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% Check for updates Super-resolution fluorescence microscopy methods enable the
characterization of nanostructures in living and fixed biological tissues.
However, they require the adjustment of multiple imaging parameters
while attempting to satisfy conflicting objectives, such as maximizing
spatial and temporal resolution while minimizing light exposure. To
overcome the limitations imposed by these trade-offs, post-acquisition
algorithmic approaches have been proposed for resolution enhancement
and image-quality improvement. Here we introduce the task-assisted
generative adversarial network (TA-GAN), which incorporates an auxiliary
task (for example, segmentation, localization) closely related to the
observed biological nanostructure characterization. We evaluate how
the TA-GAN improves generative accuracy over unassisted methods,
using images acquired with different modalities such as confocal,
bright-field, stimulated emission depletion and structured illumination
microscopy. The TA-GANis incorporated directly into the acquisition
pipeline of the microscope to predict the nanometric content of the field
of view without requiring the acquisition of a super-resolved image. This
informationis used to automatically select the imaging modality and
regions of interest, optimizing the acquisition sequence by reducing light
exposure. Data-driven microscopy methods like the TA-GAN will enable
the observation of dynamic molecular processes with spatial and temporal
resolutions that surpass the limits currently imposed by the trade-offs
constraining super-resolution microscopy.

The development of super-resolution optical microscopy (opti- live-cell imaging, enabling the monitoring of subcellular dynam-
cal nanoscopy) techniques to study the nanoscale organization of ics with unprecedented spatio-temporal precision. In the design
biological structures has transformed our understanding of cel-  of optical nanoscopy experiments, multiple and often conflicting
lular and molecular processes’. Such techniques, including stimu-  objectives (for example, spatial resolution, acquisition speed,
lated emission depletion (STED) microscopy?, are compatible with  light exposure and signal-to-noise ratio) must be considered**.
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Machine learning-assisted microscopy approaches have been
proposed to improve the acquisition processes, mostly by limit-
ing light exposure®*°. In parallel, several supervised’ ' and weakly
supervised" " deep learning approaches have been developed for
high-throughput analysis of microscopy images. Deep learning-based
super-resolution**"® and domain adaptation'® approaches have
also been proposed recently for optical microscopy, but concerns
and scepticism arise regarding their applicability to characterize
biological structures at the nanoscale?® ™,

Optical nanoscopy techniques exploit the ability to modulate
the emission properties of fluorescent molecules to overcome the
diffraction limit of light microscopy?. In this context, it is challenging
to rely on algorithmic methods to generate images of subdiffraction
structures that are not optically resolved in the original image®°. Meth-
ods thatare optimized for generating images that appear to belong to
the target higher-resolution domain do not specifically guarantee that
the biological features of interest are accurately generated®. Yet, the
possibility to super-resolve microscopy images post-acquisition would
favourably alleviate some of the compromises between the acquisition
parameters in optical nanoscopy'®*.

Amongthe methods developed for algorithmic super-resolution,
conditional generative adversarial networks (cGAN)* generate data
instances based on a different input value, capturing some of its
features to guide the creation of a new instance that fits the tar-
get domain. However, the realism of the synthetic images does not
ensure that theimages are usable for further field-specific analysis,
which is limiting their use in optical microscopy. The primary goal
for generating super-resolved microscopy imagesis to produce reli-
able nanoscaleinformation onthe biological structures of interest.
Optimizing a network using auxiliary tasks, or multi-task learning,
canguide the generator to resolve content that matters for the cur-
rent context®®. Various applications of cGANs for image-to-image
translation use auxiliary tasks such as semantic segmentation®?5,
attributes segmentation®’ or foreground segmentation’® to
provide spatial guidance to the generator. We adapt thisidea in the
context of microscopy, where structure-specific annotations can
direct the attention to subtle features that are only recognizable by
trained experts.

We propose to guide the image-generation process using an
auxiliary task that is closely related to the biological question at
hand. This approach improves the applicability of algorithmic
super-resolution and ensures that the generated features in syn-
thetic images are consistent with the observed biological struc-
tures in real nanoscopy images. Microscopy image analysis tasks
that are already routinely solved with deep learning’ (for example,
segmentation, detection and classification) can guide a cGAN to
preserve the biological features of interest in the generated syn-
thetic images. Here we introduce a task-assisted GAN (TA-GAN) for
resolution-enhanced microscopy image generation. The TA-GAN
relies on an auxiliary task associated with structures that are unre-
solved by the input low-resolution modalities (for example, confocal
or bright-field microscopy) but are easily distinguishable in the tar-
geted super-resolution modalities (for example STED or structured
illumination microscopy (SIM)). We expand the applicability of the
method with avariation called TA-CycleGAN, based on the CycleGAN
model®, applicable to unpaired datasets. Here the TA-CycleGAN is
appliedto domainadaptation for STED microscopy of fixed and living
neurons. Our results show that the TA-GAN and TA-CycleGAN models
improve the synthetic representation of biological nanostructures
compared with other algorithmic super-resolution approaches. Spe-
cifically, our method is useful to (1) guide the quantitative analysis of
nanostructures, (2) generate synthetic datasets of different modali-
ties for data augmentation or to reduce the annotation burden and
(3) predictregions of interest for machine learning-assisted live-cell
STED imaging.

Results

Task-assisted super-resolution image generation. Deep learning
methods designed for synthetic microscopy image generation have
been shown to be effective for deblurring and denoising confocal
images'>'®'®, To increase the accuracy of resolution enhancement
approachesapplied to the generation of complex nanoassemblies, we
consider the combination of acGAN with an additional convolutional
neural network, the task network (Fig. 1a), targeting animage analysis
task relevant to the biological structures of interest. Three individual
networks formthe TA-GAN model: (1) the generator, (2) the discrimina-
torand (3) the task network (Fig. 1a). The chosen auxiliary task should
be achievable using the high-resolution modality only, ensuring that it
isinformative about content thatis notresolved in the low-resolution
input modality. The error between the task network predictions and
the ground-truth annotations is backpropagated to the generator to
optimize its parameters (Methods). The TA-GAN is trained using pairs
oflow-resolution (confocal or bright field) and super-resolution (STED
or SIM) images.

The first TA-GAN model, TA-GAN,,, is trained on the axonal F-actin
dataset® to generate STED images of the axonal F-actin lattice from
confocal images (Fig. 1b). The auxiliary task identified to train the
TA-GAN,, isthe segmentation of the axonal F-actin rings, which cannot
be resolved with confocal microscopy® (Fig.1a). The segmentation net-
work outputisused to compute the generation loss and to evaluate the
generation performance at the test time. The image super-resolution
baselines content-aware image restoration (CARE)', residual channel
attention network (RCAN)"”, enhanced super-resolution generative
adversarial networks (ESRGAN)**** and pix2pix* are trained on the
axonal F-actin dataset and applied to the generation of a synthetic
resolution-enhanced image from an input confocal image (Fig. 1b, first
row). We additionally evaluate the performance of theimage denoising
baselines denoising convolutional neural network (DnCNN)***” and
Noise2Noise**® on the confocal-to-STED image translation task (Sup-
plementary Fig. 1). Comparison between the results of the TA-GAN,,
withthe baselines reveals that the pixel-wise mean square error (MSE),
structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR)
betweengenerated and ground-truth STED images are eitherimproved
orsimilar using the TA-GAN,, (Extended Data Fig.1and Supplementary
Figs.2 and 3). To evaluate the accuracy of each baseline in the genera-
tion of the nanostructure ofinterest, we evaluate the ability of aninde-
pendent deep learning model trained on real STED images only”, which
we refer to as U-Nety,qq4..c t0 Segment the F-actin rings in the synthetic
images over aheld-out subset of the dataset that was not used for train-
ing the TA-GAN,,. The TA-GAN,, model uses the segmentation loss to
optimize the generator’s weights, which forces the generated F-actin
nanostructures to berealistic enough to be recognized by the task net-
work during training, and by U-Net,.q..c during testing. The U-Nety,cq.ax
is applied to the synthetic and real STED images, and the similarity
between the resulting pairs of segmentation mapsis computed using
the Dice coefficient (DC) and intersection over union (IOU) metrics.
The improvement in similarity is significant for TA-GAN,, compared
with all baselines (Extended Data Fig.1).

We created a dataset of nanodomains insimulated shapes of den-
dritic spines using the pySTED simulation platform™ to characterize the
conditions where the TA-GAN outperforms the baselinesin a controlled
environment. The task used to train the TA-GAN for synaptic nanodo-
main generation (TA-GANy,,,) is the localization of the centres of the
simulated nanodomains (Fig. 1c). We compare the generated images
with the ground-truth datamaps for two analysis tasks: (1) the localiza-
tion of two nanodomains that are spaced by less than 100 nm, which
is too close to be resolved with a standard deconvolution approach
(Richardson Lucy*°), and (2) the counting of nanodomains (2 to 6)
separated by variable distances. The localization of the nanodomains
can be performed using the TA-GAN synthetic images with similar
accuracy tothe one obtained using the simulated STED images from the
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Fig.1| The TA-GAN method. a, Architecture of the TA-GAN,,. The losses (circles)
are backpropagated to the networks of the same colour: the generator (violet),
the discriminator (green) and the task network (blue). DG, discriminator loss

for generated images; GEN, generation loss; GAN, GAN loss; DR, discriminator
loss for realimages; TL, task loss. The TA-GAN,, is applied to the axonal F-actin
dataset using the segmentation of F-actin rings as an auxiliary task to optimize
the generator. b, Representative example chosen out of 52 test images for the
comparison of the TA-GAN,, and algorithmic super-resolution baselines on the
axonal F-actin dataset. The confocal image is the low-resolution input and the
STED image is the aimed ground truth. Insets: segmentation of the axonal F-actin

CARE

23.8/0.64
pix2pix

rings (green) predicted by the U-Nety,.q.., With the bounding boxes (white line)
corresponding to the manual expert annotations”. PSNR and SSIM metrics are
written on the generated images. Scale bars, 1 pm. ¢, The TA-GANy,,, is trained
on the simulated nanodomain dataset using the localization of nanodomains as
the auxiliary task. d, Representative example chosen out of 75 test images for the
comparison of the TA-GANy,,, With the baselines for nanodomain localization.
Theblack circles represent the position of the nanodomains on the ground-truth
datamap and the blue circles represent the nanodomains identified by an expert
onimages from the test set (Methods). The intensity scale is normalized for each
image by its respective minimum and maximum values. Scale bars, 250 nm.

pySTED platform (Supplementary Fig. 4a). For the counting task, the
images generated by the TA-GAN, RCAN and pix2pix allow to count up
tosixnanodomains that cannotbe resolved in the simulated confocal
images within asimulated spine (Supplementary Fig.4b). Similarly to
the results obtained on the axonal F-actin dataset, TA-GAN and pix2pix
are the two algorithmic super-resolution approaches that generate
synthetic images with the highest similarity to the target domain for
the simulated nanodomain dataset, preserving image features such
as the signal-to-noise ratio, background level and spatial resolution
(Fig.1d and Supplementary Fig. 5).

