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Identifying important sensory feedback for 
learning locomotion skills
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Eleftherios Triantafyllidis    1, Guillaume Bellegarda    3, Milad Shafiee3, 
Auke Jan Ijspeert    3 & Zhibin Li    4 

Robot motor skills can be acquired by deep reinforcement learning as 
neural networks to reflect state–action mapping. The selection of states 
has been demonstrated to be crucial for successful robot motor learning. 
However, because of the complexity of neural networks, human insights and 
engineering efforts are often required to select appropriate states through 
qualitative approaches, such as ablation studies, without a quantitative 
analysis of the state importance. Here we present a systematic saliency 
analysis that quantitatively evaluates the relative importance of different 
feedback states for motor skills learned through deep reinforcement 
learning. Our approach provides a guideline to identify the most essential 
feedback states for robot motor learning. By using only the important 
states including joint positions, gravity vector and base linear and angular 
velocities, we demonstrate that a simulated quadruped robot can learn 
various robust locomotion skills. We find that locomotion skills learned 
only with important states can achieve task performance comparable to 
the performance of those with more states. This work provides quantitative 
insights into the impacts of state observations on specific types of motor 
skills, enabling the learning of a wide range of motor skills with minimal 
sensing dependencies.

The notion of learning machines predates the origins of cybernetics, 
control theories and apparatus in the 1940s1, with a long-standing inter-
est in creating functioning replicas of living organisms. Robots with 
morphologies similar to their biological counterparts provide unique 
opportunities to develop machines with motion capabilities compa-
rable to those of animals. As easy-to-control platforms, robots allow 
scientists to study sensorimotor learning, providing opportunities to 
conduct control experiments and generate quantitative data analysis2–5.

In robot learning, a large part of physical motor skills can be for-
mulated as feedback control policies, that is, control policies repre-
sented as the state–action mapping that can be learned in the form 
of neural networks. The selection of feedback states becomes critical 
for the effective learning of robot skills. If key feedback is missing, the 

robot would not be able to achieve the desired performance. Physics 
simulation allows access to as many ideal feedback states as possible, 
potentially leading to better results6. However, certain states are not 
directly measurable in real robots as in the simulation and, therefore, 
require state estimation that is subject to uncertainties or errors7,8, 
making the performance susceptible to uncertainties. Hence, it is 
desirable to reduce sensing dependencies at the stage of policy train-
ing, where only the most task-relevant feedback states are used for 
learning state–action mapping.

Deep reinforcement learning (DRL) has been successful in achiev-
ing various locomotion skills, such as trotting9–12, pacing, spinning11, 
walking13, galloping14, balance recovery9 and multi-skill locomotion12. 
Deep neural networks show success in acquiring complex motor skills. 
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our research aims to answer the following open questions in the context 
of robot learning: What is the relative importance of different sensory 
feedback signals for a given motor task and various quadrupedal gaits? 
Which sensory feedback signals are essential, necessary and sufficient 
for learning quadrupedal locomotion? Which redundant feedback is 
beneficial to have but not entirely necessary?

Contribution
We present a systematic approach to quantify the relative importance 
of different sensory feedback in learning quadruped locomotion skills. 
Through distinct quadrupedal tasks, that is, balance recovery, trot-
ting and bounding, feedback control policies are learned by neural 
networks as differentiable state–action mapping. We formulate a sys-
tematic saliency-analysis method to rank the level of importance of 
sensory feedback and identified a common set of essential feedback 
states for general quadruped locomotion. Further, we demonstrate 
the effectiveness of learning new motor skills, such as pacing and 
galloping, using only the most essential key states identified by our 
proposed approach.

In summary, our main contributions are the (1) development of a 
systematic saliency-analysis method to specifically quantify and rank 
the importance of each sensory feedback for a specific motor task, (2) 
identification of a common set of essential feedback states for general 
quadruped locomotion based on the saliency analysis of representative 
locomotion skills and (3) successful robot learning of new motor skills 
using only essential feedback states, demonstrating the efficacy of a 
minimal set of sensors.

Our study contributes to identifying the most essential feedback, 
that is, key states, in a task-specific manner, enabling robust motor 
learning using only the key states. The results provide new insights 
into the quantitative relative importance of different feedback states 
in locomotion behaviours. The identification of essential sensory feed-
back guides the selection of a minimum and necessary set of sensors, 
allowing robots to learn and perform robust motor skills with minimal 
sensing dependencies.

Results
Here we investigate the quantitative relative importance of common 
feedback states for three representative and distinct locomotion skills 
(balance recovery, trotting and bounding) and identify a set of key 
feedback states that are consistently more important than others: joint 
positions, gravity vector (that is, body orientation) and base linear and 
angular velocities. Our results show that learning locomotion skills 
with only the key feedback states achieves performance comparable 
to that when using all available states. Furthermore, we demonstrate 
the effectiveness of these key feedback states when used in learning 
new locomotion skills, such as pacing and galloping. More results can 
be found in Supplementary Videos 1–4.

Identifying key feedback states for quadruped locomotion
Quantifying the relative importance of feedback states. We for-
mulate a systematic saliency analysis for quantifying the relative 
importance of various feedback states for a desired motor skill. We 
first determine a collection of nine feedback states commonly used in 
quadruped locomotion10,12: base position, gravity vector, base angular 
velocity, base linear velocity, joint position or angle, joint velocity, 
joint torque, foot position and foot contact (contact status or forces; 
see Methods for definitions). Using this full set of states, we obtain the 
neural-network policies for locomotion skills on the A1 quadruped 
robot33 in PyBullet simulation via the DRL framework detailed in Fig. 2c 
and Supplementary Note 1. At each time step, we compute the saliency 
values of each dimension of the feedback states with respect to the 
associated actions using the integrated-gradients method34 (Methods). 
The saliency value measures the influence of the input signal on gener-
ated actions. For each feedback dimension, it quantifies the number 

However, because of lack of interpretability15,16, it is unclear how to 
determine the relative importance of different feedback states or which 
state observations are most effective. Therefore, a lot of human insights 
and engineering efforts are required to empirically select appropriate 
feedback states in robot learning6,10,17–20.

