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Parkinson’s disease is a common, incurable neurodegenerative disorder 
that is clinically heterogeneous: it is likely that different cellular mechanisms 
drive the pathology in different individuals. So far it has not been possible 
to define the cellular mechanism underlying the neurodegenerative 
disease in life. We generated a machine learning-based model that can 
simultaneously predict the presence of disease and its primary mechanistic 
subtype in human neurons. We used stem cell technology to derive control 
or patient-derived neurons, and generated different disease subtypes 
through chemical induction or the presence of mutation. Multidimensional 
fluorescent labelling of organelles was performed in healthy control neurons 
and in four different disease subtypes, and both the quantitative single-cell 
fluorescence features and the images were used to independently train a 
series of classifiers to build deep neural networks. Quantitative cellular 
profile-based classifiers achieve an accuracy of 82%, whereas image-based 
deep neural networks predict control and four distinct disease subtypes 
with an accuracy of 95%. The machine learning-trained classifiers achieve 
their accuracy across all subtypes, using the organellar features of the 
mitochondria with the additional contribution of the lysosomes, confirming 
the biological importance of these pathways in Parkinson’s. Altogether, we 
show that machine learning approaches applied to patient-derived cells are 
highly accurate at predicting disease subtypes, providing proof of concept 
that this approach may enable mechanistic stratification and precision 
medicine approaches in the future.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder 
that encompasses several pathogenic processes that converge on the 
accumulation of misfolded α-synuclein (α-Syn) in Lewy bodies and 
neurites, and degeneration of dopaminergic neurons in the substantia 
nigra, resulting in an array of motor, cognitive, neuropsychiatric and 

autonomic deficits1–3. The age of onset, rate of disease progression, 
and severity of motor and non-motor symptoms display considerable 
individual variation (see ref. 4 for a review). This is most likely due to 
differences in the underlying molecular mechanisms occurring in dif-
ferent subtypes of the disease (see ref. 5 for a review). Critically, there 

Received: 13 August 2022

Accepted: 6 July 2023

Published online: 10 August 2023

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: dilan.athauda@crick.ac.uk; rmgzmec@ucl.ac.uk; sonia.gandhi@crick.ac.uk

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00702-9
http://orcid.org/0000-0002-8942-0903
http://orcid.org/0000-0001-5385-4390
http://orcid.org/0000-0001-5495-5492
http://orcid.org/0000-0001-9414-8214
http://orcid.org/0000-0003-4395-2661
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00702-9&domain=pdf
mailto:dilan.athauda@crick.ac.uk
mailto:rmgzmec@ucl.ac.uk
mailto:sonia.gandhi@crick.ac.uk


Nature Machine Intelligence | Volume 5 | August 2023 | 933–946 934

Article https://doi.org/10.1038/s42256-023-00702-9

Results
Human iPSC-derived cortical neurons to model disease
Human iPSCs (hiPSCs; see Supplementary Table 1 for details on the 
iPSC lines) were generated through reprogramming fibroblasts 
from healthy donors or PD patients carrying SNCA ×3. Neuronal dif-
ferentiation was performed using a protocol adapted from ref. 14  
(Fig. 1b). Following terminal differentiation, the culture is highly enriched 
in neurons, displaying neuronal markers (MAP2 = 90.01 ± 3.516%;  
Fig. 1c,f) with both lower- (TRB1 = 46.67 ± 4.985%, CTIP2 = 47.30 ± 5.037; 
Fig. 1d,f) and upper-layer (SATB2 = 41.15 ± 4.501%; Fig. 1e,f) neuronal 
markers. Neuronal cultures responded to physiological concentrations 
of glutamate (5 μM), confirming that the majority of the population 
are glutamatergic neurons (62.92 ± 3.819%; Fig. 1g). A key hallmark 
of PD is the accumulation of intraneuronal aggregates comprising 
phosphorylated α-Syn. Human iPSC-derived neurons carrying SNCA 
×3 mutation express more phosphorylated forms of α-Syn compared 
with control iPSC-derived neurons (Fig. 1h,i).

We confirm the generation of human cortical neurons13,15,16 and, 
furthermore, that subtype 1 (familial proteinopathy) exhibits the  
pathological hallmark of a proteinopathy13,15,17.

Defining and acquiring data on disease states in PD
Mitochondrial dysfunction and synucleinopathy are two primary pathol-
ogies of PD and are induced by various conditions2,18,19. We established 
a set of disease states (four subtypes as described in Fig. 1a) led by two 
primary pathologies: α-Syn aggregation and mitochondrial dysfunction. 
Subtype 1 is a familial proteinopathy, generated using neurons from 
PD patients carrying SNCA ×3, which has elevated aggregation levels 
in neurons (Fig. 1h,i)13,15. Subtype 2 is an environmental proteinopa-
thy, generated by treating control neurons with α-Syn oligomers, a 
toxic soluble species of ɑ-Syn (see Extended Data Fig. 1a–c for charac-
terization of oligomers)13,15,17. Subtype 3 is a mitochondrial dysfunc-
tion state induced by inhibiting complex 1 using rotenone (5 μM)20–22.  
Subtype 4 is a mitochondrial dysfunction state that is induced by 
co-treating with oligomycin A (1 μM) and antimycin (1 μM)23. Live-cell 
imaging of multiplexed dyes (Hoechst; tetramethylrhodamine, methyl 
ester, perchlorate (TMRM); LysoTracker; and SYTOX green) revealed the 
organelles of live viable hiPSC-derived neurons (nucleus, mitochondria 
and lysosomes) in the different disease subtypes. The fluorescent signal 
of the dyes in live cells is dependent on the physiological status of the 
organelles (Fig. 2b–e). Rotenone depolarizes mitochondrial membrane 
potential, resulting in loss of fluorescent intensity of TMRM (P = 0.0046; 
Fig. 2b,c). Chloroquine alters lysosomal activity and induces an increase 
in the fluorescence of the dye LysoTracker (P = 0.0020; Fig. 2d,e).

Live-cell images were acquired using an Opera Phenix 
High-Content Screening System (PerkinElmer; the representative 
images of each condition are shown in Extended Data Fig. 2) across 
a range of neuronal inductions (n = 8) and different plates (n = 11) 
to capture the inherent variation between cell lines, differentia-
tion of hiPSCs, and the variation in dye loading and cellular imaging  
(Fig. 2a and Supplementary Tables 2 and 3). All available features were 
extracted from the Columbus Image Data Storage and Analysis System 
(Extended Data Figs. 3a and 4a). We acquired the data in two formats: 
(1) tabular data, which consisted of 56 mitochondrial, lysosomal and 
nuclear features; and (2) 1,024 × 1,024 raw images, which we further 
segmented into smaller 8 × 8 tiles (the experimental process to build 
the models is shown in Fig. 2f).