The TA-GAN model requires the definition of a task that steers
the training of the generator towards the accurate extraction of sub-
resolutioninformation. The addition of this task is what differentiates
TA-GAN from baselines such as pix2pix. We therefore evaluate how the
choice of task impacts the performance using two different datasets.
For the synaptic proteins dataset*, we evaluate the approach using a
localization (Fig.2a) and asegmentation task (Supplementary Fig. 6).
The annotations are automatically generated using the pySODA analy-
sis strategy. For the localization task, we use the weighted centroids
ofthe clusters, whereas for the segmentation task the masks are gen-
erated with wavelet segmentation*’. We show that both tasks can be
used to guide the synthetic image generation (Fig. 2b,c), but that the
localization task allows to generate synaptic protein clusters with
morphological features that are more similar to the one observed in
the realimages (Supplementary Figs.7 and 8).

We evaluate how the precision of the labels used for the task
impacts the generation accuracy using the publicly available dataset
of Staphylococcus aureus cells from DeepBacs***. S. aureus bacteria
are very small (around 1 pm diameter), and monitoring their mor-
phology changes and cell division processes requires subdiffraction

resolution®. The TA-GANq, is trained for bright-field-to-SIM reso-
lution enhancement using a classification task based either on: (1)
low-resolution (LR) annotations generated from the bright-field
modality (Supplementary Fig. 6) or (2) high-resolution (HR) anno-
tations of dividing cell boundaries obtained from the SIM modality
(Fig. 2d). We evaluate how the images generated with the algorithmic
super-resolutionapproaches canbe used for the classification of divid-
ingand non-dividing bacterial cells, atask that is not achievable using
only bright-field microscopy images (Supplementary Fig. 9). Training
the TA-GANg, model using the HR annotations leads to an improved
classification performance combined with improved realism of the
syntheticimages (Fig. 2e,f).

Domain adaptation on unpaired datasets. For many microscopy
modalities, paired and labelled training datasets are not directly avail-
able, or would require a high annotation burden from highly qualified
experts. On the basis of the results obtained using confocal and STED
image pairs on fixed neurons, we wanted to expand the applicability
of the TA-GAN to unpaired datasets—here, images of fixed and living
cells. We first validate that the TA-GAN can be applied to the dendritic
F-actindataset” using the semantic segmentation of F-actin rings and
fibres in dendrites of fixed neurons (Fig. 3a). The trained TA-GANp.4
generates synthetic nanostructures that are successfully segmented
by the U-Netg,cq.qena» Which recognizes dendritic F-actin rings and fibres
in real STED images" (Fig. 3b). Similar to results previously obtained
from real STED images®, the segmentation of the synthetic images
with U-Net,q.qend Shows that the area of the F-actin rings significantly
decreases as the neuronal activity increases, whereas the opposite
is observed for F-actin fibres (Supplementary Fig. 10). Using our
task-assisted strategy, we next trained a CycleGAN* model, as it was
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Fig.2 | Dataset-specific tasks drive reliable resolution enhancement with
the TA-GAN approach. a, Two TA-GAN models designed for the synaptic
protein dataset are trained using one of two auxiliary tasks: the segmentation

of the protein clusters (shown) or the localization of the weighted centroids
(Supplementary Fig. 6). b, Comparison between the different approaches for
the characterization of synaptic cluster morphological features. Shown is the
cumulative distribution of the cluster area for PSD95 (see Supplementary Fig. 7
for other features). Statistical analysis: two-sided two-sample Kolmogorov-
Smirnov test for the null hypothesis that the continuous distribution underlying
the results for each baseline is the same as the one underlying the STED results
(**P<0.001, notsignificant (NS) P> 0.05). ¢, Representative crop chosen from
one of the nine testimages for the generation of synthetic two-colour images of
PSD95 and bassoon using the non-task-assisted baseline (pix2pix), the TA-GANs,,
with the localization task and the TA-GAN,,,, with the segmentation task. Insets:

localization and segmentation annotations used to train the two TA-GAN,
models. Scale bars, 1 pm. Each crop is normalized to the 98th percentile of its
pixel values for better visualization of dim clusters. d, The TA-GANg, models
designed for the S. aureus dataset are trained using a segmentation task with
annotations requiring only the LR bright-field image or annotations requiring
the HR SIMimage. e, Confusion matrices for the classification of dividing and
non-dividing cells on the test set of the S. aureus dataset (n =410 cellsin five
images). The TA-GAN, trained with HR annotations achieves better performance
ingenerating the boundaries between dividing bacterial cell, amorphological
feature visible only with SIM microscopy, compared with pix2pix and the TA-
GAN;, trained with LR annotations. f, Representative crop chosen from one of the
five testimages of the S. aureus dataset generated with pix2pix and the TA-GAN;,
trained with LR and HR annotations. Insets: LR and HR annotations used to train
the two TA-GANg, models. Scale bars, 1 pm.

precisely developed for image domain translation on unpaired data-
sets. The TA-CycleGAN can be applied to the translation between two
microscopy modalities or experimental conditions in which the same
biological structure canbe observed (here the F-actin cytoskeletonin
cultured live and fixed neurons) without the need for paired images.

Tothisaim we generated the live F-actin dataset consisting of confocal
and STED images of F-actin nanostructuresinliving neurons using the
far-red fluorogenic dye SiR-actin*’.

The TA-CycleGAN includes two generators that are trained to
first perform a complete cycle between the two domains (fixed- and
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Fig.3|Domain adaptation. a, The semantic segmentation of F-actin rings
(green) and fibres (magenta) is used as the auxiliary task to train the TA-GANp -
b, Example of confocal, real STED and TA-GAN,,.,,q Syntheticimages chosen
among 26 test images. Insets: the regions identified as rings and fibres by the
U-Nétgyeq.qend trained on real STED images”. White solid line shows the border of
the dendritic mask generated from the MAP2 channel, following the methods
presented inref.13. ¢, The same semantic segmentation task is used to train

the TA-CycleGAN. The reference to compute the TL is the segmentation of real
fixed-cell STED images by U-Net,.q.¢ena- The fixed cycle (top) uses U-Netg,eq.dend
to encourage semantic consistency between the input fixed-cellimage and

the end-of-cycle reconstructed image. The live cycle (bottom) does not use a
task network, enabling the use of non-annotated images from the live F-actin
dataset. Once trained, the TA-CycleGAN can generate domain-adapted datasets
(right). D,, discriminator loss for live-cell images; Dy, discriminator loss for fixed
cellimages; GAN,, GAN loss for live-cellimages; GAN;, GAN loss for fixed cell
images; CYC, cycle loss; GEN, generation loss; L., live reconstructed; L, live

U-Netuive Segmentation
of synthetic

U-Net,; ., segmentation

generated; F.., fixed reconstructed; F,,, fixed generated; Live,.,, generated
live-cellimage; Fixed,,, generated fixed cellimage. d, Representative example
chosenamong 28 annotated live-cell STED testimages for the segmentation of
F-actin nanostructures. The nanostructures on the live-cell STED images (top
left) are not properly segmented by the U-Netg,cq.qend (DOttom left). The U-Net, ;.
is trained with synthetic images generated by the TA-CycleGAN to segment

the F-actin nanostructures on real live-cell STED images. The segmentation
predictions generated by the U-Net,;,. (bottom right) are similar to the manual
expert annotations (top right). e, The semantic segmentation task is used to
train the TA-GAN|;,.. The generator of the TA-GAN|;,. takes as input the confocal
image as well as an STED subregion and a decision matrix indicating the position
of the STED subregion in the FOV (Methods). f, Representative example of real
and synthetic live-cell STED images of F-actin generated with TA-GAN,,,., chosen
among the initial images from 159 imaging sequences. The annotations of both
real and synthetic images are obtained with the U-Net,;,.. Colour bar: raw photon
counts. Scale bars, 1 pum.

live-cell STED imaging), and then to compare the ground-truth input
image with the generated end-of-cycle image (Fig. 3c). In the generic
CycleGAN model, the losses are minimized when the generated images
appear tobelongto the target domain and the MSE between the input
and output is minimized. In TA-CycleGAN we add a task network, here
the U-Netgyeq.qena» Which performs the semantic segmentation of den-
driticrings and fibres. The U-Net,.q.¢enq 1S applied to the real fixed STED
images and the end-of-cycle reconstructed fixed STED images (Fig. 3¢).
The generationloss is computed as the MSE between these segmenta-
tion masks. Atinference, the trained TA-CycleGAN translates images of
agivenstructure (here F-actin) but with image features (for example,

spatial resolution, signal-to-noiseratio, background level) correspond-
ingto the target domain (here live-cellimaging). The translated F-actin
dataset was generated by applying the TA-CycleGAN to the dendritic
F-actin dataset (Supplementary Fig.11).