Existing studies have used different combinations of feedback sig-
nals for learning quadruped locomotion. For example, joint positions, 
joint velocities, angular velocities and body orientation were used to 
learn gait transitions21. Additionally, history of body orientation, joint 
positions and previous actions were used to adjust locomotion policies 
in a quadruped robot22. High-speed locomotion on natural terrains was 
achieved by using joint positions and velocities, body orientation and 
previous actions23. However, currently the selection of these feedback 
states is empirical and lacks a systematic approach to determine the 
importance of various states for diverse motor tasks.

Biological insights and motivation
Biological studies find that animals use multimodal sensory infor-
mation collected from various sensory organs to achieve different 
locomotion tasks, including visual, mechanical, chemical and ther-
mal sensation, all in unison to render feedback from their own move-
ments and the surroundings24–27. All this sensory information inherits 
redundancy that ensures robustness for movement control in animal 
locomotion28. To study the importance of different sensing informa-
tion from various sensory organs, lesion studies or ablation studies 
have been used29,30. However, conducting such experiments on live 
animals is challenging because of ethical limitations and the difficulty of 
selectively stimulating and/or removing different receptors31. Figure 1 
illustrates the similar functionality of sensory feedback in quadrupedal 
animals and robots. Using robots with morphologies resembling their 
biological counterparts offers the opportunity to investigate motion 
intelligence in artificial systems, and facilitates controlled and quantita-
tive analysis of sensorimotor skills learned through machine learning, 
providing meaningful insights and implications for further studies in 
biology and neuroscience.

Related work
Ablation experiments, which focus on the impact of removing a sin-
gle feedback state on performance, are commonly adopted to study 
the qualitative importance of individual feedback states. Experi-
ments on a lamprey-like robot demonstrated that the distributed 
hydrodynamic-force feedback contributes to the generation and 
coordination of rhythmic undulatory swimming motion20. Ablation 
studies showed that including the Cartesian joint position or contact 
information has different influences on learning robot locomotion 
behaviours18. For learning central pattern generator (CPG)-based 
quadruped locomotion, foot-contact Booleans and CPG states are 
selected from various combinations of states through ablation stud-
ies32. Ablation studies examine the difference in performance between 
the inclusion and exclusion of signals of interest, and a type of feedback 
state is considered to be important if the performance downgrades 
after its removal. However, ablation studies provide only qualitative 
importance of individual states, without addressing the relative quan-
titative importance of individual sensing signals when compared with 
the whole set of sensory feedback.

There have also been limited attempts to compare the importance 
of a certain type of feedback at different time steps quantitatively. For 
example, the influence of proprioceptive states on foot-height com-
mands was quantified and compared at different time steps10. However, 
this quantitative approach is used for analysing the foot-trapping 
behaviour during trotting and has not been extended to studying 
other motor skills.

In robot learning, understanding the quantitative relative impor-
tance of different sensory feedback is crucial for learning approaches to 
produce desired behaviours, which is yet missing in the field. Therefore, 
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of changes in output actions as the input signal varies at a certain time 
step. The higher the saliency value, the more associated actions change 
as the input signal varies, indicating a higher level of importance and 
task relevance of a particular signal. Finally, we formulate the relative 
importance of a given feedback state as the percentage of its quantified 
importance over the entire period of motions, with respect to the sum 
of importance of all the feedback states (Methods).

Key feedback states for quadruped locomotion. Here we identify key 
feedback states from the collection of nine feedback states according 
to the ranking of relative importance for three representative and dis-
tinct locomotion tasks: balance recovery, trotting and bounding. We 
visualize the saliency values and relative importance as saliency maps 
(Fig. 3a) and doughnut charts (Fig. 3b) delineating the contribution of 
each state over time and their overall impacts to the above skills, which 
reveals key feedback states with around 80% relative importance in 
total for the three skills compared with 20% relative importance for 
task-irrelevant states.

From the time plots of relative importance for the nine feedback 
states in Extended Data Fig. 1, we found that relative importance var-
ies depending on the robot posture or phase over time. During bal-
ance recovery, gravity vector and joint positions are found to be the 
most important feedback states during body flipping and standing 
up, respectively. During periodic trotting and bounding, within each 
gait cycle, the most crucial feedback state alternates between joint 
positions and base linear velocity.

Our study reveals that each joint has a different level of contribu-
tion to distinct locomotion tasks (Fig. 4). For example, sagittal move-
ment states and joints that have a large range of motions usually have 
a higher contribution to locomotion than others. During trotting, 
as the rear legs deliver more power to propel the robot forward and 
overcome energy loss caused by friction and impacts, the rear hip pitch 
joints move in larger ranges, resulting in higher importance. During 
bounding, the front knee joint positions are more important than the 
rear knee joint positions, as bounding requires the front knee joints to 
buffer landing impacts more and provide stable body weight support 
during the pre-landing and stance phase.

To summarize, our proposed systematic approach has identi-
fied a common set of key states that are consistently more important 
across the three quadrupedal locomotion skills on flat ground with 
a fixed gait frequency: joint positions, gravity vector and base linear 
and angular velocities.

Key feedback states under various circumstances. Rough terrain. 
We train new trotting and bounding policies on rough terrain in a 
6.4 m × 6.4 m area, which consists of 4,096 cubes each with 0.1 m length 
and width, and heights sampled from 0 to 3 cm. Results in Extended 
Data Fig. 2 show that the key states for trotting and bounding remain 
the same as those on a flat ground.

Gait frequencies. Trotting and bounding policies were trained with 
1 Hz, 2 Hz and 5 Hz, respectively. Saliency maps and doughnut charts 
in Supplementary Fig. 8 indicate that key feedback states for trotting 
and bounding are consistent across low, medium and high gait frequen-
cies. Thus, we conclude that the identified key feedback states are not 
affected by the gait frequency within such a range.