A classifier trained on cellular profiles predicts disease
We built a classifier to predict five classes—four disease subtypes and 
one healthy state—using tabular data based on the nucleus, mito-
chondria and lysosome features extracted from the live high-content 
imaging platform (the experimental workflow is shown in Fig. 3a). 
We designed, trained and evaluated a dense neural network by split-
ting the entire dataset (n = 1,560,315 identified cells) into training 

are currently no approaches to define the molecular heterogeneity, 
and therefore no opportunity to understand the mechanisms that 
may drive the different phenotypic subtypes. An unmet challenge is 
to make an early and accurate molecular-level diagnosis of the condi-
tion, as this would enable the field to consider targeted interventions 
appropriate to an individual’s condition, and offer an opportunity to 
do this at the earliest possible time.

We applied a deep learning approach to human cellular models of 
PD to generate a predictive model of different mechanisms of disease. 
Parkinson’s disease is known to be caused by a complex interplay of 
genetic and environmental drivers. Two common and critical path-
ways that drive pathology include (1) the accumulation of insoluble 
aggregates of the protein α-Syn, implying that protein misfolding 
and impaired protein homeostasis cause a proteinopathy or synu-
cleinopathy2,6, and (2) the accumulation of abnormal mitochondria 
with impaired bioenergetic function and reduced mitochondrial 
clearance7 (see ref. 8 for a review). We used patient-derived, induced 
pluripotent stem cell (iPSC)-derived cortical neurons to model PD: 
these are a robust preclinical cell model for the disease, recapitulating 
the human genomic and proteomic environment of a differentiated 
cell type that is affected in the disease9–11. We defined four cellular 
subtypes that map to both of these two key pathways that lead to 
disease (Fig. 1a). Subtype 1: patients with mutations in the SNCA gene 
(gene ID: 6622) encoding α-Syn develop an autosomal dominant 
aggressive form of Parkinson’s with predominant protein aggrega-
tion, which is directly caused by the mutation in the SNCA gene; thus, 
iPSC-derived neurons from a patient with SNCA triplication (SNCA ×3)  
were used to model familial proteinopathy. Subtype 2: protein 
aggregates are known to spread from cell to cell in the brain in a 
prion-like manner, inducing proteotoxic stress; we exposed healthy 
iPSC-derived neurons to aggregates of α-Syn to recapitulate the 
environmental proteinopathy12,13. Subtype 3: exposure to pesticides 
with subsequent mitochondrial complex 1 impairment can induce PD, 
and patients with PD exhibit widespread impairment of complex 1- 
dependent respiration; we applied a complex 1 inhibitor, rotenone, 
to generate a model of toxin-induced mitochondrial dysfunction. 
Subtype 4: mutations in the PINK1 and PARKIN genes cause autoso-
mal recessive early-onset PD, and these mutations directly result in 
impaired clearance of damaged mitochondria (mitophagy), result-
ing in the accumulation of abnormal mitochondria in neurons8; we 
applied another mitochondrial damage stress that is a known inducer 
of mitophagy—oligomycin/antimycin—to generate another model 
of mitochondrial dysfunction. After establishing a series of classi-
fiers for disease subtypes that had been genetically and chemically 
induced, we then tested whether the same approach could be used 
in a real-world scenario, in which a patient’s genetic status (a carrier 
of an SNCA or PINK1 mutation) would influence their cellular disease 
subtype (proteinopathy versus mitochondrial).

We fluorescently labelled specific cellular compartments (the 
nucleus, mitochondria and lysosomes) while simultaneously perform-
ing high-content live single-cell imaging of iPSC-derived neurons. 
Using data from multiple plates (total 1,560,315 cells), we generated 
models to predict disease state and disease subtype. We generated 
two broad types of classifier. First, a prediction classifier based on 
automatically extracted features (56 features), providing deep pro-
filing of cellular phenotypes: this classifier has the advantage of high 
explainability using the ranking of features. Second, prediction clas-
sifiers based on images and convolutional neural network analyses, 
which use the power of computer vision to extract large amounts of 
unbiased information; this classifier has very high accuracy but less 
explainability.

Our work identifies specific features in neurons that are able 
to predict different cellular subtypes of the disease, and there-
fore provides valuable biological insights into the mechanisms  
of PD.
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Fig. 1 | Pathological cellular subtypes of PD and the generation of a human 
PD model using hiPSCs. a, Details on the cellular subtypes. Subtype 1: cells 
generated with SNCA ×3 mutation represent familial proteinopathy. Subtype 2:  
environmental proteinopathy was induced by exposing cells to exogenous 
protein aggregates. Subtype 3: toxin-induced mitochondrial dysfunction 
was achieved by exposing cells to rotenone, a complex 1 inhibitor. Subtype 4: 
mitophagy was induced using stimulation with oligomycin/antimycin.  
b, Schematic showing hiPSC-derived neuronal differentiation strategy. 
Fibroblasts from patients with PD or healthy donors are reprogrammed 
into hiPSCs and differentiated into cortical neurons using a protocol 