Thetranslated F-actin dataset, along with the expert annotations
from the initial dendritic F-actin dataset, is used to train the U-Net,;,.
segmentation network to segment F-actin structures in images from
the live-cell domain without requiring annotation of the live F-actin
dataset (Fig. 3d and Supplementary Fig. 11). To confirm that training
onsyntheticdomain-adapted images generalizes toreal live-cell STED
images, the areaunder the receiver operating characteristic (AUROC)
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Fig. 4 | Monitoring change with the TA-GAN, ... a, Step-by-step imaging-
assistance pipeline using the TA-GAN, . in the live-cell acquisitionloop. b, Live-
cellimaging of dendritic F-actin before (initial), during (frames 1-15) and after
(final) application of a stimulation solution (0 Mg*/Gly/2.4 mM Ca*"). Shown
are the confocal (red, top row), synthetic (purple, middle row) and real (orange,
middle row) STED images when acquired, and corresponding segmentation
masks for F-actin fibres (magenta, bottom row). The series was chosenasa
representative example from a total of 72 series. Colour bars: raw photon counts.
¢, The DCat each time point measured between the current syntheticimage
and thelast acquired reference STED image for the sequence showninb. Dark
grey points indicate that the last acquired real STED (used as reference) is from
aprevious time step and light grey points connected with a vertical dashed line
indicate thatanew STED is acquired at this time step, and the DCis recomputed
with this new reference. d, Proportion of dendritic F-actin fibres at each time

point segmented by the U-Net, ;. on either the real STED (orange) or the synthetic
STED (purple) images. When areal STED acquisition is triggered, the proportion
of fibresinbothimages is compared (dotted line). Initial and final reference STED
images (empty orange circles) are acquired at each round. e, The DCis computed
for the F-actin fibre segmentation on control sequences of two consecutive real
STED images (time points tand ¢ +1)). The segmentation of the STED,image is
used as reference and the DC is computed with the segmentation mask on the
STED,,,image. When areal STED image acquisition would not have been triggered
by the threshold-based approach, the DC between the segmentation masks of the
two real STED is higher. n = 60 control sequences of two consecutive confocal-
STED pairs. Violin plots show the minimum, maximum and mean. Statistical
analysis: two-sided Mann-Whitney U test® for the null hypothesis that the two
distributions are the same (***P=0.0004). Scale bars, 1 pm.

was computed between the U-Net, ;. segmentation masks and manual
ground-truth annotations generated on 28 images by an expert in
a user study (0.76 for rings and 0.83 for fibres; Extended Data Fig. 2
and Supplementary Figs. 12 and 13). In comparison, when applied to
live-cell STED, the U-Net,.q trained only on real images of fixed neurons
achieves an AUROC of only 0.60 and 0.59 for the segmentation of rings
and fibres, respectively. Thus, domain adaptation with TA-CycleGAN
enables the use of synthetic images to train a modality-specific seg-
mentation network (here U-Net,;,.) when no real annotated dataset is
available for training. This facilitates the cumbersome step in the train-
ing of any supervised machine learning method: creating data-specific
annotations. We next train TA-GAN;,. for resolution enhancement of
live F-actin confocal images using the live F-actin dataset and the pre-
trained U-Net,;,. as the auxiliary task network (Fig. 3e and Methods).
The annotations generated by the U-Net, ;.. are used to compute the
generation loss. Thus our image translation approach allows to train

aTA-GANto generate syntheticimages from live-cell confocal images
of F-actin in neurons (TA-GAN,,.) as well as a segmentation network
adapted to the live-cell imaging domain (U-Net,;,.), without the need
toannotate thelive F-actin dataset (Fig. 3f and Supplementary Fig. 14).

Automated modality selection with TA-GAN. Optimizing light
exposure is of particular concern for live-cell imaging, where multi-
pleacquisitions over an extended period of time might be required to
observe adynamic process. Insuper-resolution microscopy, repeated
imaging with high-intensity illumination can cause photobleaching,
which quickly diminishes the signal quality (Supplementary Fig. 15
and Extended Data Fig. 3). We evaluate how the integration of the
TA-GAN,,,. in the acquisition loop of an STED microscope can guide
imaging sequences for time-lapse live-cell microscopy. We apply our
approach to detect the activity-dependent remodelling of dendritic
F-actin from periodical rings into fibres in living neurons, which was
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Fig. 5| Monitoring prediction variability with the TA-GAN,;,.. a, Live-cell
imaging of dendritic F-actin using the same stimulation asin Fig. 4. The TA-
GAN_,,. variability maps are shown on the bottom row. The series was chosen as a
representative example from a total of 87 series. Colour bars: raw photon counts.
b, Example histograms of the pixel-level positive counts over the segmentation
of ten synthetic images (top) and high- and low-variability pooling. On the left,
the VSis below 0.5 (dashed line, no trigger); on the right, the VSis above 0.5
(STED triggered). ¢, The VS at each time point for the sequence shownina. When
the VSis above 0.5, the number of high-variability pixels exceeds the number of

low-variability pixels (b, VS > 0.5, right), which triggers the acquisition of areal
STED image (orange circles). d, The DCis computed between the segmentation
masks of synthetic and real STED image from the same time point (n =168 pairs of
realand syntheticimages). When an STED acquisition would have been triggered
using the VS criterion, the DC between the two corresponding images is lower.
Violin plots show the minimum, maximum and mean. Statistical analysis: two-
sided Mann-Whitney U test for the null hypothesis that the two distributions are
the same (*P=0.014). Scale bars, 1 pm.

previously observed in fixed neurons but could notbe monitored in liv-
ing neurons due to technical limitations'. For a given image acquisition
sequence, wefirstacquire aconfocalimage (Fig. 4a, step1). We next use
aMonte Carlo dropout approach* to generate ten possible synthetic
STED images with the TA-GAN, ;... We apply a different random dropout
mask for eachimage generated (Fig. 4a, step 2). Thisuse of MC dropout
with GANs has been previously demonstrated on naturalimages***° and
serves as an estimation of the variability of TA-GAN,;,. over the gener-
ated nanostructures. We next measure the optical flow between the ten
syntheticimages (Fig.4a, step 3,and Methods). The subregion with the
highest mean optical flow is acquired with the STED modality (Fig. 4a,
step 4) and given as an input to the TA-GAN, . together with the cor-
responding confocalimage of the full field of view (FOV; Fig. 4a, step 5).
This step helps to minimize the effect of signal variations encountered
in live-cell imaging. The TA-GAN,,,. generates, with different dropout
masks, ten new syntheticimages of the region of interest (ROI), which
are segmented by the U-Net,,,. to detect the presence of F-actin fibres
(Fig. 4a, step 6). The segmentation predictions of the U-Net, .. for the
syntheticimages are used to decide whether or not areal STED image
should be acquired at a given time point (Fig. 4a, step 7). The acquisi-
tion of a complete frame using the STED modality is triggered when
either (1) the segmentation prediction on the synthetic STED image is
different from the one obtained on the last acquired real STED image
(Fig. 4b-e) or (2) there is high variability in the segmentation predic-
tions on the ten synthetic STED images (Fig. 5and Methods).

For the first acquisition scheme we calculate at each time point
the mean DC between the segmentation masks from the tengenerated

synthetic images and the last real STED image (Fig. 4b and Supple-
mentary Figs.16 and 17). Anew STED image is acquired if the mean DC
between the synthetic and the reference real STED images is below a
predefined threshold of 0.5 (Fig. 4c). Using paired confocal and real
STEDimages acquired at the end of theimaging sequence (15 min), we
measure anincreasein the proportion of F-actinfibresinliving neurons
(Fig. 4b, last frame, and Extended Data Fig. 4). On the basis of control
sequences of two consecutive STED and confocal images pairs, we
measure that the segmentation masks of those real STED images are
more similar for sequences that would not have triggered a new real
STEDimageacquisition, indicating that STED acquisitions are triggered
attime points of higher biological change (Fig. 4e and Supplementary
Fig.18a,b). The value of the DC threshold is chosen based on prelimi-
nary imaging trials and previous knowledge about the remodelling
extentand dynamics, which, depending on the experimental context, is
not always available before the imaging experiment. With this acquisi-
tionscheme an average of 1.6 STED images are acquired per sequence
(15 confocal images per sequence, 72 sequences). It reduces the light
dosein average by 89% in the central ROl compared with acquiring 15
consecutive STED images.

We developed a second method to trigger STED image acqui-
sitions, which is based on the variability in the predictions of the
TA-GAN,,... This approach is particularly useful when not enough
previous knowledge on the expected structural change is available
to define a threshold for the DC before the experiment. With this
acquisition scheme, for each confocal acquisition, we measure
the pixel-wise variability of the segmentation predictions on the
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ten generated synthetic STED images (Fig. 5a). Pixels predicted to
belongto the same class (fibres or not fibres) in >80% of the synthetic
images are defined as low-variability pixels, and pixels predicted to
belong to the same class in <80% by the TA-GAN,;,. are defined as
high-variability pixels (Fig. 5b). The proportion of high-variability
pixels corresponds to the variability score (VS; Supplementary
Fig.19). When the VS is higher than 0.5 for the ROI, a full STED image
is acquired (Fig. 5 and Supplementary Fig. 20). We validate the VS
criterion on a set of real STED reference images and their corre-
sponding synthetic counterparts. On these images, we measure a
higher DC between the segmentation masks when areal STED image
acquisition would not have been triggered by the VS threshold
(Fig. 5d and Supplementary Fig. 18c,d). This indicates that the VS
is a good indicator of the similarity between the real and synthetic
STED image at a given time point. This approach can be beneficial to
detect unexpected patterns and rare events. An average of 3.8 STED
images were acquired for each sequence (87 sequences) using the
variability-based triggers, which reduces the light dose in average
by 74% in the central ROl compared with acquiring an STED image of
the ROl atevery frame. For both approaches, modulation of the STED
modality acquisition frequency can be achieved by adapting the DC
or VS thresholds. The resulting frame rate with TA-GAN assistance
is comparable to acquiring sequences of paired confocal and STED
images (Extended Data Table 1).

Discussion

Weintroduce TA-GAN for resolution enhancement and domain adapta-
tion. We demonstrate its applicability to optical nanoscopy (Extended
Data Fig. 5) and show that an auxiliary task assisting the training of a
generative network improves the reconstruction accuracy of nano-
scopicstructures. The applicability of our method is demonstrated for
paired confocal and STED microscopy datasets of F-actinin axons and
dendrites, synaptic protein clusters, simulated nanodomains as well
as for paired bright-field and SIMimages of dividing S. aureusbacterial
cells. We show that the TA-GAN method is flexible and can be trained
with different auxiliary tasks such as binary segmentation, semantic
segmentationand localization. For unpaired datasets, we introduce the
TA-CycleGAN model and demonstrate how the structure-preserving
domain adaptation opens up the possibility to create paired datasets
of annotated images that cannot be acquired simultaneously. The
synthetic STED images from the live-cell domain can be used to train
aneural network that performs well for the segmentation of F-actin
nanostructures in real STED images, without the need for manual
re-annotations of the new live-cell imaging dataset. The TA-GAN for
resolution enhancement in living neurons can be integrated into the
acquisitionloop of an STED microscope (Figs. 4 and 5). We validate how
this TA-GAN model can be helpful in assisting microscopists by auto-
matically taking decisions that optimize the photonbudget and reduce
photobleaching (Extended Data Fig. 3) in live-cell optical nanoscopy
acquisition sequences. The TA-GAN increases the informative value
of each confocal acquisition and automatically triggers the acquisi-
tion of an STED image only in the regions and time steps where this
acquisitionisinformative due to variations (Fig. 4) or uncertaintiesin
the predicted nanostructures (Fig. 5).