Foot-contact status versus foot-contact forces. The previous analy-
sis uses sigmoid contact, which is a continuous signal indicating the 
contact status based on the norm of contact forces (Methods). Here we 
replace the sigmoid foot contact with normalized foot-contact forces 
for learning trotting and bounding, where the foot-contact forces are 
normalized by the body weight and capped between zero and one. We 
conclude that using either of the foot-contact formulations as feedback 
states renders the same conclusions regarding the importance of foot 
contact (Supplementary Fig. 9).

Importance of history states. To investigate the impact of historical 
information on sensory feedback selection, we trained a new policy 
for balance recovery with an expanded set of state input, includ-
ing states at the current time step and two history steps. The sali-
ency map and the bar plot in Extended Data Fig. 3 show that (1) for  
each type of feedback state, current information is more important 
than history information, (2) important states remain important 
within each set of history states and (3) the overall importance of 
all states at the current time step is much higher than that at both 
history steps.

Quantifying the relative importance of the feedforward input. 
Importance of the feedforward phase vector. For trotting and bound-
ing, the phase vector is used to enforce the cyclic pattern as a ‘feedfor-
ward’ input to the neural network besides the feedback states (Fig. 2c 
and ‘Methods’). Note that the phase vector is included in the training 
of all feedback control policies for trotting and bounding but excluded 
from the ranking of state importance, except this section. Without 
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Fig. 1 | Comparison of the functional sensory feedback between quadrupedal 
animals and their robotic counterparts. a, Sensory organs and feedback of a 
dog. The central nervous system fuses sensory information from various organs, 
such as the inner ear, muscle and skin, and then produces motor commands. 
The vestibular system of vertebrates senses angular and linear accelerations, 
the muscle spindles measure the stretch and stretch speed of skeletal muscles, 

the Golgi tendon organs measure exerted muscular forces and the skin feels 
pressures. b, Sensors and feedback on a legged robot. An onboard computer 
processes measurements of signals from different sensors, such as an inertial 
measurement unit, motor encoders and force sensors, and then generates 
actions for electric motors.
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the phase vector as input, the robot would fail to learn cyclic motion. 
The analysis in Extended Data Fig. 4 shows that the feedforward phase 
vector counts for the relative importance of 28% and 38% for trotting 
and bounding, respectively, which is more important than any type 
of feedback states.

Importance of the phase vector during swing and stance. From the 
time plot of saliency value for phase vector in Extended Data Fig. 5, we 
found that the importance of the phase vector follows a cyclic pattern, 
reaching the highest value twice within each gait period around the 
transitions between swing and stance during trotting and bounding. 
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Fig. 2 | Proposed approach for identifying key feedback states used to learn 
effective locomotion skills. a, The proposed saliency analysis can rank the 
importance among different feedback states, given a set of feedback states 
and a targeted task-level skill. The pie chart shows our findings on the essential 
feedback states for quadruped locomotion, including joint position, gravity 
vector, base linear velocity and base angular velocity. b, Key-pose taxonomy 
used in robot-pose initialization for learning effective balance recovery, trotting 
and bounding. Each key pose is represented by an array of body height, body 

orientation (roll and pitch angles) and joint positions, which determines the pose 
of a floating-base robot and is categorized by distinct contact patterns that are 
unique to the targeted type of gait. c, The DRL framework utilizing key feedback 
states and key-pose taxonomy that are sufficient for successful and effective 
learning of robot motor skills, where the phase vector (sin2πϕ, cos2πϕ) inputs to 
the policy network in parallel with key feedback states for periodic locomotion 
skills (ϕ represents 0–100% phase over a gait period). PD, proportional-
derivative; ReLU, rectified linear unit; st, state observations at time step t.
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a darker pixel indicates that the corresponding feedback signal has more 
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states for three learned skills, summarizing the overall averaged importance 
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box shows the median (middle line of box), 25th and 75th percentiles (lower and 
upper bounds of box, respectively), minimum and maximum (lower and upper 
whiskers, respectively) and outliers (dots) of the relative importance of the 
corresponding state with n = 12 samples (Supplementary Figs. 1–7). The full set 
of nine feedback states are ranked in an order of relative importance from high to 
low, suggesting the key feedback states for quadruped locomotion include joint 
positions, gravity vector (that is, body orientation), base linear velocity and base 
angular velocity. Blue-, green- and yellow-shaded areas enclose key feedback 
states for the three locomotion skills.
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The cyclic pattern of the phase vector is synchronized with foot–ground 
contact. Such high importance during the contact transitions indicates 
that the phase vector regulates the timing of establishing and breaking 
foot–ground contact, resulting in a synchronized cyclic pattern with 
the transitions between swing and stance.

Benchmarking of learned motor skills
We formulate task-related performance metrics for the quantita-
tive evaluation of three locomotion tasks (Methods) and benchmark  
the following five settings in ten scenarios with the same DRL 
framework: (1) ‘full-state policies’ learned with the nine feedback 
states (Fig. 3a) and random robot-pose initialization, (2) ‘key-state 
policies’ learned with four key states and key-pose initialization, (3) 
‘irrelevant-state policies’ that only use five less important states, 
(4) open-loop trajectories from full-state policies and (5) open-loop 
trajectories from key-state policies. Open-loop trajectories repeat 

the desired joint positions for two gait periods generated by the 
feedback policies.

We found that the average performance of key-state policies 
over all five performance metrics (Methods) is comparable to that of 
full-state policies for three skills (Fig. 5d), and if key feedback states 
are missing, there would be a substantial drop in task performance 
(forward velocity and heading accuracy for trotting and bounding) or 
learning success rate (balance recovery). More details can be found in 
Fig. 5a–c, Supplementary Fig. 12 and Supplementary Note 2.