adapted from ref. 14. c–f, Characterization of iPSC-derived neurons using 
immunohistochemistry for the representative images of MAP2, a neuronal 
marker (c); TBR1 and CTIP2, deep cortical layers (d); SATB2, the upper cortical 
layer (e); and quantification (f; n = 4 number of wells per group). g, Calcium 
imaging measured with Fura-2 shows that the hiPSC-derived cortical neurons 
exhibit calcium signals in response to physiological concentrations (5 μM) of 
glutamate. h,i, hiPSC-derived neurons from PD patients with SNCA ×3 mutation 
display an increase in phosphorylated α-Syn (a pathological form of α-Syn)  
(n = 6 or 7 number of wells per group). Statistical details are found in 
Supplementary Table 4. The data in i are presented as data ± s.e.m.
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(40%), validation (30%) and test (30%) datasets. The confusion matrix  
demonstrates that, overall, the correct label was identified 82% of the 
time in the five-class model. However, although some of the classes 
had an accuracy close to the model’s overall accuracy (SNCA ×3 = 84%, 
oligomer = 82%, mitophagy = 81%), specific disease subtypes had very 
high accuracy, notably complex 1 dysfunction (complex 1 = 98%), 
whereas the control state had slightly lower accuracy (control = 69%; 
Fig. 3b and Extended Data Fig. 3b). The accuracy of the model with all 
five classes was cross-validated using stratified K-fold cross-validation 
(accuracy 81.35 ± 0.32%; Fig. 3c), where the dataset split was indepen-
dently randomized ten times. We next explored the feature importance 
of the model to understand the cellular features that drive accurate 
prediction using Shapley additive explanation (SHAP) values on the 
entire test set; SHAP is an estimated value of importance for each fea-
ture in the model24. The ranked features based on their SHAP values— 
coloured by their importance for each class—indicate that the major-
ity of the features that explain the model’s predictions originate from 
mitochondrial terms (TMRM-related features; Fig. 3d; details on the 
features are described in Extended Data Fig. 3a). This is highlighted for 
all disease subtypes where TMRM readouts are the highest SHAP-ranked 
features, followed by the nuclear and lysosomal features (Fig. 3d). We 
then explored the top ten SHAP features for each disease subtype indi-
vidually to ascertain which organelle is driving the prediction for each 
pathway, and to understand the relationship between the feature value 
and SHAP value (Fig. 3e–i). Importantly, this demonstrates that out 
of the top ten features for subtype 1 (SNCA ×3), five were lysosomal, 
three were mitochondrial and two were nuclear (Fig. 3e); for subtype 2 
(oligomer), seven were mitochondrial, two were nuclear and one was 
lysosomal (Fig. 3f); for subtype 3 (complex 1), seven were mitochondrial, 
two were lysosomal and one was nuclear (Fig. 3g); and for subtype 4 
(mitophagy), six were mitochondrial, two were nuclear and two were 
lysosomal (Fig. 3h). This shows that although mitochondrial features are 
clearly critical to the model’s prediction, nuclear and lysosomal features 
are still important, with each featuring in the top ten features for all 
disease subtypes. Finally, we selected the two most important features 
to the model’s overall prediction, two mitochondrial textural features 
(TMRM Signal Enhancement Ratio (SER) Valley and TMRM SER Dark), 
to assess whether there is a notable difference across the five classes. 
The scatter graphs demonstrate that there is a significant difference in 
these features across the five classes (Fig. 3j,k; P < 0.0001 between all 
groups), further demonstrating the importance of mitochondrial fea-
tures in differentiating between the disease states and healthy control.

Organelle contacts predict broad disease subtypes
Contact between mitochondria and lysosomes plays a critical role in 
organellar homeostasis, through damaged mitochondrial clearance 
(mitophagy) and lysosomal degradation of mitochondrial-derived vesi-
cles. The presence of organellar contacts between mitochondria and lys-
osomes can be visualized using super-resolution microscopy (Fig. 4a)25.  
We investigated whether contacts between mitochondria and lys-
osomes—which may reflect the index of mitophagy—would predict the 
mechanistic subtype. Of note, the use of a membrane potential dye such 
as TMRM will preferentially detect healthier polarized mitochondria 
(and not detect damaged depolarized mitochondria).

We trained a machine learning model using overlapping mito-
chondrial and lysosomal features (that is, mitochondria–lysosome 
contact areas) and tested whether the model can distinguish the two 
primary pathologies of aggregation and mitochondrial dysfunction. 
We combined the SNCA ×3 mutation and oligomer treatment into one 
single aggregation class; and combined the mitochondrial complex 1 
dysfunction and mitophagy into one single mitochondria class (aggre-
gation versus mitochondrial toxicity; the cell profile features and the 
average scaling factors are shown in Extended Data Figs. 4a and 4b, 
respectively). This model predicted the correct mitochondrial and 
aggregation labels at close to 100% and 99% accuracy, respectively, 
highlighting that the organellar interactions are highly informative 
at differentiating mitochondrial from aggregation toxicity in PD  
(Fig. 4b,c and Extended Data Fig. 4c). Stratified K-fold cross-validation 
exhibited an accuracy of 99.97 ± 0.46% across ten independent runs 
(Fig. 4d). This model displayed much lower performance at classi-
fying the four subtypes of the two main pathways (Extended Data 
Fig. 4d). SHAP analysis showed that the number of lysosomal spots 
and the lysosomal spot to region intensity within mitochondria drive 
the prediction between aggregation and mitochondrial toxicity  
(Fig. 4e,f). The top two features identified across plates show a signifi-
cant change between those two forms of PD (Fig. 4g,h). Thus, a model 
based on the interaction between two organelles may be a predictor of 
the broad disease type, distinguishing aggregation from mitochondrial 
pathologies in PD.

Convolutional neural network predicts four disease subtypes
We then created an image-based classifier based on five classes: four 
disease types and one control. The images were sliced into 8 × 8 tiled 
images, which contained 1–20 cells per image, allowing preserva-
tion of the information contained in neuronal projections and the 
cell–cell contacts immediately surrounding the neurons (see ref. 26 
for a review) (see Extended Data Fig. 5a for representative images). 
We trained a convolutional neural network to distinguish the five 
classes (Fig. 5a). The confusion matrix from this model shows a true 
positive rate of >90% for all five classes (average accuracy = 95%,  
SNCA ×3 = 89%, oligomer = 99%, complex 1 = 99%, mitophagy = 94%, 
control = 94%; Fig. 5b), highlighting a high accuracy to classify the dis-
ease states and control, especially when compared with the previous 
model trained on cell profiling tabular data (average accuracy = 82%). 
Stratified K-fold cross-validation showed 95.7% accuracy (Fig. 5c and 
Extended Data Fig. 5b).

We next employed SHAP DeepExplainer—a method that indi-
cates how much each pixel contributes to the probability positively or  
negatively—to understand which aspects of the image are used to gener-
ate predictions24. Mitochondria, along with the lysosomes, are the major 
contributors driving the accuracy of the prediction (Fig. 5d). Given the 
consistent result of the essential role of mitochondria in classifying 
the disease states, we explored whether images of organelles alone 
could accurately predict disease states. We trained using images of 
mitochondria or lysosomes alone or in combination. The true positive 
rates of the models created for the mitochondria alone, the lysosomes 
alone and the duet images are 89.2%, 82.1% and 95.0%, respectively  
(Fig. 6a,c,e and Extended Data Fig. 6a–c); these were cross-validated 

Fig. 2 | Workflow to develop a classifier to make a prediction of cellular 
subtypes in PD. a, Experimental details for live-cell imaging. b–e, High-
throughput imaging enables visualization of mitochondrial depolarization 
by complex 1 inhibitor, rotenone (5 μM; b,c, n = 8 number of wells per group) 
and lysosomal dysfunction by chloroquine (1 μM; d,e, n = 8 number of wells 
per group). The statistical details are found in Supplementary Table 4. Data in 
c and e are presented as data ± s.e.m. f, A schematic illustration to describe the 
experimental process of building the models. First, live-cell imaging with an 
Opera Phenix High-Content Screening System (PerkinElmer); cells are loaded 
with live-cell imaging dyes. Representative images for the three channels: 

Hoechst 33342 (nucleic labelling within 387/11 nm excitation and 417–447 nm 
emission); TMRM (mitochondrial labelling within 505 nm excitation and 
515 nm emission); and LysoTracker deep red (lysosomal labelling within 614 nm 
excitation and 647 nm emission). Second, a Columbus Image Data Storage and 
Analysis System (PerkinElmer) was used to extract 56 morphological features 
(Extended Data Figs. 1a and 2a) and whole images. Third, models are trained on 
tabular data extracted from cell profiling features or images uniformly gridded 
by 8 × 8 segmented cropped images and categorically labelled and fed into the 
neural network. Fourth, the learned model enables the prediction of the healthy 
group or the four disease subtypes.
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using stratified K-fold cross-validation (Fig. 6b,d,f ). The deep  
neural network using image data provides a much more robust way to  
differentiate subtypes of PD and identify which organelle is driving 
the pathology.