Future workin calibrating the network’s probabilistic output could
lead to animproved quantification of its confidence. Multiple succes-
sive frames could also be given as input to the generator to introduce
temporal informationinstead of using static frames individually. This
could enable the generator to decode the rate of biological change
andintroduce this knowledge to the next frame prediction, leading to
smoother transitions between synthetic images. The TA-GAN model,
as presented here, enables the visualization of biological dynamics
over longer sequences with reduced photobleaching effects. Thus,
TA-GAN-assisted STED nanoscopy can guide microscopists for opti-
mized acquisition schemes and reduced light exposure.

Methods

Sample preparation and STED microscopy

Cell culture. Dissociated Sprague Dawley rat hippocampal neurons
were prepared as described previously>*° in accordance with and
approved by the animal care committee of Université Laval. For live-cell
STED imaging, the dissociated cells were plated on poly-D-lysine-
laminin-coated glass coverslips (18 mm) at a density of 322 cells per
mm?and used at 12-16 days in vitro.

STED microscopy. Live-cell super-resolutionimaging was performed
on a four-colour STED microscope (Abberior Instruments) using a
40 MHz pulsed 640 nm excitation laser, an ET685/70 (Chroma) fluo-
rescencefilterand a775 nmpulsed (40 MHz) depletionlaser. Scanning
was conducted using a pixel dwell time of 5 ps, a pixel size of 20 nm and
an 8 linerepetition sequence. The STED microscope was equipped with
amotorized stage and auto-focus unit. The imaging parameters used
are described in Supplementary Table1.

The cultured neurons were pre-incubated in HEPES buffered arti-
ficial cerebrospinal fluid (aCSF) at 33 °C with SiR-actin (0.5 pM, Spiro-
Chrome) for 8 min and washed once gently in SiR-actin-free media.
Imaging was performed in HEPES buffered aCSF of 5 mM Mg?'/0.6 mM
Ca* (NaCl 98 mM, KCI 5 mM, HEPES 10 mM, CaCl, 0.6 mM, glucose
10 mM, MgCl, 5 mM) using a gravity-driven perfusion system. Neuronal
stimulation was performed with an HEPES buffered aCSF containing
2.4 mM Ca*, glycine and without Mg (NaCl 98 mM, KCI 5 mM, HEPES
10 mM, glycine 0.2 mM, CaCl,2.4 mM, glucose 10 mM). Solutions were
adjusted to an osmolality of 240 mOsm per kg and a pH of 7.3.

Datasets

Axonal F-actin dataset. The publicly available axonal F-actin dataset”
wasused to trainthe TA-GAN,, for confocal-to-STED resolution enhance-
ment of axonal F-actin nanostructures using the binary segmentation of
F-actin rings as the auxiliary task. The original dataset consisted of 516
paired confocal and STED images (224 x 224 pixels, 20 nm pixel size)
of axonal F-actin in fixed cultured hippocampal neurons from ref. 13.
Thirty-oneimages fromthe original dataset were discarded for not con-
taining annotated axonal F-actin rings. The remaining images were ran-
domly split into a training set (377 images), a validation set (56 images)
and atestingset (52images), which was not used for training. The manual
polygonal bounding box annotations of the axonal F-actin periodical
lattice (F-actin rings) from the original dataset were retained (Fig. 1b).

Dendritic F-actin dataset. The publicly available dendritic F-actin
dataset was used to train the TA-GAN,,,,s for confocal-to-STED resolution
enhancement of dendritic F-actin nanostructures using the semantic
segmentation of F-actin rings and fibres as the auxiliary task. The den-
dritic F-actin dataset was also used to train the TA-CycleGAN for domain
adaptation. The original dataset fromref. 13 was splitinto a training set
(304 images), avalidation set (54 images) and a testing set (26 images, 12
for low activity and 14 for high activity). We used the same testing split
as the original publication to compare the segmentation results over
the sameimages (Supplementary Fig.10). The dataset consists of paired
confocaland STED images of the dendritic F-actin cytoskeleton in fixed
cultured hippocampal neurons, which had been manually annotated
using polygonal bounding boxes. The training and validation crops
were taken from large STED images (between 500 x 500 pixels and
3,000 x 3,000 pixels, 20 nm pixel size) using a sliding window of size
224 x 224 pixels with no overlap. If less than 1% of the pixels of the crop
were annotated as containinga structure of interest (F-actin rings and/
orfibres), the crop was discarded fromthe set. This operationresulted
in4,331 crops for training and 659 crops for validation.

Simulated nanodomains dataset. We used the pySTED image simula-
tion platform® to create a simulated dataset of nanodomains within
a dendritic spine. The pySTED simulator requires as input a matrix
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providing the position and number of fluorescent molecules for each
pixelinthe FOV, referred to as adatamap. Each datamap (64 x 64 pixels
or1.28 x 1.28 um) consisted of amushroom spine-like shape (between
0.12 pum?and 0.48 pum?) containing N (1-6) regions (20 x 20 nm) witha
higher fluorophore concentration, which we refer to as nanodomains.
Inthe majority of theimages, the simulated STED modality was required
to resolve all nanodomains. The position of the nanodomains was
randomly distributed on the edge of the synapse (<140 nm away from
the edge) with aminimal distance of 40 nm between nanodomains. We
allowed random rotation and translation of the spine making sure that
the nanodomains were kept within the FOV. For training, we generated
atotal of1,200 simulated datamaps (200 for each number of nanodo-
mains). The training and validation datasets were split using a 90/10
ratio. The localization maps are matrices of size 64 x 64 pixels, where
the value of each pixel is the cubic root of the distance to the closest
nanodomain. Two testing datasets were created. The first consisted of
75 simulated datamaps with different numbers of nanodomains (2-6,
15 images per number of nanodomains). The second consisted of 80
images with two nanodomains, where the distance between the pair
of nanodomains varies from 40 nm to 450 nm.

Synaptic protein dataset. The publicly available synaptic protein
dataset consists of paired two-colour STED and confocal images of
the synaptic protein pair PSD95 (postsynapse) and bassoon (presyn-
apse) in fixed hippocampal neurons obtained fromref. 41. The dataset
was split into a training set (32 images), a validation set (2 images)
and a testing set (9 images). The confocal and STED images from the
training and validation sets were first registered using the pipeline
presented in Supplementary Fig. 21, resulting in 690 crops for training
and 35 crops for validation. The segmentation maps were generated by
automatically segmenting the STED images using wavelet transform
decomposition**with the same parameters (scales 3and 4) asinref. 41.
Nosegmented clusters were discarded based on size or position, follow-
ing theintuition that even the smallest structures should be generated.
The localization maps were created from a black image by placing a
white pixel at the position of the intensity-weighted centroid of each
segmented cluster, and then applying a Gaussian filter withastandard
deviation of 2 (Supplementary Fig. 22).

S. aureus dataset. We used the bright-field images and the correspond-
ing SIMimages fromthe publicly available S. aureus dataset for segmen-
tation fromref. 44. This dataset includes 12images (6 for training, 1 for
validation and 5 for testing) with manual whole-cell annotations. The
bright-field images (80 nm per pixel) were rescaled to the size of the
SIM images (40 nm per pixel) using bilinear interpolation, and the cell
annotations were rescaled using nearest-neighbour interpolation. The
whole-cell annotations were converted to binary segmentation maps
with pixel values of O for background and 1 for cells. These whole-cell
segmentation maps were used as LR annotations. HR annotations high-
lighting the cell division boundary were generated from the SIMimages.
To generate the HR annotations, we first applied a Sobel filter to the
SIMimages to find the outer and inner edges of the cells, followed by a
Gaussian filter withastandard deviation of 1. We next applied a thresh-
old corresponding to 20% of the maximum value of the filtered result.
This resulted inabinary mask of the boundary between dividing cells as
wellas of the cell outer membrane. We similarly applied a Sobelfilter to
the LR annotations, followed by a Gaussian filter with a standard devia-
tionofland applied athreshold of O to generate abinarized cell border
mask. The binarized cell border mask was subtracted from the mask of
the outer and inner cell borders to generate the final HR annotations.
The training crops were generated using a sliding window of size
256 x 256 pixels with an overlap of 128 pixels. Crops were discarded
if they contained less than 3% annotated pixels. The validation crops
were generated using the same sliding window method, but for asize of
128 x 128 pixels without overlap. All validation crops were considered,

regardless of the percentage of annotated pixels. The resulting dataset
comprised 202 training crops and 64 validation crops.

Live F-actin dataset. The live F-actin dataset was acquired for this
study and was used to train: (1) the TA-CycleGAN for live and fixed
domain adaptation and (2) the TA-GAN,;... The live F-actin dataset
consists of 800 paired STED and confocal images of F-actin stained
withthe fluorogenic dye SiR-actin (Spirochrome) inliving hippocampal
cultured neurons (Supplementary Table1). The dataset was splitintoa
training set (753 images) and a validation set (47 images). The images
were of variable size (from a minimum width of 2.76 to a maximum of
49.1 um, pixel size is always 20 nm).

Translated F-actin dataset. The translated F-actin dataset was used
to train the TA-GAN,,,.. This dataset corresponds to the dendritic
F-actin dataset adapted to the live-cell STED imaging domain using
the TA-CycleGAN for fixed-to-live domain adaptation. It contains the
same number ofimages, the same training, validation and testing splits,
and the same image characteristics (crop size, pixel size, annotations)
asthe dendritic F-actin dataset.