Furthermore, the performance benchmark of the closed-loop 
control policies versus the open-loop trajectories (Supplementary 
Figs. 13 and 14) demonstrates the importance of utilizing feedback 
states to correct robot behaviours. Also, compared with the open-loop 
trajectories from the full-state policies with random explorations, 
results indicate that trajectories learned by the key-state policies are 
typically more stable when executed in an open-loop manner. This 
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Fig. 4 | Comparison of the relative importance of 64 dimensions of feedback 
state for trotting and bounding. a, A boxplot expanding the boxplot in 
Supplementary Fig. 7b, which shows the relative importance ranking among 
64 state dimensions for trotting on a flat ground (n = 12 samples). b, A boxplot 
expanding the boxplot in Supplementary Fig. 7c, which shows the relative 
importance ranking among 64 state dimensions for bounding on a flat ground 
(n = 12 samples). Each box shows the median (red horizontal line), 25th and 75th 

percentiles (lower and upper blue horizontal lines, respectively), minimum and 
maximum (lower and upper grey horizontal lines, respectively) and outliers (red 
plus symbol) of the relative importance of the corresponding state dimension 
from 12 different trials for the corresponding locomotion task. FL, front left; 
FR, front right; RR, rear right; RL, rear left; x, y, z, variables projected in the 
corresponding Cartesian coordinate; v, linear velocity; ω, angular velocity.
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suggests the neural network tends to discover more conservative and 
stable trajectory patterns surrounding the solution space initialized 
by the key poses.

Applicability to learning new skills
We further validate our approach to learn new locomotion skills. Using 
the key feedback states identified from three representative locomo-
tion skills and the newly designed task-specific key poses (Supplemen-
tary Fig. 17), the A1 quadruped robot successfully learns robust pacing 
and galloping gaits (Fig. 6a,b and Supplementary Video 4).

Based on the t-distributed stochastic neighbour embedding35 
plot in Fig. 6d, we found that the trajectories of key-state pacing and 
galloping are located within the circle formed by the trajectories of 
balance recovery, trotting and bounding policies. This suggests that 
the studied skills encapsulate the common patterns of leg movements 
with sufficient diversity and the newly learned skills are closely related 
neighbourhood skills to the studied skills. Therefore, using the same 
set of key states can help in effectively learning both new gait patterns. 
However, learning more distinct new locomotion skills may require 
identifying new key feedback states, which can be achieved by reap-
plying our approach.

Correlation between feedback states
Heatmaps were generated to reflect the non-linear correlation across 
feedback states by mutual information36 (Fig. 6e and Extended Data 
Fig. 3c). The average correlation coefficients between any two types 
of current feedback states were visualized using chord diagrams in 
Fig. 6f and Extended Data Fig. 3d. These findings reveal that the key 
states identified for balance recovery are correlated with all other 
task-irrelevant states to varying degrees. Moreover, the measurements 
of these key states are usually less noisy, making them more suitable to 
be used. Therefore, these results suggest that selecting key states with 
underlying correlations with other signals can effectively reduce the 
number of sensors required for feedback in the closed-loop control.

Discussion
This work has developed a quantitative analysis method for selecting 
feedback states for learning-based closed-loop control. As a result of 
motor learning through neural networks, the importance of states is 
indirectly encapsulated by a large amount of learned neural-network 
weights. Our method contributes to the interpretation, comparison and 
validation of the state importance by a direct ranking of quantitative 
relative importance over common sensory feedback for quadruped 
locomotion. The study suggests that joint positions, gravity vector and 
base linear and angular velocities are the essential states, composing 
80% total relative importance for motor learning, whereas foot posi-
tions, foot contact, base position, joint torque and velocities are better 
to have but not necessary and thus can be excluded from motor learning 
without significantly affecting robot performance.

Benefits for robot-control design
Our method provides a quantitative ranking of feedback states and 
hence identifies the level of their importance, guiding the selection 
of a minimum and suitable set of sensors to learn robust quadruped 
locomotion. Different combinations of sensors can be chosen based 
on the hardware availability for particular applications. For example, 
we found that motor encoders, inertial measurement unit (IMU) and 
estimation of body linear velocities suffice to achieve common quad-
ruped locomotion skills.

To summarize, this research benefits the design of robot control 
in several aspects:

 (1) Improves design efficiency of the learning framework by select-
ing important feedback states through one single training ses-
sion, which is more efficient than empirical trial-and-error or 
ablation studies that require multiple iterative processes.

 (2) Promotes lightweight and cost-effective robot design by equip-
ping only task-relevant sensors.

 (3) Reduces the need for developing state estimation for task- 
irrelevant or unimportant states, thus reducing the dependen-
cies of task success on sensing and state estimation uncertain-
ties that helps to mitigate simulation-to-real mismatch.
Our quantitative analysis approach requires a successful senso-

rimotor policy, that is, a differentiable state–action mapping of the 
motor skills, to be used for identifying the importance level of states. 
In cases where motion learning is initially infeasible via reinforcement 
learning, all commonly available sensing shall be included to facilitate 
motor learning, or other approaches like supervised learning or imita-
tion learning can be used if demonstrations are available.

Feedforward pathways
For simplicity, the periodic feedforward signals are implemented as 
a two-dimensional phase vector (sin2πϕ, cos2πϕ) generated directly 
using ϕ (temporal information, that is, 0–100% phase over a gait period; 
Fig. 2c), representing continuous periodicity as a form of priors or 
prior knowledge37,38. Thus, they are not modulated by sensory feed-
back signals in our study. In principle, these feedforward signals can 
be implemented as CPG networks and be modulated in various ways, 
for example, with phase resetting mechanisms or with feedback terms 
that continuously modulate the phase and amplitude of CPG signals,  
as in 32,39–42. In future work, it would be interesting to include such feed-
back mechanisms and investigate whether the relative importance of 
different sensory modalities would change. For instance, it might lead 
to a higher importance of load feedback, which has been suggested to 
be important for cat locomotion43 and shown to be a sufficient source 
of information for interlimb coordination39.