The effect of a mutation on disease subtype
We previously generated disease subtypes mainly on the basis of a 
genetic mutation or the effect of a chemical compound. Next, we gen-
erated a classifier to predict individuals with two different mutations: 
one that mapped to the protein aggregation pathway (SNCA ×3) and 
another that mapped to the mitochondrial pathway (PINK1 I368N). 
The PINK1 mutation has been associated with a range of mitochondrial 
phenotypes in cellular imaging, including impaired bioenergetics, 
impaired mitochondrial calcium and impaired mitochondrial clear-
ance18 (reviewed in ref. 27). First, we extracted the top five features 
(ranked by the SHAP values) for the previous SNCA ×3 model, and the 
top five features for the previous complex 1 inhibition model, and tested 
those features in a new SNCA ×3 line (the same donor, independently 
derived) (Extended Data Fig. 7a–e) and in a new PINK1 line (Extended 
Data Fig. 8a–e). The top five features in both disease subtypes exhibited 
significant differences in the tabular data.

There is no chemical subtype that can accurately mimic a genetic 
mutation, and so we generated a new image-based genetic classifier to 
distinguish between the control, SNCA ×3 mutant (proteinopathy) and 
PINK1 mutant (mitochondriopathy) pathways. Here we incorporated 
isogenic controls in addition to a healthy control to ensure that the 
sole effect of the mutation can be predicted, without the confounding 
effects of different biological/genomic backgrounds. Images were 
sliced into 8 × 8 tiled images, and we trained a convolutional neural 
network to distinguish between the three classes. The confusion matrix 
from this model shows a true positive rate of 81% across all three classes 
(SNCA ×3 = 79%, PINK1 = 81%, control = 80%; Fig. 6g), demonstrating 
reasonable accuracy to classify disease mutation and control. Strati-
fied K-fold cross-validation showed an 80.7% accuracy (Fig. 6h). This 
reduction in performance compared with the chemically induced 
subtype classifier may be in part due to use of a much smaller dataset 
(14,531 images), and the use of the PINK1 mutation line under basal 
conditions (rather than using chemicals to disrupt the mitochondrial 
pathway). SHAP DeepExplainer demonstrated that, in line with previ-
ous classifiers, both the mitochondria and lysosomes contribute to 
the prediction of the model (Fig. 6e).

Discussion
Genome-wide association studies have identified multiple genetic risk 
loci relating to protein homeostasis, protein trafficking, lysosomal func-
tion and mitochondrial function in sporadic disease, implicating these 
pathways in disease pathogenesis28–30. Here we used hiPSC-derived cor-
tical neurons—a vulnerable cell type in PD—that robustly recapitulate 
critical cellular phenotypes of PD to model and define four mechanistic 
subtypes of disease on the basis of the presence of a familial mutation, 
proteotoxic stress, mitochondrial stress and induced mitochondrial 
clearance. Using live high-content imaging, we tracked these disease 
mechanisms through three key organelles. Our approach is well placed 
as a preclinical platform to have high predictive value for disease as it is 

a human model of brain disease in a dish that captures live information 
on the two critical organelles implicated in PD. This convergence of 
benefits in our approach enabled us to then develop a highly accurate 
deep learning classifier that was able to distinguish the presence or 
absence of disease, and if diseased, the subtype of the disease (see the 
schematic illustration in Fig. 6f).

Using a range of intensity, morphological and textural features of 
the mitochondria, lysosomes and nuclei, processed and extracted by 
the live high-content imaging platform, we trained a model to identify 
the primary pathology in hiPSC-derived cortical neuronal cultures. 
We demonstrate that this quantitative feature-based approach is 
able to predict between control cells and the four disease pathways. 
Importantly, the use of tabular data in this study enables the ranking 
of organellar features on the basis of their contribution to the model’s 
prediction (using SHAP), providing unique and critical insight into 
the importance of mitochondrial and lysosomal biology in disease. 
This explainability demonstrates that mitochondrial features con-
tribute most prominently to the overall prediction of the classifier, 
and specifically the prediction of mitochondrial pathways (complex 
1 and induction of mitophagy), with lysosomal and nuclear features 
also important in the prediction of aggregation pathways (SNCA ×3 
and oligomer). Furthermore, when using a similar approach for the 
interaction between mitochondria and lysosomes, we demonstrate 
that tabular data based solely on the contacts between these organelles 
are sufficient to distinguish the two key categories (aggregation and 
mitochondrial toxicity pathways) with high accuracy. Taken together, 
these classifiers demonstrate that the information independently 
contained within the mitochondria and lysosomes and the informa-
tion contained within their interactions (for example, when lysosomes 
clear mitochondria) are both sufficient to predict—and are therefore 
likely to be biologically relevant in—the four mechanisms of disease 
described here.

Although models trained on tabular data are advantageous due 
to the level of explainability they provide, they may be susceptible to 
minor alterations in experimental conditions, such as the loading of 
imaging dyes and the pre-processing of image data. They may also 
be dependent on the software processing that converts the images 
into tabular data which are subject to another filtering level that  
carries uncertainty with it. As a result, they may lack generalizability. We 
therefore also generated convolutional neural network (CNN)-based 
image classifiers using the same large dataset for the tabular data-based 
model31,32. We show that deep CNN-based image classifiers can correctly 
classify images to accurately identify a disease state from a healthy con-
trol state, and this is more generalizable, and shows high performance 
achieving close to 80–100% accuracy for different disease states.