TA-GAN training procedure

The TA-GAN was developed from the cGAN model for image-to-image
translation pix2pix*, available at https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix. All the functions for training and testing
TA-GAN use pytorch® (1.0.0), torchvsion (0.2.1), numpy (1.19.2), Pillow
(8.3.1), tifffile (2020.0.3), scipy (1.5.4) and scikit-image (0.17.2). Comparable
methods using cGANsfor enhancingtheresolution of microscopy images
are trained using pixel-wise generation losses to compare the generated
image with the ground truth, such as MSE’, absolute error™>* or structural
similarity index"'®. For the TA-GAN, the generationlossis computed by com-
paringthe output of anauxiliary task network applied on thereal (ground
truth) andgenerated (synthetic) images (Fig.1a). The other standard losses
for conditional GANs* arealso used for TA-GAN: the discrimination losses
for the classification of the real and generated images, and the GAN loss
for the misclassification of generated images. The networks (generator,
discriminator and task network) are optimized using the Adam optimizer
withmomentum parameters 8, = 0.5and 8, =0.999for all TA-GAN models.
Wefollowthesame approachasthe pix2pix paper*: ateach epochwealter-
natebetweenonegradient descent step onthediscriminator, thenone step
onthegenerator, then onestep onthetask network. Supplementary Table
2 summarizes the settings for the resolution-enhancement experiments
presented in this paper, and Supplementary Table 3 presents the hyper-
parameters used for training the TA-GAN for each of these experiments.

TA-GAN training with segmentation auxiliary tasks. The TA-GAN,,,
TA-GANpe,a, TA-GAN,,,, and TA-GANg, were trained for resolution
enhancement using the segmentation of subdiffraction biological struc-
tures as the auxiliary task. The output of the segmentation network was
compared with the ground-truth annotations using an MSE loss. The loss
computed from the real STED image (task loss, TL in Fig. 1a) was back-
propagated tothe segmentation network to optimize its weights, and the
loss from the synthetic STED image (GEN) optimizes the generator. The
other losses computed were standard cGAN losses: the GAN loss (GAN,
misclassification of syntheticimages as realimages), the discriminator
losses (DR, classification of realimages as real, and DG, classification of
generated images as synthetic). The validation losses were not used for
early-stopping because of the adversarial nature of GANs. The validation
images were instead used as a qualitative assessment of the training
progress to select the bestiteration for testing the model.

Forthe TA-GAN,,, theauxiliary task was the segmentation of axonal
F-actinrings. The output of the auxiliary task network was the predicted
segmentation maps of F-actin rings. The spatial resolution of the real
and syntheticimages were not significantly different (Supplementary
Table 4 and Supplementary Fig. 23).
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For the TA-GAN,., the auxiliary task was the semantic segmenta-
tion of dendritic F-actin rings and fibres. The output of the auxiliary
task network was a two-channel image, with the predicted segmenta-
tion maps of F-actin rings in the first channel and of F-actin fibres in
the second channel. The spatial resolution of the real and synthetic
images were not significantly different (Supplementary Table 4 and
Supplementary Fig.23).

For the TA-GANg,, the auxiliary task was either whole-cell seg-
mentation (LR annotations) or the segmentation of the boundary
between dividing cells (HR annotations). The output of the auxiliary
task networkis aone-channelimage with the predicted segmentation
maps of either whole cells or the dividing cellboundaries, respectively.

For the TA-GAN,,, trained using asegmentation task, the output of
the segmentation network is a two-channel image with the predicted
segmentation maps of PSD95 clustersin the first channel and bassoon
inthe second channel. The spatial resolution of the real and synthetic
images were not significantly different (Supplementary Table 4 and
Supplementary Fig. 23).

TA-GAN training with localization auxiliary tasks. The TA-GAN,,
and TA-GANy,,, for confocal-to-STED resolution enhancement were
trained using a localization network to compute the generation loss.
Thelocalization network took an STED image as input to outputamap
of dots indicating the intensity-weighted centroids of all detected
clustersinthe STED image.

The TA-GAN;,,, was trained on the synaptic protein dataset using
the two-channel confocal image rescaled and registered to the STED
image. The generation loss (GEN in Fig. 1) was the MSE between the
weighted centroids of the real STED image and the localization predic-
tions from the task network on the syntheticimage. The spatial resolu-
tion of the real and synthetic images were not significantly different
(Supplementary Table 4 and Supplementary Fig. 23).

TA-GANy,q, Was trained on the simulated nanodomain dataset using
the simulated confocalimage asinput. The generation loss was the MSE
betweenthe localization maps from the ground-truth datamaps and the
localization predictions from the task network onthe syntheticimage.

TA-CycleGAN training for domain adaptation. The TA-CycleGAN
modelwas developed from the CycleGAN model®. As for the standard
CycleGAN, the TA-CycleGAN consists of four networks: two generators
(onethattranslates the domain of fixed-cell STED imaging (F) into the
domainoflive-cell STED imaging (L), and one that translates domain L
intodomainF), and two discriminators (one for domain F, the other for
domainL), which are combined with a fifth network, the task network
(Fig. 3c). The TA-CycleGAN was applied to non-paired images, where
the prediction of the generator for a given input cannot be compared
with a corresponding ground truth. Instead, the generated synthetic
image was passed through a second generator and converted back to
theinput domain where it was compared with the initialimage (ground
truth) for the computation of losses.

The TA-CycleGAN for fixed-to-live domain adaptation was trained
using two datasets: the dendritic F-actin dataset (F) and the live F-actin
dataset (L). The auxiliary task was the semantic segmentation or F-actin
rings and fibres on the dendritic F-actin dataset, for which manual
bounding box annotations were available®™. The U-Netgycd.qeng WaSs
already optimized for the semantic segmentation of F-actin rings and
fibres in fixed-cell STED images®. The generation loss was the MSE
between the U-Nety,.q.q4e.nq SEEMentation prediction on the real fixed-cell
image (fixed) and the end-of-cycle fixed-cell image (fixed,..) (Fig. 3c).

Training procedures of resolution enhancement and
denoisingbaselines

Enhanced super-resolution generative adversarial network. ESR-
GAN x4 (ref. 33) is a state-of-the-art method for upsampling natural
images. ESRGAN was implemented from the public GitHub repository

(https://github.com/xinntao/Real-ESRGAN). We fine-tuned ESRGAN
on two of our datasets, the axonal F-actin dataset and the simulated
nanodomains dataset, using the code and pretrained weights released
with the most recent iteration of the model, Real-ESRGAN**. For both
datasets, the input of the model is the confocal image, and the target
outputisthe corresponding STED image upsampled four times using
nearest-neighbour interpolation. Even though the confocal and STED
images are the same size, the upsampling had to be kept in the model
to use the pretrained weights. ESRGAN was fine-tuned for 50,000
iterations. The model was applied to the validation images to ensure
training had converged after 50,000 iterations. All default parameters
proposed by the authors were used, except for theinput crop size and
batchsize (128 pixels and 4 for the axonal F-actin dataset, 64 pixels and
16 for the simulated nanodomains dataset).

Content-aware image restoration. CARE uses a U-Net for deblur-
ring, denoising and enhancing fluorescence microscopy images. CARE
wasimplemented from the public GitHub repository (https://github.
com/CSBDeep/CSBDeep). We used the standard CARE network for
image restoration and enhancement. The residual U-Net generator
was optimized from scratch on our datasets. The original CARE model
doesnot use dataaugmentation, asitis trained on unlimited simulated
images. We augmented our datasets before training the CARE models
sothatthe number of trainingimagesis similar to the one used for the
original model trained on simulated images (8,000 synthetic pairs
of 128 x 128 pixels). For the axonal F-actin dataset, each image from
the training set is augmented 32 times by cropping the four corners
into128 x 128 crops and applying the 8 possible flips and rotations to
each corner crops. The 377 224 x 224 images were augmented into
12,064 different crops. For the simulated nanodomains dataset, the
64 x 64 images were too smallto be further cropped, but were instead
augmented 8 times using flips and rotations. The 1,080 training images
were augmented into 8,640 differentimages. The patience parameter
for thelearning-rate decay function was adjusted from10 to 20 epochs
after noticing that the learning rate was reduced too abruptly to allow
the training loss to properly converge. Except for the patience of the
learning-rate decay function, default hyperparameters were used and
the model wastrained for 100 epochs using amean absolute error loss.
Theepochthatreached the lowest validation loss was used for testing.

Residual channel attention network. RCAN*? uses residual chan-
nel attention networks to increase the resolution of natural images.
3D-RCANP adapts the original model to denoise and sharpen fluores-
cence microscopy image volumes. We used the code implemented
with TensorFlow and Keras from the publicly available GitHub reposi-
tory (https://github.com/AiviaCommunity/3D-RCAN). We used the
same patch size as for training the TA-GAN,, (128 x 128 pixels) and the
TA-GANy,no (64 % 64 pixels). We trained different RCAN models using
configurations of hyperparameters that were inspired by both the
two-dimensional (2D)°” and the three-dimensional (3D)" versions. We
first trained a model on the axonal F-actin dataset with the hyperpa-
rameters from the 2D RCAN version. Even though both training and
validationlosses had converged, the output obtained with the weights
from the epoch of lowest validation loss (epoch 205 out 0f1,000) isan
unrecognizable and smoothed version of the input. We hypothesize
that this version of the model is too deep (15 million trainable param-
eters) for the number of training images. We trained a second version
of RCAN using the hyperparameters fromref. 15. The loss when train-
ing this model quickly converges to aminimum (epoch 34 out of 300)
andthe resultingimages are smoothed versions of the input confocal
image. This simplified version of RCAN might be too lightened for the
2D context. The architecture that ended up performing the best with
our datasets mixes hyperparameters from bothimplementations. (1)
We used 2D convolutions because our images are 2D, as in RCAN. (2)
We set the number of residual groups to 10 in the residual in residual
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structure, asin 3D-RCAN. (3) Theresidual channel attention blocks were
sett020, asin RCAN. (4) We set the number of convolution layersin the
shallow feature extraction and residual in residual structure to 32, as
in 3D-RCAN. (5) We set the reduction ratio to eight as in 3D-RCAN. (6)
The upscaling module was removed because the confocal and STED
images are the samesize, as is the case for 3D-RCAN. This RCAN model
was trained for 1,000 epochs for both datasets to ensure convergence
of the validation loss. The model reaching the lowest validation loss
(epoch 838 for the simulated nanodomains dataset, epoch 398 for the
axonal F-actin dataset) was used for testing.

cGAN for image-to-image translation. pix2pix* is a state-of-the-art
method forimage-to-image translationin naturalimages. It wasimple-
mented with Pytorch from the publicly available GitHub repository
(https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix). The
TA-GAN and pix2pix share the same architecture with or without the task
assistance. For each experiment, the same hyperparameters and data-
sets as for the TA-GAN were used for training (Supplementary Table 3),
replacing only the generation loss with a pixel-wise MSE loss between
the ground-truth and generated STED images. The results from this
baseline are compared to the TA-GAN for all fixed-cell datasets.