Relation to biology
In general, our findings agree with biological findings and hypoth-
eses. The key sensory feedback found by our studies on quadrupedal 
robots maps to the vestibular system and muscle spindles that have 
been proved to be critical for postural control and goal-directed ver-
tebrate locomotion on the biological counterparts25,44. Our analysis 
also reveals that important states vary with tasks and certain sensory 
signals are more critical than others at different moments during a gait 
cycle, consistent with existing biological findings and hypotheses25,45. 
It is important to note that our conclusions on important states stem 
from common locomotion skills on a mechanical robot and may differ 
from the general findings in animals, for example, the importance of 
contact forces and limb loading as discussed in the previous section. 
Our contribution to biology is to provide biologists with the compu-
tational approach to identify important states on simulated animals, 
for example, neuromechanical simulations46, when ethical or technical 
limitations prevent certain biological studies on live animals.

Limitations and future work
To obtain general conclusions on state importance with minimal human 
bias and good statistical characteristics, we designed basic reward func-
tions that encourage the exploration of feasible but slightly different 
motor policies across training sessions. In contrast with state-of-the-art 
locomotion10–12, we do not rely on reference trajectories or heavily 
fine-tuned reward terms to achieve natural-looking gaits. This allows 
the feedback control policy to fully exploit the solution space, drawing 
general conclusions about the importance of different states.

The identified key important states enabled successful learning 
of motor skills, demonstrating robustness to uncertainties in sensing, 
environment and robot dynamics (Supplementary Videos 1–4), which 
suggests that our saliency analysis based on the neural network, that is, 
the mapping from filtered state input to unfiltered action output, has 
captured essential features of the overall policy for the identification of 
key feedback states. As for future work, further investigation of other 
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Fig. 5 | Benchmarking of task performance of full-state, key-state and 
irrelevant-state policies for balance recovery, trotting and bounding.  
a, Balance recovery from lying down on the back by a full-state policy (top) and 
a key-state policy (bottom). b, Learned trotting gait by a full-state policy (top) 
and a key-state policy (bottom). c, Learned bounding gait by a full-state policy 
(top) and a key-state policy (bottom). d, Comparison of task performance using 
metrics for full-state, key-state and irrelevant-state policies of balance recovery, 
trotting and bounding. Data are presented as mean values ± standard deviation 
(error bars) of n = 10 samples (scenarios). The dots on top of each bar plot are 
assigned different colours to distinguish samples from three policies. Higher 

values of metrics indicate better performance. Details of testing scenarios are in 
Supplementary Note 3 and Extended Data Fig. 6. The key-state policies achieved 
94.7%, 99.1% and 93.7% of the task performance on average, respectively, with 
respect to the full-state policies. Irrelevant-state trotting and bounding policies 
achieve 11.7% and 5.9%, respectively, in forward velocity and 57.3% and 57.3%, 
respectively, in heading accuracy with respect to full-state policies. Although the 
selected irrelevant-state balance recovery policy achieves similar performance 
to full-state and key-state policies, the success rate of learning such policy drops 
substantially.
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components of the framework and the properties of the overall policy 
would be an interesting direction. When considering the accuracy of 
sensory feedback, the importance ranking of feedback states can be 
further refined by composing the saliency map and sensitivity matrix 
of sensor noise levels (Supplementary Note 4).

In future applications, in case certain states are identified as impor-
tant but unreliable because of hardware limitations, one potential 
solution is to train a neural network to infer the estimation of such 
error-prone states from more reliable feedback. Prior work47 has dem-
onstrated the feasibility of such an approach, for example, estimating 
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body velocity and foot contact from joint positions measured by motor 
encoders, and the gravity vector plus base angular velocities obtained 
from IMU measurements.

Methods
Robot platform
We chose the A1 quadruped robot33 for our study, which approximates 
a small dog and is commonly used for locomotion research (see robot 
specifications in Supplementary Table 4). Extensive simulation valida-
tions were conducted in a physics-based simulation—PyBullet48. All the 
robot locomotion tasks were simulated in PyBullet with high-fidelity 
physics, and the resulting robot motions and data were rendered in 
Unity49 for high-resolution snapshots and videos, which provide bet-
ter visualization quality of the physical interactions and movements.

Robot motor skills
In this framework, the saliency analysis approach requires a differenti-
able state–action mapping of the motor skills, in the form of a neural 
network. Therefore, we trained the neural network on physics simula-
tion data to map the robot states to the corresponding actions. Thus, 
the trained neural network represents a motor skill and computes the 
robot actions in response to given input signals, which allows us to 
apply quantitative analysis and identify the importance level of each 
feedback state in such state–action mapping.

Saliency analysis
Integrated gradients. Our use of the saliency analysis is inspired by 
feature attribution methods in image classification and explainable 
artificial intelligence15,16,34,50. There are several saliency methods or 
attribution methods, such as integrated gradients34, guided backpropa-
gation51, DeepLift52 and gradient-weighted class activation mapping53. 
Here, we use an integrated-gradients method to define the saliency 
values of feedback states for a learned policy. Integrated gradients 
satisfies two axioms that are desirable for attribution methods34: (1) 
‘sensitivity’, that is, the attribution should be non-zero if each input 
and baseline lead to different outputs; and (2) ‘implementation invari-
ance’, that is, the attributions should be the same for two networks if 
the outputs of both networks are identical for all the inputs, regardless 
of the detailed implementation.

Some other common saliency methods are not able to satisfy both. 
For example, vanilla gradients of the output with respect to the input 
and guided backpropagation break the axiom sensitivity52, which will 
result in the gradients focusing on irrelevant features. Another com-
mon technique DeepLift breaks the axiom implementation invariance, 
where results may differ for the networks with same functionalities but 
different implementation. In summary, the use of integrated gradients 
allows us to identify feedback states that are truly relevant. The same 
conclusion holds for each type of locomotion skill regardless of the 
implementation of deep neural networks, as long as the outputs of two 
implementations are the same for the identical inputs.