Our approach offers several advantages to traditional image 
analysis. Although traditional methods are capable of quantifying 
well-defined structural properties, and focus on automation and 
throughput, they do not capture all of the information contained 
within imaging data. Using traditional image processing software, 
researchers must typically first choose which feature (or features) 
to combine to quantify from a vast array of possible cellular pheno-
types; this is challenging, time-consuming and may be subject to bias. 
Machine learning can decipher cellular features at high accuracies in an 

Fig. 3 | A classifier trained on cell profiles of key organelles predicts disease 
states with 82% accuracy. a, An illustration of workflow for machine learning 
with tabular data. b,c, Classification performance by a confusion matrix (b) 
and the stratified K-fold cross-validation (c) on an unseen test set, trained on 
cell profile tabular data (n = 10 folds fit and evaluated; data are presented as 
mean values ± s.d.). d, Feature ranking based on their SHAP values coloured by 
their importance for each class. e–i, A SHAP summary plot for the top ten most 
important features based on their SHAP values for each of the classes: SNCA ×3 
(e), oligomer (f), complex 1 (g), mitophagy (h) and control (i). Dots are coloured 
according to the values of features for each cell; red and blue represent high 

and low feature values, respectively. A positive SHAP indicates an increased 
probability of predicting each state (positive impact on the output) and vice 
versa. j,k, Random selection of ten wells to test top two features shows an effect 
of cellular subtype across five groups (one-way ANOVA P < 0.0005, n = 10 number 
of wells per group). The statistical details are found in Supplementary Table 4. 
Data are presented as data and mean. Control, healthy group; SNCA ×3, SNCA 
mutation; oligomer, treatment with α-Syn oligomer; complex 1, treatment with 
mitochondrial complex 1 inhibition; mitophagy, co-treatment with antimycin 
and oligomycin to induce mitophagy.
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unbiased manner and achieve greater accuracy than using traditional 
throughput readouts. Convolutional neural networks have been used 
successfully via a similar approach to accurately discriminate the pro-
gress of neurodegeneration33,34.

The high accuracy was achieved through a series of conditions: 
cell density was relatively high (and necessary) to provide enough 

information for the training and validation sets, and we also made use 
of image pre-processing to increase the number of images available to 
the CNNs. We also trained CNNs with multiple hidden layers to improve 
the accuracy. Despite the underlying complexity of the deep learning 
algorithms used, the methods and tools used to classify the images 
were relatively simple35. Only minimal image processing was needed, 
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Fig. 4 | Interaction between cellular organelle networks classifies 
aggregation and mitochondrial toxicity phenotypes. a, Images of 
mitochondrial and lysosomal co-localization were obtained using super-
resolution direct stochastic optical reconstruction microscopy to visualize the 
contact between the mitochondria and lysosome—organelles both affected 
in PD43. Mitochondria and lysosomes are labelled with TOM20 and LAMP1, 
respectively (n = 2–3 fields of view, across two independent iPSC lines).  
b–d, Receiver operating characteristic–area under the ROC curve of 
classification performance (b); the confusion matrix (c); and stratified K-fold 
cross-validation of the model to identify aggregation versus the mitochondrial 
toxicity group (d) on an unseen test set, trained on the selected cell profile 
tabular data (mitochondria and lysosome contact; n = 10 folds fit and evaluated). 
Data are presented as mean values ± s.d. The selected tabular data from 

mitochondria and lysosome co-localization predict the two disease states of 
mitochondrial toxicity and aggregation with high accuracy (>99%). e, Feature 
ranking that drives the prediction of aggregation on the basis of their SHAP 
values, coloured by their importance for each class. f, A SHAP summary plot of 
top ten features to classify the groups into mitochondrial toxicity (the SHAP 
values of the aggregation group have the opposite colours to the mitochondrial 
group shown here and are therefore not presented). g,h, Random selection of 
eight wells to compare the top two lysosomal features that contact mitochondria 
showing that there is a statistical significance between mitochondrial toxicity 
and aggregation groups. The statistical details are presented in Supplementary 
Table 4. Data are presented as data and the mean. Aggregation, combining 
subtypes of SNCA ×3 and oligomer; mitochondrial toxicity, combining subtypes 
of complex 1 and mitophagy.
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Fig. 5 | A classifier trained by images using deep neural network accurately 
discriminates PD pathology. a, Illustration of workflow for deep learning with 
images. b,c, Deep learning classification performance on an unseen test set 
trained on 8 × 8 tiled images by the confusion matrix (b) and the stratified K-fold 
cross-validation (c) (n = 10 folds fit and evaluated). Data are presented as mean 

values ± s.d. A sample is assigned to five classes with the maximum prediction 
accuracy (95%). d, A SHAP DeepExplainer plot summary. Rows show images from 
the test set—one from each class—and the columns represent each class. The 
SHAP value for each score is shown below. Orange and blue arrows indicate either 
LysoTracker (lysosome) or TMRM (mitochondria) positive areas, respectively.
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Fig. 6 | Deep neural network using mitochondria images alone retains high 
prediction accuracy. a–f, Deep learning classification performance: confusion 
matrices and stratified K-fold cross-validation for mitochondria alone (n = 10 
folds fit and evaluated; data are presented as mean values ± s.d.) (a,b), lysosomes 
alone (c,d), and both together (e,f). g–i, The confusion matrix (g) and the 
stratified K-fold cross-validation (h) of the three-class genetic classifier (SNCA ×3,  
PINK1 and CTRL) on an unseen test set (n = 10 folds fit and evaluated; data are 
presented as mean values ± s.d.). A test sample is assigned to three classes with an 
overall prediction accuracy of 80.7%, and a SHAP DeepExplainer plot summary 

is shown (i). Rows of the SHAP DeepExplainer plot summary show images from 
the test set, one from each class, and the columns represent each class. The SHAP 
value for each score is shown below. j, A schematic illustration demonstrates how 
machine learning-based classifiers can be applied to improve the approach to 
PD therapeutics. f(1). Our classifier can classify individuals into PD and healthy 
groups. The PD-diagnosed individuals can be further classified based on their 
mechanistic subtype. f(2). Mechanism-specific targeting drugs could be matched 
with PD patients based on their own disease subtypes.
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with each image being divided into 64 individual tiles. Moreover, the 
use availability and access to a GPU allowed the processing of large 
amounts of data in a relatively short time (somewhat necessary given 
the number of images to be processed).

In this study, our approach of creating multiple classifiers based 
on extracted tabular features and image tiles enables us to gain explain-
ability from the tabular data and translate this to the image classifier 
by training models on mitochondria and lysosomes individually and in 
combination. We demonstrate that the loss of nuclear signal (leaving 
both the mitochondria and lysosomes) in a CNN image-based model 
does not lower the accuracy of the model. We further demonstrate 
that a CNN trained on mitochondria alone achieves higher accuracy 
than the model based on only lysosomes, which is consistent with the 
feature importance generated from the tabular models.

Our classifiers show high accuracy for chemically induced  
subtypes of disease, providing proof of concept that our experimen-
tal paradigm (namely, integrating patient-derived stem cell neurons 
with multiplexed organellar imaging data with machine learning 
approaches) can generate useful predictions about mechanistic sub-
types of disease. In the context of the real world, however, patients have 
different genomic backgrounds with different polygenic risk scores 
and/or carry rare mutations that may underlie one disease subtype 
over another. We therefore also generated a classifier based solely on 
mutations that map to disease subtypes.