Denoising convolutional neural network. The denoising convolu-
tional neural network (DnCNN)** is a state-of-the-art denoising method
for naturalimages. The trained version of DnCNN** available at https://
github.com/yinhaoz/denoising-fluorescence was directly applied to
our test images for all datasets (Supplementary Fig. 1). The datasets
usedinthis study do not provide the required characteristics toretrain
DnCNN (thatis, lack ofimages with different noise levels); therefore, a
published version of the DnCNN trained on the fluorescence micros-
copy denoising dataset” was used asis. It was included as abaseline to
show how the confocal-to-STED and bright-field-to-SIM transforma-
tions are not denoising tasks.

Noise2Noise. Noise2Noise** is a state-of-the-art deep learning denois-
ing method that does not require clean (denoised) data for training.
Like DnCNN, we used the training version available at https://github.
com/yinhaoz/denoising-fluorescence and directly applied it to the
testimages from our datasets, without retraining or fine-tuning (Sup-
plementary Fig.1).

Evaluation of networks performance

Segmentation of F-actin nanostructures in synthetic STED images.
The performance of the TA-GAN,, was measured on the images from
the test set of the axonal F-actin dataset, which were held-out and not
used for training the TA-GAN,, or the baselines. The MSE, PSNR and
SSIM were computed between the ground-truth and synthetic STED
images of the test set (Extended Data Fig. 1). In addition, U-Netcq.o0
aU-Net that was trained to segment axonal F-actin rings on real STED
images only” (available at https://github.com/FLClab/STEDActinFCN),
was used to produce segmentation masks of axonal F-actin rings on
the real and synthetic STED image pairs (Extended Data Figs.1and 3),
which were compared using the DC and IOU metrics. We used the
trained weights provided and did not retrain U-Netg,.q.. Specifically
for this work.

The performance of the TA-GAN,,,; was evaluated on the test set
of the dendritic F-actin dataset, which was held-out and not used to
trainthe TA-GANp g Or the U-Netg,cq.geng- The U-Nete,eq.gena, @ U-Net that
was trained for the semantic segmentation of dendritic F-actin rings
and fibres onreal STED images only” (available at https://github.com/
FLClab/STEDActinFCN), was used to segment the real and synthetic
STED images. The segmentation masks of both F-actin rings and fibres
were compared on thereal and synthetic STED image pairs (Supplemen-
taryFig.10). We used the trained weights provided and did not retrain
U-Netgyeq-gena SPECIfically for this work.

Assessment of synaptic protein cluster morphology. The perim-
eter, eccentricity, area, distance to nearest neighbour from the
same channel and distance to nearest neighbour from the other
channel of the protein clusters from the synaptic protein dataset
were measured in the confocal, STED images and synthetic images
(Fig.2and Supplementary Fig. 7). The distribution of each morpho-
logical feature over all associated clusters from the test set images
was computed using a Python library for Statistical Object Distance
Analysis (pySODA)* (Supplementary Fig. 7). A foreground mask
was generated following ref. 41: applying a Gaussian blur (standard
deviation of 10) on the sum of both STED channels, and threshold-
ing the image using 50% of the mean intensity value. Only clusters
from the foreground mask were considered for the analysis. The
same parameters as in ref. 41, which were optimized for real STED
images of synaptic protein clusters, were used for the analysis:
wavelet segmentation scales of 3 and 4, a minimum cluster area
of 5 pixels, and minimum cluster width and height of 3 pixels. The
weighted centroids of the detected clusters were calculated on the
raw STED images.

Classification of S. aureus cells. The TA-GAN,, performance was
evaluated using the classification of dividing bacterial cells, which
is a task that cannot be achieved using only the bright-field images.
A simple threshold optimization applied on bright-field images was
not sufficient to classify the cells as dividing or not (Supplementary
Fig. 9). A dividing bacterial cell is defined as having a clear boundary
between the two dividing cells that can be identified in the SIMimage.
Wetrained the ResNets, using the SIMimages (training set) and the HR
annotations, to segment the dividing cell boundaries. The ResNets, is
aResNet-9 architecture trained for 200 epochs using an MSE loss, a
learning rate of 0.0002 and the Adam optimizer. All real SIM images
and synthetic SIMimages generated from pix2pixs,, TA-GAN;, trained
with LR annotations and TA-GANg, trained with HR annotations are
segmented by ResNetg,.

The dividing/non-dividing cells classification was based on the
segmentation of the ResNet,: (1) dividing if the segmentation mask
contained at least 20 positive pixels and (2) non-dividing if the seg-
mentation mask was empty for a given cell. For segmentation masks
containing 1-19 pixels, the cells were identified as ambiguous and
discarded. On the real SIM images test set, 251 cells were identified as
non-dividing (single cells) and 159 as dividing (showing a clear bound-
ary between the dividing cells).

User study for the segmentation of live F-actin images. A set of 28
STED images (224 x 224 pixels) from the live F-actin dataset test set
was labelled by an expert using a Fiji°*> macro to test the performance
ofthe U-Net,;,. trained on the domain-adapted dendritic F-actin data-
set for the segementation of real live-cell STED images. In addition, a
second set of 28 syntheticimages, selected from the domain-adapted
dendritic F-actin dataset was included in the user study. The expert
was presented with animage from one of the two sets, without being
informed whether the image was real or synthetic. For each image,
the expert draws polygonal bounding boxes that enclosed all regions
identified as F-actin rings and fibres.

User study for the localization of nanodomains. The positions of the
nanodomains in the real and synthetic test images of the simulated
nanodomains dataset were identified by an expert to compare thelocal-
ization performance of the TA-GANy,,, with the baseline methods. The
expert was presented with animage without being informed whether
theimage was real or synthetic, or by which model it was generated. For
eachimage, the expertselects the pixel identified as the centre of each
nanodomain detected. To compute the F1score,adetectionis defined
asatrue positive ifit is within 3 pixels of the ground-truth position of
ananodomain centre.
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TA-GAN-assisted live-cell STED microscopy

Training of the TA-GAN,;,.. The TA-GAN,,,. for resolution enhancement
of live-cell STED imaging was trained on the new and not previously
annotated live F-actin dataset. The auxiliary task was the semantic
segmentation of dendritic F-actin rings and fibres. The original live
F-actindataset did notinclude any manual annotations. To circumvent
this limitation, the U-Net,;,. segmentation network was pretrained on
the domain-adapted dendritic F-actin dataset. The pretrained U-Net, ;.
was frozen during the TA-GAN, . training and was used to compute the
MSE generation loss between the segmentation prediction of the real
and the synthetic STED images.

To better adapt to cell-to-cell signal variations and experimental
variability in live-cell STED images, the input of the generator has three
channels: (1) the confocal image, (2) a real STED subregion acquired
in the vicinity of the ROl and (3) an image indicating the position of
the STED subregion (Fig. 3e). Training using this three-channel input
enables the generator to learn features from the STED subregion and
turns the resolution-enhancement task into animage-completion task.

Training of the U-Net,; .. The U-Net,;,. was built around a U-Net-128
(ref.54) architecture with batch normalization and two output channels
(F-actin rings and fibres) for the segmentation of F-actin nanostruc-
turesinliving neurons.

The training of the U-Net,,,. required an annotated dataset of
images of the live-cell domain. A random subset (2,069 training crops
and 277 validation crops) of the dendritic F-actin dataset was translated
intothelive-cell domain usingthe generator, . (Supplementary Fig.11).
Thisresultedinthe domain-adapted F-actin dataset. The manual annota-
tion fromthe fixed-cellimages were associated with the corresponding
synthetic images from the live-cell domain (Supplementary Fig. 11a).

Random crops of 128 x 128 pixels of the domain-adapted F-actin
dataset and their corresponding annotations were used to train
U-Net,;,. on images of the live-cell domain. Horizontal and vertical
flips were used for data augmentation. Due to class imbalance in the
training set, the segmentation loss for fibres was weighted by a factor
of2.5, whichreflected the ratio of total annotated pixels for each class.
The U-Net, ;. was trained for 1,000 epochs and the iteration with the
lowest segmentation loss over the validation set was kept for further
use and testing. The optimal threshold to binarize the segmentation
prediction was determined as the value that reached the optimal DC
over the validation set (-0.53 for the raw output predictions).

TA-GAN integration in the acquisition loop. The TA-GAN, ;. trained
for resolution enhancement for live-cell imaging was directly inte-
grated in the imaging acquisition process of the STED microscope
(Fig.4a). Atthe beginning and at the end of each experiments, an FOV of
10 x 10 umwas selected and reference STED and confocalimages were
acquired. The reference images were used to monitor the dendritic
F-actin activity-dependent remodelling in living neurons (Extended
Data Fig. 4). Similarity measurements between the synthetic and real
STED images do not show time-dependent changes in the generation
accuracy over allimaging sequences (Supplementary Fig. 24).

Foreachtime point, asafirststep (Table1),aconfocalimage of the
ROl is acquired to serve as the input to the TA-GAN, . for the genera-
tion of ten synthetic resolution-enhanced images of the ROI (step 2,
Table1). Theten syntheticimages of steps 2and 5 are generated using
different random dropout masks created with the default dropout
rate of 0.5 fromref. 55 and confirmed to be appropriate when applied
on GANs by ref. 49,

Thethird stepisthe selection of an STED subregion outside the ROI
(step 3, Table 1), whichis given as input, along with the confocal FOV, to
the TA-GAN,,,. to account for signal variationin live-cellimaging. Inthe
fourthstep, the STED subregionisacquired onthe microscope. Finally,
this subregion (step 5, Table 1) is given as input to the TA-GAN together
with the confocalimage as described inthe previous section. The STED

Table 1| Steps performed at each time point for automated
TA-GAN assistance

1 A confocal image of the FOV (10x10 um) is acquired.

2 Using dropout, ten synthetic images of the FOV are generated.

3 A subregion (2x2um) of highest variability outside the ROl is identified
with optical flow.

4 A real STED image of this subregion is acquired.

5 The confocal images of the FOV and of the STED subregion are used by
the TA-GAN to produce ten new synthetic STED images of the FOV.