It shall be noted that the integrated-gradients method is applicable 
to the state–action mapping that is differentiable, meaning that it can 
analyse the influence of feedback states of motor skills that can be 
represented by differentiable machine learning models. However, it 

cannot be applied to underlying state–action policies that are 
non-differentiable. At time step t, for the ith dimension of feedback 
states x ∈ ℝn, integrated gradients G(xi,t) are defined as follows:

G(xi,t) =
m

∑
j=1

||||
(xi,t − ̂xi,t)

p

p

∑
k=1

∂Fj( ̂xt + k/p(xt − ̂xt))
∂xi,t

||||
(1)

where F(xt) ∈ ℝm represents the generated actions at time step t, ̂xi,t  is 
the baseline input zero and p = 25 is the number of steps in the  
Riemann approximation of the integral. The partial derivative is com-
puted through backpropagation by calling tf.gradients() in Tensor-
Flow54. For a better visualization to reveal the relative importance 
among feedback states via saliency maps, we define the raw saliency 
value Sd(xi,t) as follows instead of directly using the computed inte-
grated gradients:

ϵ = 1
nN

N

∑
t=1

n

∑
i=1

G(xi,t) (2)

Sd(xi,t) = {
G(xi,t) − ϵ, G(xi,t) > ϵ

0, else
(3)

where N is the number of total time steps during the entire motion. 
The raw saliency value Sd(xi,t) is further normalized to the range of [0, 
1] as follows:

S(xi,t) = Sd(xi,t)/ max
i ∈ {1, 2,… ,n}

t ∈ {1, 2,… ,N}

Sd(xi,t) (4)

Relative importance of feedback states. For the ith dimension of 
feedback states x ∈ ℝn, overall importance during the entire motion Ii 
is computed as follows:

Ii =
N

∑
t=1

S(xi,t) (5)

where S(xi,t) is the saliency value for xi at time step t and N is the number 
of total time steps during the entire motion.

For feedback state o ∈ ℝh, (h ≤ n), overall importance Io is computed 
as follows:

Io =
1
h

h

∑
q=1

Ii(o,q) (6)

where i(o, q) is the index of the dimension of feedback states x that  
maps to the qth dimension of feedback state o (see Supplementary 
Table 1).

This work considers nine feedback states in total. For feedback 
state o, relative importance ro is defined as follows:

ro =
Io

∑9
o=1 Io

(7)

Fig. 6 | Applicability to learning new locomotion skills using the key feedback 
states. a, Successful pacing gait learned by the A1 robot with an average forward 
velocity of 0.46 m s−1. b, Successful galloping gait learned by the A1 robot with 
an average forward velocity of 1.57 m s−1. c, Key feedback states used for balance 
recovery, trotting and bounding skills. Each colour represents one type of 
feedback state: blue, green, yellow and orange dots represent joint position, 
gravity vector and base linear and angular velocities, respectively. d, The two-
dimensional projections of the 18-dimensional trajectories (body height, body 
linear velocity, roll and pitch angles and joint positions) sampled from key-state 

pacing and galloping policies, full-state and key-state balance recovery, trotting 
and bounding policies using t-distributed stochastic neighbour embedding. 
e, Heatmap showing the non-linear correlation between any two dimensions 
of the nine feedback states from full-state balance recovery policy, where a 
darker colour indicates stronger correlation. f, Chord diagram summarizing the 
correlation between any two feedback states for full-state balance recovery (self-
correlation and percentage <25% are removed for clarity), where the wider the 
link between any two states, the stronger they correlate with each other.
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Feedback states for learning locomotion skills
Here we introduce a longlist of nine candidate states used in legged 
locomotion and the way to measure or estimate them on a real robot: (1) 
base position in the world frame that can be estimated using visual iner-
tial odometry55, the three-dimensional base position was used rather 
than the base height alone for a fair comparison with other states; (2) 
normalized gravity vector in the robot’s local frame that reflects the 
body orientation of the robot and can be computed using roll and pitch 
angle measurements from IMU; (3) base angular velocity measured by 
IMU; (4) base linear velocity in the robot heading frame estimated by 
fusing leg kinematics and the acceleration from IMU; (5) joint position 
measured by motor encoders; (6) joint velocity that is measured by 
motor encoders and further normalized by maximum joint velocity; (7) 
joint torque that is measured by torque sensors and further normalized 
by maximum joint torque; (8) foot position relative to base in the robot 
heading frame that can be computed through forward kinematics; and 
(9) foot contact with the ground that is computed by applying sigmoid 
function to the L2 norm of contact force Fi measured by the force sensor 
at the end of the ith foot as follows:

1
1 + e−c1(Fi−c2)

, i = 1, 2, 3,4 (8)

where c1 = c2 = 2.0. Thus, foot contact is continuous within the range 
of [0, 1] (an example of continuous foot contact is in Extended Data 
Fig. 5) without a discontinuous switch between zero and one as in a 
threshold function that may affect the differentiability of the neural 
network for applying our analysis. For learning periodic locomotion 
tasks, such as trotting and bounding, we included a two-dimensional 
feedforward phase vector (sin2πϕ, cos2πϕ) on top of the above set of 
feedback states to represent continuous temporal information that 
encodes phase ϕ from 0% to 100% of a gait period. At each time step, the 
phase increases by a constant increment without any phase-resetting 
mechanisms and is computed as follows:

ϕ = kmod (Tfc)
Tfc

(9)

where k is the control step counter, T is desired gait period and fc is 
the control frequency. The phase vector is the feedforward term and, 
thus, was excluded for the quantification and comparison of the state 
importance, because the focus of this study is on the feedback terms.

For full-state policies, this complete set of feedback states was 
used for balance recovery (without the feedforward phase vector), 
trotting and bounding. For key-state policies, the states used were 
different for the three locomotion skills (Fig. 6c). Specifically, states 
(2) and (5) were used for balance recovery, states (2), (4), (5) and phase 
vector were used for trotting and states (2), (3), (4), (5) and phase vector 
were used for bounding. Learning pacing and galloping skills used the 
same set of states as for bounding.