In summary, the approach outlined here demonstrates the power 
of using deep learning in predicting the underlying mechanisms of 
PD. Importantly, as PD is highly heterogeneous, this platform may 
enable the disease mechanism in patient cells to be classified. This 
may have significant clinical implications in both diagnosis and treat-
ment, as the identification of cellular mechanisms may indicate their 
likely response to proteinopathy (for example, targeting α-Syn) versus 
mitochondrial (for example, antioxidant therapy) treatments, as illus-
trated in Fig. 6d. In the future, such a platform may be used to assess 
which pathway predominates in an individual, and whether specific 
medications are capable of reversing robust cellular phenotypes, in 
an unbiased approach36.

Methods
Generation of human iPSC
We generated neurons derived from hiPSCs that are reprogrammed 
from two healthy donors (one generated in house, and one commer-
cial line; Thermo Fisher Scientific) or PD patients carrying mutations 
(SNCA ×3) who had given signed informed consent for the derivation of 
hiPSC lines from skin biopsy as part of the European Union IMI-funded 
program Stem-BANCC37,38. The isogenic control line of SNCA ×3 was 
kindly provided from the Kunath laboratory, and was generated using 
CRISPR/Cas9 editing37. PINK1 and the isogenic control lines were pur-
chased from the NINDS Human Genetics Resource Center. The experi-
mental protocol to generate the SNCA ×3 line had approval from the 
London—Hampstead Research Ethics Committee and R&D approval 
from University College London, Great Ormond Street Institute of Child 
Health and the Great Ormond Street Hospital Joint Research Office. 
The hiPSCs were cultured on Geltrex (Thermo Fisher Scientific) in E8 
media (Thermo Fisher Scientific) or mTeSR (Stem Cell Technologies), 
and passed using 0.5 mM ethylenediaminetetraacetic acid (Thermo 
Fisher Scientific). All lines were mycoplasma tested (all negative) and 
short tandem repeat profiled (all matched) performed by the Francis 
Crick Institute. Neuronal differentiation was performed through dual 
SMAD inhibition using SB431542 (10 μM, Tocris) and dorsomorphin 
dihydrochloride (1 μM, Tocris).

Generation of high-content imaging data and image 
processing
To generate data live-cell imaging was performed using high-throughput 
imaging, at day 50 of neural induction, 20,000–40,000 cortical neurons 

were plated onto a 96-well plate and maintained until use (>day 60). 
Cells were washed with Hank’s balanced salt solution before load-
ing 10 μM Hoechst (62249, ThermoFisher Scientific), 25 nM TMRM  
(T668, Thermo Fisher Scientific) and 250 nM LysoTracker Deep Red 
(L23492, Thermo Fisher Scientific); 500 nM SYTOX green (S7020, 
Thermo Fisher Scientific) was also added to determine live cells for 
tabular data profiling. Live-cell images were acquired using an Opera 
Phenix High-Content Screening System (PerkinElmer). TMRM and 
LysoTracker labelling were imaged by 516 and 647 nm lasers. SYTOX 
green labelling was imaged by 488 and 405 nm laser for Hoechst-stained 
nuclei (17–22 fields of images were taken per well). Live-cell imaging 
was performed in Hank’s balanced salt solution. Data were collected by 
Columbus Studio Cell Analysis Software (Columbus 2.9.1, https://biii.eu/ 
columbus-image-datastorage-and-analysis-system).

We collected sets of z-stack images from various focal planes in the 
z-axis while the stage was fixed to the x- and y-axes. To reduce undesir-
able effects of out-of-focus features, the training samples consist of 
two-dimensional information from maximum intensity projections of 
the z-stack images with fluorescence labels that are pixel registered. 
The cell profiles based on tabular data and the image dataset were sepa-
rately collected using the Columbus image storage and analysis system.

All obtained images were transferred to Columbus Image Data 
Storage and Analysis System (PerkinElmer)—a web interface that pro-
vides pipelines to handle high-content screening data. The phenotypic 
characteristics of each cell are measured, and we selected all available 
features from the Columbus Image Data Storage and Analysis System. 
We included the main features for shapes, intensity, texture and micro-
environment (for example, relationships between neighbouring cells). 
Cell features for profiling were extracted by combining modules (for 
example, ‘find nuclei’, ‘find cytoplasm’, ‘find spots’ for object detec-
tion). The defined objects then have a hierarchical structure to detect 
object features (for example, textures, SER). SER textural features meas-
ure patterns in pixel intensity of the ROI (region of interest) (nucleus, 
mitochondria, lysosome), providing information of fragmentation, 
networks, and ridges. Together, they provide insights into the struc-
tural and pathology of organelles. All lists of the features extracted 
were described in Extended Data Fig. 3a and the pipelines used are 
described in Supplementary Table 5. To control cell level quality, we 
used SYTOX green to define a ‘live cell’, which allows the three organelle 
features in the same single cell unit by setting a fluorescent threshold; 
cells showing higher than 500 fluorescent arbitrary units (a.u.) were 
considered a live cell. The extracted data were exported as csv tables. 
We acquired the data in two formats: (1) tabular data, which consisted 
of 56 mitochondrial, lysosomal and nuclear features extracted from 
the Columbus Image Data Storage and Analysis System (PerkinElmer); 
and (2) 1,024 × 1,024 raw images, which we further segmented into 
smaller 8 × 8 tiles.

Organelle features extracted included cell area, expression 
intensity, the number of spots, roundness, length and width. We 
also included SER textural features that measure local patterns of 
pixel intensity providing the structural information of the organelles  
(see refs. 39,40 for reviews).

Training the classifiers
Tabular data were extracted from multiple plates consisting of four 
disease groups and a control group using the Columbus Data Analysis 
and Storage System. For data exploration and feature engineering, 
five data points, where half the features were missing, were excluded. 
Of the remaining 177,328 data points, 47 were missing two features, 
and 1,263 were missing one feature. These missing values were  
calculated using iterative imputation. This was followed by splitting 
the dataset into training (n = 113,489), validation (n = 28,373) and test 
(n = 35,466) datasets. The features (lists are provided in Extended Data 
3a) were scaled per control in each plate separately using the Power 
Transformer scaler. The scaling factor, lambda, was examined in the 
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training dataset, and features with high variance (lambda > 100) were 
excluded (all features showed lower variances and were therefore 
all included). We designed and trained a dense neural network with 
Python using Tensorflow (model structure: three dense layers using 
ReLU activation, each followed by a dropout layer with dropout rate of 
0.2 and a final dense layer with softmax activation). We used adaptive 
moment estimation as the optimizer, monitoring the validation loss 
to save the best model and plotting the training and validation losses 
and accuracy. We used SHAP values to explore the feature importance 
of our five-class model with a view of gaining insight into the cellular 
features that drive accurate prediction.