6 The fibres in the ROI (central region of 6x6 um) are segmented by
U-Net ..

7 The segmentation predictions are used to decide if an STED image
should be acquired based on either (1) the mean DC with the
segmentation of the last acquired STED or (2) the variability between
the ten segmentation predictions.

images generated by TA-GAN,;,. more closely match the ground-truth
STED ROI when an STED subregion is given as input along with the
confocal FOV (Supplementary Fig. 25).

Inourimaging-assistance framework, we choose for step 3 (Table 1)
to compute the pair-wise optical flow (OF) between the ten synthetic
images generated with the TA-GAN,;,. using dropout. The OF is com-
puted using a Pythonimplementation of the Horn-Schunck method*
with the Python multiprocessing library, parallelizing the computa-
tions on eight central processing units to increase the computation
speed and avoid delays. The OF is computed between each pair of the
ten synthetic images (1-2,2-3, ...). To translate the pixel-wise OF to a
region-wise maps, the 500 x 500 pixels OF image was downsampled
toa5 x 5map using the mean of each100 x 100 pixels region. The sub-
region with the highest mean displacement is imaged with the STED
modality. We decided to use OF as ameasure of disparity between the
synthetic generations, but other measures (for example, standard
deviation, SSIM, meanintensity) could be used for experiments where
computation time needs to be minimized (Supplementary Table 5).
The sequence of acquiring the full confocal (2.6 s), generating ten
synthetic STED images (2.5 s), computing the OF (6.1s), acquiring the
STED subregion (1.3 s), generating ten synthetic STED images again
(2.5s) and taking the decision requires a total of around 15.0 s per
500 x 500 pixels regions (10 x 10 pm). In comparison, acquiring an
STED image requires13.6 susing the same parameters (pixel size, pixel
dwell time and size of the FOV).

Steps 2, 3, 5 and 6 are computed with a graphics processing unit
to avoid computation induced delays. To do so, the commands from
steps 2,3, 5and 6 are sent from the microscope’s control computer to
agraphics-processing-unit-equipped computer using the Flask®” web
framework Python module, version 2.0.3. Allautomated acquisitions
use the SpecPy Pythonlibrary version1.2.1tointerface with the Imspec-
tor software (Abberior Instruments).

Live-cellimaging decision guidance using the TA-GAN

The TA-GAN,;,. predictions are used for decision guidance on the opti-
mal STED and confocal acquisitionsequence and applied to theimaging
of F-actin remodelling dynamics in cultured hippocampal neurons.
Foraregionsize of 6 x 6 um (300 x 300 pixels), as used for the live-cell
experiments, a confocal acquisition applies to the sample a photon
dose 0f1.168 x 10" photons per second, compared with1.543 x 10" pho-
tons per second with STED. The TA-GAN assistance aims atreducing the
light dose by limiting STED acquisitions to only the time points where
astructural change is predicted.

TA-GAN assisted monitoring of expected structural change.
The proof-of-concept experiment targets the expected activity-
dependent remodelling of dendritic F-actin rings into fibres'®>. On the
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basis of previous findings, the area of F-actin fibres was expected to
increase following a neuronal stimulation”. The structural remodel-
ling is monitored by comparing the area of segmented F-actin fibres
onthesyntheticand the reference real STED images. F-actin fibres are
segmented on the synthetic STED images by U-Net,;,.. At each time
point, steps1-5are performed as described in Table 1. To decide, fol-
lowing step 5, whether or not an STED image of the full ROl should be
acquired, ten syntheticimages of the ROI (acquired with the confocal
modality) are generated and segmented by the U-Net, ;... The mean
of the ten segmentation maps is compared with the segmentation
map predicted for the last acquired real STED image (reference STED)
using the DC metric. Alow DCis indicative of changes in the F-actin
nanostructures in respect to the reference STED. A full real STED
image is acquired if the DC falls below a pre-established threshold
of 0.5. The value of 0.5 was chosen by performing several trials on
live-cell F-actin imaging. The value of the DC threshold should be
adapted to the type of structural remodelling observed. Each time
the acquisition of an STED on the full ROl is triggered, the STED
reference image is updated for subsequent comparison of the seg-
mentation maps.

Monitoring the TA-GAN,;,. generator’s variability. The pixel-wise gen-
erator’s variability can also be monitored to trigger the imaging of
a full ROl with the STED modality. At each time point, steps 1-5 are
performedasdescribedin Table 1. The ten synthetic images generated
atstep 5are segmented by the U-Net, ., resulting in ten segmentation
maps for F-actinrings and fibres. The ten segmentation maps of F-actin
fibres are binarized and summed. Pixels in the summed segmentation
prediction has avalue between zero and ten (zerowhen the presence of
fibres was predicted in none of the syntheticimages and tenwhenitis
predictedin all). The variability of the generator on the segmentation
prediction is evaluated from the summed segmentation prediction.
Low-variability pixels are the pixels having the same value for at least
80% of the predicted segmentation maps (values of 1-2 (no fibres),
9-10 (fibres), positive counts). High-variability pixels are those having
positive counts in between three and eight, inclusive. The distribu-
tion of high- and low-variability pixels from the foreground (Fig. 4b)
is compared for each image. Pixels with zero positive counts (mostly
background) are not considered. The proportion of low-variability
pixels in the foreground is defined as the variability score (VS). AVS
below 0.5 corresponds to images for which the predictions of the
U-Net,,,. on the ten synthetic images are consistent for the majority
of foreground pixels. If the VS is above 0.5, the ten synthetic STED
images are not consistent and an STED acquisition is triggered. The
threshold of 0.5 was chosen because it corresponds to the tipping
point where the number of high-variability pixels exceeds the number
of low-variability pixels.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The S. aureus dataset from refs. 43,44 is available at https://zenodo.
org/record/5550933#.Y6IhFNLMJH4 (ref. 43) and https://zenodo.
org/record/5551141#.Y61jBALMJHS (ref. 58). The live F-actin data-
set introduced here is available to download at https://zenodo.org/
record/7908914 (ref. 59) and https://s3.valeria.science/flclab-tagan/
index.html. Other datasets can be requested from their respective pub-
lications: the axonal F-actin dataset”, the dendritic F-actin dataset”, the
synaptic protein dataset* and the S. aureus dataset****. The processed
versions of those datasets, as used to train the TA-GAN models, canbe
downloaded from https://s3.valeria.science/flclab-tagan/index.html.
Sample testimages are available at https://github.com/FLClab/TA-GAN
inthe ‘test’ subfolders of each dataset. Source data are provided with
this paper.

Code availability

The codes, trained weights and instructions on how to train, test
and adapt for new experiments the TA-GAN model are available at
https://github.com/FLClab/TA-GAN and https://doi.org/10.5281/
zenodo.7908818 (ref. 60). The trained U-Net,;,. model is available to
download at https://doi.org/10.5281/zenod0.7909304 (ref. 61). The
code, seeds and parameters used to generate the simulated nanodo-
mains dataset are available at https://github.com/FLClab/TA-GAN and
https://doi.org/10.5281/zenodo.7908818 (ref. 60).
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Extended Data Fig. 1| Generation accuracy of TA-GANAX. compared with and its segmentation by U-Nety,.q_... as the reference. The score for DCand IOU is
resolution enhancement baselines. Comparison of TA-GAN,,, with the lif both the reference and prediction are empty. The performance of the TA-GAN
resolution enhancement baselines using three image evaluation metrics: 1) is significantly better than all baseline for both segmentation metrics. For the
Mean squared error (MSE), 2) Structural Similarity Index Measure (SSIM), 3) image similarity metrics, TA-GAN performs significantly better than CARE and
Peak Signal to Noise Ratio (PSNR), and two segmentation evaluation metrics: 1) RCAN, and is similar to ESRGAN and pix2pix. Statistical analysis: Mann-Whitney
Dice Coefficient (DC), 2) Intersection over Union (IOU). For the image metrics, U test® for the two-sided hypothesis that the distribution underlying the results
images are normalized to 0-1using min-max normalization. The segmentation for each baseline is the same as the distribution underlying the TA-GAN results.
predictions are computed with the U-Netj, .., on the synthetic images Violin plots show the minimum, maximum and mean of each distribution.

generated with each approach. Metrics are computed using the real STED image (**p <0.001, n.s.p>0.05). n=52independent images.
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Live-cell
STED

U-N etFixed dend.

U‘Netuve

Annotations

Extended Data Fig. 2| U-NetLive example results forthe segmentation of were not used for training U-Net,,,.. The U-Net,,,. trained only on synthetic
F-actin nanostructuresin live-cell STED images. Segmentation predictions by images from the Translated F-actin dataset succeeds in segmenting F-actin
U-Netseqens. and U-Net ;. on 8 representative images chosen from 28 annotated nanostructures onreal STED images. Scale bars:1um.

live-cell STED test images. Annotations were created for testing purposes and
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Extended Data Fig. 3| Comparison of photobleaching effects for consecutive Dots show the average and shaded regions cover the standard deviation. The

confocal and STED acquisitions. Normalized fluorescence intensity after 15 TA-GAN,,,. predictions compensate for the fluorescence intensity decrease in
confocal acquisitions (red, N=45 regions) and, associated synthetic STED signal the synthetic STED images. The 15th consecutive STED image has 36 +12 % of the
(purple, N=45regions) over the central ROI (300 x 300 pixels) in comparison initial STED image intensity and 92 + 16 % for the sequence of confocal images for
to acquisitions using the STED modality at each frame (orange, N=45regions). the corresponding TA-GAN generated images.
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Extended Data Fig. 4 | Observation of F-actin remodeling in living cells. a, comprising 95%, 99% and 99.9% of the data point distribution. Following the
Kernel density estimate of the F-actin fibres and rings dendritic area distribution 0Mg?'/Glu/Ca*" stimulation, we observe a smallincrease in the proportion of
for after 30 minutes in a solution reducing neuronal activity (high Mg?/low F-actin fibres and a decrease in the proportion of rings. High Mg?* N=21, 0Mg?*/
Ca*', blue) or following a stimulation (0Mg?*/Glu/Ca*, from ¢ = 1-15min, red). Glu/Ca* N=21.

b, Bootstrapped distributions of the results shownin a,. Shown are the regions
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TA-GAN TA-CycleGAN

Generator = GeE?e_)raAtor
Task Task
Network Generator Network
A-B
Task-specific resolution enhancement Nanostructure preserving domain adaptation
Task: Task: Task:
Segmentation Localization Semantic seg.