Key-pose taxonomy for effective exploration and learning
During training control policies using full feedback states, the robot 
pose is initialized with a random configuration at each training episode 
to encourage the exploration of diverse states, which is a technique 
commonly used in robot learning9,18. However, random initialization 
is not data efficient in exploring the state space for a type of locomo-
tion task, as most robot configurations are a priori invalid, because of 
the physical feasibility of the balance criteria. In other words, most of 
the robot configurations are not balanced or very far away from the 
desired locomotion, and therefore, the collected samples are skewed 
by invalid exploration and less efficient for learning. To this end, on top 
of the key feedback states, we propose key-pose taxonomy to initialize 
the robot configuration at each training episode, as seeding conditions 
to enable more effective exploration and learning.

Inspired by animal locomotion56,57 and whole-body support pose 
taxonomy from humanoid robots58,59, given a specific locomotion 
task, we can design key-pose taxonomy that consists of representative 
robot–ground contact configurations and distinct robot poses. The 
robot–ground contact configurations are straightforward to obtain 
because quadrupedal locomotion is well studied in biology and we can 
easily obtain representative contact phases, for example, trotting of 
dogs and horses. Compared to the existing pose taxonomy58,59 that is for 
the classification and inter-transitions of loco-manipulation, our pro-
posed key-pose taxonomy here aims at task-specific effective learning.

Specifically, we use the configuration space of a floating-base 
robot to define each key pose, which is composed of body height, body 
orientation (roll and pitch angles) and joint angles. The base linear 
velocity and base angular velocity were set as zero at the start of each 
episode. Given the same contact configuration, we shall note that a 
quadruped robot may have multiple poses. For example, crouching and 
standing share the same robot–ground contact by four feet. Therefore, 
to balance the aspect of diversity, based on each ground contact or gait 
phase, we can use the robot configuration space to define multiple 
distinct key poses, so as to increase the number of initial poses that 
can sparsely cover the feasible motions related to a task.

Following this principle, we designed five key poses for balance 
recovery, six for trotting, four for bounding, four for pacing and five for 
galloping as shown in Fig. 2b and Supplementary Fig. 17. The key poses 
within the designed taxonomy were sampled to initialize the robot 
pose at each training episode for each task, and the detailed transitions 
between the key poses will be explored during the learning process 
and, thus, obtained as a natural outcome. Using key-pose taxonomy as 
initial posture setting makes learning more efficient by narrowing the 
solution space for learning compared to random exploration.

In this work, we assigned the key poses within the taxonomy with 
equal probability for the DRL agent to encounter and explore upon. It 
shall be noted that the probability of each key pose can be more flexible. 
For example, we can assign higher probabilities to the key poses that are 
task relevant but less likely to be encountered in natural interactions 
with the environment.

Quantitative metrics of performance evaluation
To quantify the performance for comprehensive comparison, a set of 
performance metrics, S, is designed for each task. For balance recovery, 
the performance metric set Srecovery = {sτ, sr, sf, shN

, sϕN
}. For trotting and 

bounding, the performance metric sets Strotting and Sbounding are the same, 
that is, S = {sτ, sv, sψ, sh, sϕ}. Note that the performance metrics are used 
for post-learning performance evaluations, which are not the same as 
the reward terms designed for learning in terms of formulations and 
weights for each physical quantity.

The metric value for each physical quantity is in the range of [0, 
1], and N is the number of total time steps of an episode. Joint torque is 
used for the performance evaluation across all the three locomotion 
tasks. The performance metrics for this physical quantity are evalu-
ated as follows. A higher value of joint torque metric indicates a more 
energy-efficient motion.

sτ = 1 − 1
12N

12
∑
i=1

N

∑
t=1

|τi,t|/ ̂τ (10)

where τi,t is the joint torque of the ith joint at time step t and ̂τ = 33.5Nm 
is the maximum joint torque.

Performance metrics for balance recovery. For balance recovery, 
the performance metrics for the other four physical quantities are 
evaluated as follows:

 (1) Recovery speed metric

sr = 1 − T/ ̂T (11)
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where T is the time duration of recovery to a standing posture and ̂T  is 
the time duration from the start of recovery to the end of an episode. 
A higher value indicates the recovery is completed within a shorter 
time period.
 (2) Final foot placement metric

sf = 1 − 1
8

8
∑
i=1

|pf,i − p̂f,i|/ ̂d (12)

where pf and p̂f  are vectors of final and nominal foot positions, respec-
tively, in the horizontal plane of the robot heading frame. 
p̂f = [0.18m,0.13m, −0.18m, −0.13m, −0.18m,0.13m,0.18m, −0.13m] and 
̂d = 0.3m for A1 quadruped robot. A higher value indicates that the four 

feet are closer to the nominal foot positions at the end of recovery.
 (3) Final body height metric

shN
= min (hN, ̂h) / ̂h (13)

where hN is the body height at the end of recovery and ̂h = 0.25m is the 
nominal standing height of the robot. A higher value means that the 
final body height is closer to the nominal standing height of the robot.
 (4) Final body orientation metric

sϕN
= (gNĝ + 1)/2 (14)

where gN is the gravity vector of the robot at the end of recovery and 
ĝ = [0,0, −1] is the nominal gravity vector of the robot. A higher value 
indicates that the final body orientation is closer to the nominal body 
orientation, that is, zero roll angle and pitch angle.