The accuracy of the model was cross-validated using stratified 
K-fold cross-validation, where the split of the dataset was randomized 
ten times independently to validate the accuracy of the model. Briefly, 
data were split into ten stratified folds preserving the percentage of 
samples of each class across the folds. The model was run ten times, 
with each fold being used as a test set, and all other folds being used 
as the training set. Each training set returned by stratified K-fold 
cross-validation was split further into training and validation datasets 
using the stratify parameter. The training, validation and test dataset 
went through the steps of feature scaling followed by creating and 
training the model as described in the single runs. The validation loss 
was monitored, and the best model was saved and evaluated on the test 
dataset. We then average the performance of the ten test datasets and 
report the mean and standard deviation.

The data to highlight the interactions between mitochondria and 
lysosomes, was generated with single-molecule localization micros-
copy (resolution of 20 nm) to visualize the contacts. The tabular data 
(lists in Extended Data Fig. 4a) generated from five plates (number of 
cells: controls = 845,143, mitophagy = 644,457, SNCA ×3 = 101,158, α-Syn 
oligomer = 33,671, complex 1 = 15,751) were processed for data explo-
ration and feature engineering. We then split the data into training 
(n = 1,049,715), validation (n = 328,036) and test (n = 262,429) datasets. 
The features were scaled per control in each plate separately using the 
Power Transformer scaler. The scaling factor, lambda, was examined 
in the training dataset and one feature (lysosome texture SER Hole 0 
px) with high variance across plates (lambda > 50) was excluded from 
the training, validation and test datasets. The controls were excluded 
from the datasets after feature scaling resulting in n = 508,415 in the 
training, 159,234 in the validation and 127,388 in the test datasets. We 
designed and trained a dense neural network using Tensorflow, with 
the same model structure described for the tabular data above and 
illustrated in Fig. 3a. We trained with a batch size of 256 and stopped 
if the validation loss did not improve for 50 consecutive epochs, or if 
the number of epochs exceeded 500. The same model structure was 
used to build the classifier to predict the five classes.

For image models, each of the 1,024 × 1,024 pixels high-throughput 
images, which consisted of 100–400 neuronal cells (each neuron con-
sists of approximately 900–22,500 pixels), was sliced into an 8 × 8 tiled 
image: SNCA ×3 (n = 7,983), oligomer (n = 8,307), complex 1 (n = 11,875), 
mitophagy (n = 13,692) and one control group (n = 22,461) that con-
tained 1–20 cells per sliced image. After cropping, dark images, due 
to the low numbers of cells contained, were removed by applying a 
cut-off of 0.1 on the mean intensity threshold and a variance threshold 
of 0.0275. The image tiles were shuffled and resized to 84 × 84 and split 
into training (n = 51,454) and test (n = 12,864) datasets. The training 
data were then further split into training (n = 41,163) and validation 
(n = 10,291) datasets, and shuffled before batching. The neural network 
was implemented using Tensorflow (see Fig.  5a for the architecture).

Super-resolution microscopy
To perform single-molecule localization microscopy, neurons were 
first immunolabelled with mitochondrial and lysosomal antibodies. 
Neurons were first preserved with 4% paraformaldehyde (PFA) and 
0.1% glutaraldehyde for 15 min at room temperature. The neurons 

were then reduced in 0.1% sodium borohydride in phosphate-buffered 
saline (PBS) for 7 min, followed by two washes with PBS. They were 
then permeabilized with 0.5% triton X-100 in PBS for 10 min at room 
temperature, followed by 1 h of incubation in a blocking solution (3% 
bovine serum albumin in PBS). After blocking, the neurons were incu-
bated with primary antibodies (TOM20 1:100; Santa-Cruz, sc-17764 and 
LAMP1 1:100 Cell Signaling Technologies, 9091) made up in blocking 
solution overnight at 4 °C. After primary antibody incubation, the neu-
rons were washed three times with PBS and incubated with secondary 
antibodies (Abcam, mouse AF647, Biotium, rabbit CF568; both 1:100 
dilution) made up in blocking solution for 1 h at room temperature. The 
neurons were again washed three times with PBS before post-fixation 
with 4% PFA for 5 min at room temperature. The samples were then 
washed twice with PBS before imaging.

The Nanoimager from Oxford Nanoimaging (ONI) was used to 
perform single molecule localization microscopy. The microscope is 
equipped with an Olympus 1.4 NA 100× oil immersion super apochro-
matic objective. Before imaging, colour channel mapping was per-
formed to calibrate the laser channels using 0.1 μm Tetraspeck beads  
(Thermo Fisher Scientific). The stage was warmed to approximately 
25 °C and the illumination angle of the laser was set at 51°. Direct sto-
chastic optical reconstruction microscopy was performed with a 
photo-switching buffer (B cubed, ONI) to stochastically keep fluoro-
phores in ‘on’ and ‘off’ cycles. An imaging set up of 10,000 frames at 30 ms  
interval per laser channel with 100% power for the 640 nm and 
561 nm lasers was used to super-resolve TOM20 and LAMP1. 
After imaging, the data was uploaded onto the online visualiza-
tion and analysis software CODI (ONI, https://pages.oni.bio/
codiadvanced-ev-characterisation-made-simple) to produce 
super-resolved localizations of TOM20 and LAMP1.

Aggregation of α-Syn
α-Syn monomer was ultracentrifuged (Beckman OptimaMax) at 
90,000 g for 60 mins at 4 °C to remove pre-formed aggregates. The 
protein concentration of the supernatant was determined from the 
absorbance at 275 nm using an extinction coefficient of 5,600 M−1 cm−1. 
The protein was diluted in PBS to a total protein concentration of 
70 μM. The aggregation mixture was kept in DNA LoBind microcen-
trifuge tubes (Eppendorf) and left shaking (200 r.p.m) at 37 °C in an 
incubator (StuartScientfic) for the duration of the experiment. Aliquots 
were taken at a series of timepoints over the incubation period and were 
immediately snap-frozen in liquid nitrogen. Timepoints were stored 
at –80 °C until required for analysis.

SAVE imaging
For SAVE imaging, 22 × 40 mm 0.1 mm thickness coverslips (VWR, 
6310135) were plasma cleaned (Diener Zepto plasma cleaner) with an 
argon ion plasma for 1 h to remove fluorescent organic material. The 
slides were then affixed with 9 × 9 mm well gaskets (Biorad, SLF0201) 
and 50 μl poly-L-lysine (Sigma-Aldrich, 25988-63-0) was added, incu-
bated for 30 minutes, and subsequently washed three times with 
0.02 μm-filtered buffer; 70 μM aliquots were recovered from −80 °C 
and thawed on ice before being diluted to a concentration of 2 μM into 
5 μM thioflavin T in 0.02-μm-filtered 25 mM Tris (pH 7.4) with 100 mM 
NaCl. Imaging was performed on a custom-built total internal reflec-
tion fluorescence microscope described elsewhere1. Images were 
recorded at 50 frames s−1 for 100 frames with 405 nm illumination 
(150–200 W cm–2).

