unstained kidney test dataset with 98 unique FOVs. The ground 
truth object fields were retrieved from 8 raw holograms. Scale bar: 50 μm.
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Extended Data Fig. 10 | GedankenNet-Phaseλ training and generalization 
performance to various illumination wavelengths. (a) The GedankenNet-
Phaseλ model was trained on simulated holograms generated from random 
artificial phase-only objects using random illumination wavelengths within the 
spectral range [λ1: λ2] = [520 nm:540nm]. (b) External generalization of 
GedankenNet-Phaseλ (blue) to experimental holograms of unstained (label-free) 

human kidney tissue sections captured with various, unknown illumination 
wavelengths. The results of the standard GedankenNet (gray, trained with λ0 = 
530 nm) are also included for comparison. (c) Quantitative evaluation of the 
results of GedankenNet-Phase λ (blue) and the standard GedankenNet (gray). 
ECC values were calculated on the unstained human kidney test dataset with 98 
unique FOVs. Scale bar: 50 μm.
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