Performance metrics for trotting and bounding. For trotting and 
bounding, the other four physical quantities are the same and the 
performance metrics are evaluated as follows:

 (1) Forward velocity metric

sv = min( 1
N

N

∑
t=1

Vt, ̂V) / ̂V (15)

where Vt is the forward velocity in the horizontal plane at time step t, ̂V  
is the nominal forward velocity, and ̂V = 0.5m s−1  for trotting and 
̂V = 1.0ms−1  for bounding. A higher value indicates a faster average 

forward velocity during the entire episode. It shall be noted that a lower 
value for bounding does not indicate worse learning performance. The 
reason is that we did not set a desired forward velocity strictly in the 
reward for training bounding as for trotting. We set the desired velocity 
for training bounding as 1.0 m s−1. However, we do not penalize velocity 
higher than 1.0 m s−1 to encourage higher velocity if possible. As a result, 
the robot may learn bounding policies with different average forward 
velocities with the same training settings.
 (2) Heading accuracy metric

sψ = ( 1
N

N

∑
t=1

vh,tv̂h
|vh,t||v̂h|

+ 1) /2 (16)

where vh,t is the velocity vector of the robot in the horizontal plane of 
the robot heading frame at time step t, v̂h is the nominal velocity vector 
in the horizontal plane, v̂h = [0.5ms−1,0ms−1]  for trotting and 
v̂h = [1.0ms−1,0ms−1]  for bounding, and ∣ ⋅ ∣ is the magnitude of the 
vector. A higher value indicates better tracking of the nominal heading 
during the entire episode.
 (3) Body height metric

sh =
1
N

N

∑
t=1

min(ht, ̂h)/ ̂h (17)

where ht is the body height at time step t and ̂h = 0.3m is the nominal 
height of the robot. A higher value means that the body height is closer 
to the nominal height during the entire episode.
 (4) Body orientation metric

sϕ = ( 1
N

N

∑
t=1

gtĝ + 1) /2 (18)

where gt is the gravity vector of the robot at time step t and ĝ = [0,0, −1] 
is the nominal gravity vector of the robot. A higher value indicates that 
the body orientation is closer to the nominal body orientation during 
the entire episode, that is, zero roll angle and pitch angle.

Metrics for task-performance evaluation. Given the five individual 
performance metrics for each locomotion task, we can further evaluate 
overall performance of key-state policies with respect to full-state poli-
cies. Consider a task-related physical quantity i, metric for the key-state 
policy si,key and metric for the full-state policy si,full, overall performance 
of the key-state policy skey is defined as follows:

skey =
1
5

5
∑
i=1

si,key
si,full

. (19)

Furthermore, we can compute the mean of skey for multiple tasks 
to evaluate the overall performance (balance recovery, trotting 
and bounding) in a statistical manner. The overall performance of 
irrelevant-state policies and open-loop trajectories are evaluated in 
the same way.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data for main text figures are available at https://github.com/
yuwanming/feedback_importance_data. All other data that support 
the plots within this paper and other findings of this study are available 
from the corresponding author upon reasonable request.

Code availability
The code for training locomotion skills and saliency analysis is avail-
able at https://github.com/yuwanming/A1_quadruped_env (ref. 60).
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Extended Data Fig. 1 | Relative importance of nine feedback states over time. Relative importance of nine feedback states during 0-3 s. a, Balance recovery. b, 
Trotting. c, Bounding.
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Extended Data Fig. 2 | Key feedback states for locomotion on uneven terrains. 
Key feedback states for locomotion on an uneven terrain with a maximum height 
of 3 cm of the randomly generated irregular surfaces. a, The learned trotting 
over the rough terrain. b, Boxplot showing the importance ranking of nine 
feedback states for trotting on the random terrain. Each box shows the median 
(red horizontal line), 25th and 75th percentiles (lower and upper blue horizontal 
lines), minimum and maximum (lower and upper grey horizontal lines), and 
outliers (red plus symbol) of the relative importance of the corresponding state 

with n = 10 samples (random seeds). c, The learned bounding over the rough 
terrain. d, Boxplot showing the importance ranking of nine feedback states for 
bounding on the random terrain. Each box shows the median (red horizontal 
line), 25th and 75th percentiles (lower and upper blue horizontal lines), minimum 
and maximum (lower and upper grey horizontal lines), and outliers (red plus 
symbol) of the relative importance of the corresponding state with n = 10 samples 
(random seeds).
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Extended Data Fig. 3 | Analysis of the impact of history state information for 
the learned balance recovery policy. a, Saliency map showing the importance 
of feedback states at current time step and two history steps (0.16 s and 0.32 s 
ago) during 0-3 s. b, Relative importance of all feedback states at the current 
time step and two history steps. c, Heatmap showing the non-linear correlation 
between any two dimensions of feedback states including current and two 

history steps, where a darker colour indicates a stronger correlation. Current 
body velocity has stronger correlation with current joint positions (label 3) than 
history joint positions (label 1&2). d, Chord diagram showing the correlation 
between any two feedback states at current time step (self-correlation and 
percentage < 25% are removed for clarity), where the wider the link between any 
two states, the stronger they correlate with each other.
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Extended Data Fig. 4 | Analysis of the relative importance of the feedforward 
phase vector for trotting and bounding. Analysis of the relative importance of 
the feedforward phase vector (sin 2πϕ, cos 2πϕ) for trotting and bounding. a, 
Saliency maps showing the variation of the importance of the feedforward (ff) 

phase vector and nine feedback states (fb). b, Doughnut charts showing the 
relative importance of the feedforward (ff) phase vector (28%, 38%) and the 
feedback states (fb) (72%, 62%) for trotting and bounding, respectively.
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Extended Data Fig. 5 | Analysis of the relative importance of the feedforward 
phase vector between swing and stance for trotting and bounding. Analysis of 
the relative importance of the feedforward phase vector (sin 2πϕ, cos 2πϕ) 
between swing and stance for trotting and bounding. a, Time plots of saliency 

values of the phase vector during 0-3 s. b, Saliency maps showing the variation of 
the importance of the phase vector and foot contact between swing and stance 
and time plots of sigmoid (blue) and normalized (red) foot contact feedback 
during 2-3 s (two gait periods).
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Extended Data Fig. 6 | Robustness tests of key-state policies for balance recovery, trotting and bounding against unexpected perturbations. a, Perturbation 
by a 10 kg flying box at 11 m s-1 initial velocity for balance recovery (top), trotting (middle) and bounding (bottom). b, Stable traversal over unseen rubble for balance 
recovery (top), trotting (middle) and bounding (bottom).
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