Analysis of SAVE images
Data analysis was performed using a custom-written script in Python 
v.3.8 (code available at: https://doi.org/10.5281/zenodo.7276333). 
For each image, the stacks were first averaged over 100 frames, and 
the background was subtracted. Fluorescent species were detected 
by applying a threshold of five standard deviations above the mean 

http://www.nature.com/natmachintell
https://pages.oni.bio/codiadvanced-ev-characterisation-made-simple
https://pages.oni.bio/codiadvanced-ev-characterisation-made-simple
https://doi.org/10.5281/zenodo.7276333


Nature Machine Intelligence | Volume 5 | August 2023 | 933–946 945

Article https://doi.org/10.1038/s42256-023-00702-9

image intensity, and were subsequently analysed using the measuring 
module (skimage v.0.18.1).

Immunohistochemistry
Cells were fixed in 4% paraformaldehyde and permeabilized with 0.2% 
Triton-100; 5% bovine serum albumin was used to block nonspecific 
binding. Cells were incubated with primary antibodies for 1 h at room 
temperature and washed three times with 5% bovine serum albumin. 
Cells were incubated with secondary antibody for 1 h at room tempera-
ture. Cells were imaged with PBS after three wash times. Hoechst 33342 
(Thermo Fisher Scientific) was added in the second wash if required. 
Cells were mounted with an antifading medium and left to dry over-
night. Images are obtained using confocal microscopy Zeiss LSM 710 
(or 880 with an integrated META detection system). The antibodies 
used are listed in Supplementary Table 6.

Statistical analysis
Statistical analysis was performed using Origin 2021 (Microcal Soft-
ware, https://www.originlab.com) software and Prism 8 (https://
www.graphpad.com/features). When the decision was made not to 
reject normality at 5% level, statistical tests were performed using an 
unpaired, two tailed t-test (to compare two individuals) or one-way 
ANOVA (to compare more than two individuals) corrected with post 
hoc Tukey. Shapiro–Wilk and Kolmogorov–Smirnov normality tests 
were used to assess the normality of data. Sample sizes for statisti-
cal analysis were selected to capture technical variation including 
numbers of cell/field of view. Experimental data are represented as 
mean ± s.e.m. and P-value is set at 0.05; n = number of wells, if not stated  
otherwise.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Image processing pipelines, all tabular data, whole images (before 
tiling) and a dataset for the demonstration are publicly available as 
deposited in Zenodo (https://doi.org/10.5281/zenodo.741942)41.  
Source Data are provided with this paper.

Code availability
The codes generated for the models and the demonstration are avail-
able in GitHub via the Zenodo repository (https://doi.org/10.5281/
zenodo.8116411)42.
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Extended Data Fig. 1 | Characterization of α-Syn oligomers using SAVE imaging. (a) Representative SAVE images of early oligomers (4 h), late oligomers (8 h), and 
fibrils (24 h). The length and intensity of each detected aggregate were determined, and are presented in histograms of lengths (b) and intensities (c). 25 SAVE images 
were taken for each time point.
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Extended Data Fig. 2 | Representative images of the plates used. Representative images show similar image quality across the plates.
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Extended Data Fig. 3 | Supportive data for Fig. 3. a. The features regarding 
three key organelles, nucleus (Hoechst3337), mitochondria (TMRM) and 
lysosome (Lyso) used to train tabular data. Morphologically defined features are 
included such as cell area, expression intensity, the number of spots, roundness, 
length and width. SER texture features are also included defined as Spot, Hole, 

Edge, Ridge, Valley, Saddle, Bright and Dark which measure local patterns of pixel 
intensity providing the structural information of the organelle loading (reviewed 
here (Di Cataldo and Ficarra, 39) (Cretin et al., 40). b. The Loss and Accuracy curve 
(training and validation).
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Extended Data Fig. 4 | a. Cell profiling features for the lysosomal features 
that contact mitochondria. b. The plot shows the average scaling factor, with 
standard deviation, for control distribution across plates (n = 541,300 cells) for 
the lysosomal features that contact mitochondria in the training dataset. Data are 
presented as mean values ± SD. The features were scaled per control in each plate 
using the Power Transformer scaler. Those with a high variance in the scaling 

factor, lambda, (>50) in the training dataset, such as ‘Lysosome texture SER Hole’ 
feature were excluded from the training, validation and test dataset. c. ROC-AUG 
(ci) and the Loss and Accuracy curve (training and validation. d. Confusion 
matrix of 5-class model training on the selected data from the mitochondrial and 
lysosomal co-localization.
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Extended Data Fig. 5 | Supportive data for the main Fig. 5. a. Examples of 8x8 
tiled images with merge of Hoechst, TMRM and Lysotracker images from the test 
set that are predicted above 99.99% accuracy from each class. SNCA x3 (n = 7983), 

Oligomer (n = 8307), Complex 1 (n = 11875), Mitophagy (n = 13692), and one 
control group (n = 22,461) that contained 1–20 cells per sliced image. b. The Loss 
and Accuracy curve (training and validation).
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Extended Data Fig. 6 | Supportive data for the main Fig. 6. a–c. The loss and accuracy curve (training and validation) of the tile-based images of mitochondria alone 
(a), lysosome alone (b) and both together (c).
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Extended Data Fig. 7 | Five top features of newly added line of SNCA. a–e, Bar 
graphs showing the top 5 organellar disease features (Nucleus HOECHSST SER 
Dark, a; Number of Spots Lyso, b; Lyso texture SER edge, e; TMRM texture SER 
Valley, d; Total Spot area Lyso, e) for subtype 1 (SNCA x3) (mainly lysosomal) 

using a different SNCA x3 hiPSC clone and controls. The data points are colour-
coded to show independent plates, across control and SNCA x3 neurons (n = 40 
wells per genotype across 2 independent plates. The statistical details are found 
in Supplementary Table 4. Data are presented as data and the mean.
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Extended Data Fig. 8 | Five top features of newly added line of PINK1.  
a–e, Bar graphs showing the top 5 organellar disease features (TMRM texture 
SER Ridge, a; TMRM texture SER Valley, b; TMRM texture SER Dark, c; TMRM 
texture SER Bright, d; Lyso texture in cytoplasm SER Dark, e) for subtype 3 
(Complex 1) (mainly mitochondrial) using a hiPSC line from a patient with a PINK1 

mutation (ILE368ASN). The data points are color-coded to show independent 
plates, across control and PINK1 PD neurons (n = 90 wells per genotype across 3 
independent plates. The statistical details are found in Supplementary Table 4. 
Data are presented as data and the mean.
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