Annotated dataset generation

Domain : fixed cells

Confocal

Automatic Modality
Selection

Extended Data Fig. 5| Graphical abstract. The proposed model has two general comparison between the output of the task network for the image and the

use cases: TA-GAN, for paired datasets, and TA-CycleGAN, for unpaired datasets. synthetic version (T,,/) and the labels obtained from the input domain A image
Top-left: The TA-GAN uses a task adapted to each dataset for accurate resolution (L,). Thelossis backpropagated to the generator (dashed arrow).Middle-right:
enhancement. The generation loss (GEN circle) is computed from the Labeled datasets from domain A (e.g fixed cells) are adapted to the unlabeled
comparison between the output of the task network for the synthetic high- domain B (e.g live cells) to obtain alabeled dataset from domain B, which can be
resolutionimage (Tyz/) and the labels obtained from the ground truth image used to traina super-resolution TA-GAN. Bottom: Both models can be used for
(L,z)- Thelossis backpropagated to the generator (dashed arrow). Middle-left: microscopy acquisition guidance. The TA-GAN model, trained using a TA-CycleGAN
The generated synthetic STED images are used to analyze the distribution of generated dataset, can automatically identify regions and frames of interest
nanostructures that were not resolved in the original confocal image. Top-right: from the low-resolution images. Automatic switching between low- and

Domain adaptation using the TA-CycleGAN enables the generation of large high-resolutionimaging modalities is guided by the TA-GAN,;,. predictions.
annotated synthetic image datasets from a new domain, evenif labels are only Scalebars:1um.

available in one domain. The generation loss (GEN circle) is computed from the
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Extended Data Table 1| Processing time with and without the TA-GAN-assisted implementation

Confocal . Optical fow |Sub-region| Generation & STED
... _|Generation . 2 : . Total
acquisition computation|acquisition| segmentation | acquisition
With 13.6 sec. 15.0 sec.
TA-GAN 20 2s o 3 25 | (for 11-25% | (for 75-89%
assistance| Seconds | seconds seconds seconds seconds of frames) of frames)
Without
ol 2.6 13.6 sec. 16.2
TA-GAN d E f q
assistance| seconds (Every frame)| seconds

The number of STED images acquired with the TA-GAN assistance varies between sequences and averages 11% for the DC-based triggers and 25% for the variability-based triggers.
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Software and code
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Data collection  Confocal and STED images were acquired on a 4 color Abberior Expert-Line STED microscope (Abberior Instruments GmbH, Germany),
equipped with a 100x 1.4 NA oil objective and using pulsed (40 MHz) excitation (640 nm) and depletion (775 nm) lasers. Pixel size was set to
20 nm for the Axonal F-actin dataset, the Dendritic F-actin dataset and the Live F-actin dataset for both confocal and STED images. For the
Synaptic protein dataset, pixel size was set to 15 nm for the STED images and 60 nm for the confocal images.

Data analysis OpenCV 3.1.0 was used for image registration. Flask 2.0.3 was used for communicating between the microscope computer and the GPU-
equipped computer. Specpy 1.2.1 was used to automate the acquisitions on the Abberior STED microscope. For training and testing TA-GAN,
we used Python 3.6 with the package versions mentioned in the project Dockerfile (https://github.com/FLClab/TA-GAN/blob/main/TAGAN-
Docker/Dockerfile): pytorch (1.0.0), torchvsion (0.2.1), numpy (1.19.2), Pillow (8.3.1), tifffile (2020.0.3), scipy (1.5.4), and scikit-image (0.17.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets used to train and test the TA-GAN model and the baselines are available for download at https://s3.valeria.science/flclab-tagan/index.html. The
publicly available S. aureus dataset from Spahn et al. 2022 is available at https://zenodo.org/record/5550933#.Y6IhFNLMJH4 and https://zenodo.org/
record/5551141#.Y61jBALMJHS.

Sample test images are available at https://github.com/FLClab/TA-GAN in the "test" subfolders of each dataset. Results from the paper can be reproduced with the
complete test sets, all available to download at https://s3.valeria.science/flclab-tagan/index.html (10.5281/zenodo.7908914).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size Training of the TA-GAN on already existing and published datasets was performed using all available images. The size of these public datasets
determined the sample size for each experiment. This includes the Axonal F-actin dataset, Dendritic F-actin dataset, Synaptic protein dataset,
and the DeepBacs dataset. For the live F-actin dataset, no sample size calculation was performed for the acquisition of the dataset. To
estimate the number of images required to train the TA-CycleGAN, the network was trained on partial datasets and its performance was
evaluated on a validation dataset. New images were acquired until the synthetic STED images generated from the validation confocal images
could not be told apart from real STED images by experts. The live F-actin training dataset consists of 753 paired confocal and STED images of
F-actin structures of 168 neurons from 6 independent neuronal cell culture preparation. The performance of the TA-GAN on images from
each batch was compared and no difference between the batches was measured.

Data exclusions | Axonal F-actin dataset : we excluded 31 images containing mostly background, where no structures had been annotated.
Dendritic F-actin dataset : All images from the original dataset were included in this study.
Synaptic protein dataset : All images for three pairs of proteins (PSD95-Bassoon, PSD95-Homer1lc and Bassoon-Homerlc) from the original
dataset were included in this study.
Live F-actin dataset : Some images were discarded based on visual inspection (loss of focus, sample drift, imaging artifacts).The imaging
sequences included in the manuscript were selected to best illustrate specific use cases of the approach (e.g. unexpected biological change,
expected biological change). Other imaging sequences were included in the supplementary materials.

Replication Time-lapse STED imaging using the TA-GAN assistance were replicated on 53 neurons from 5 independent primary neuronal cultures. On each
coverslip, the experiment was performed on 3 regions from the same neuron.

Once optimal hyperparameters had been selected from multiple trials, all trainings of the neural networks were replicated twice with
different initial randomization of the initial weights, using the same train/valid splits and the same hyperparameters, to verify convergence
and ensure reproducibility of the results. All results from the paper are produced from the first trained models, with the second trained model
only used for validation of the reproducibility. Time-lapse STED imaging using the TA-GAN assistance were replicated on 53 neurons from 5
independent primary neuronal cultures. On each coverslip, the experiment was performed on 3 regions from the same neuron.
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Once optimal hyperparameters had been selected from multiple trials, all trainings of the neural networks were replicated twice with
different initial randomization of the initial weights, using the same train/valid splits and the same hyperparameters, to verify convergence
and ensure reproducibility of the results. All results from the paper are produced from the first trained models, with the second trained model
only used for validation of the reproducibility.

Randomization  The train/valid splits of each dataset are random. For the datasets taken from previous publications, the same test sets were used so that
results could be compared.

Blinding All user-studies were blind: the generation approach as well as the name and acquisition parameters of the images were not displayed to the
participant, and the participant was not aware of whether the image was real or generated.

For all experiments performed on already acquired datasets, blinding was not relevant as all images were associated to the same
experimental group and training/validation set split was done randomly, while keeping the same test set as in the original publication.

Blinding was not required for the acquisition of the live F-actin dataset as images were acquired from samples belonging to a single
experimental group. Split of the live F-actin dataset in training/validation/test sets was done randomly.

For the acquisition of the TA-GAN assisted imaging sequences, investigators were blinded during the region selection process concerning

which of 3 approaches would be used on a specific region: 1) TA-GAN assisted imaging, 2) control sequences of paired STED and confocal
images, 3) only STED acquisitions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXX X []
OOXOOX

Dual use research of concern

Antibodies

Antibodies used Axonal F-actin dataset :
Mouse-anti-SMI31, Biolegend, cat. 8016011:250, https://www.biolegend.com/it-it/products/purified-anti-neurofilament-h-nf-h-
phosphorylated-antibody-11476
Goat anti mouse STAR580, Abberior 2-0002-005-1, Dilution 1:250, https://abberior.shop/abberior-STAR-580-goat-anti-mouse-
1gG-500-II-1-mg-ml
Phalloidin-STAR635, Abberior, cat. 2-0205-002-5, Dilution 1:50, https://abberior.shop/abberior-STAR-635-phalloidin-20-Ig

Dendritic F-actin dataset :

Rabbit-anti-MAP2, Milipore Sigma, cat. AB5622, Dilution 1:1000, https://www.sigmaaldrich.com/CA/en/product/mm/ab5622
Goat anti Rabbit-STAR488, Abberior 2-0012-006-5, Dilution 1:250, https://abberior.shop/abberior-STAR-488-goat-anti-rabbit-
1gG-500-II-1-mg-ml

Phalloidin-STAR635, Abberior, cat. 2-0205-002-5, Dilution 1:50, https://abberior.shop/abberior-STAR-635-phalloidin-20-Ig

Synaptic protein dataset :

Primary antibodies :

Mouse anti-PSD95 (6G6-1C9), Abcam MA1-045, Dilution 1:500, https://www.thermofisher.com/antibody/product/PSD-95-Antibody-
clone-6G6-1C9-Monoclonal/MA1-045

Rabbit anti-Bassoon, Synaptic Systems 141003, Dilution 1:500, https://sysy.com/product/141003

Rabbit anti-Homerlc, Synaptic Systems 160023, Dilution 1:500, https://sysy.com/product/160023

Oregon Green 488 Phalloidin, ThermoFisher 07466, Dilution 1 : 50
https://www.thermofisher.com/order/catalog/product/07466?SID=srch-hj-07466

Goat anti Mouse STAR 635P, Abberior 2-0002-007-5, Dilution 1 : 250, https://abberior.shop/abberior-STAR-635P-goat-anti-mouse-
1gG-500-II-1-mg-ml

Goat anti Mouse Alexa Fluor 594, Thermofisher A11005, Dilution 1:100, https://www.thermofisher.com/antibody/product/Goat-anti-
Mouse-lgG-H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-11005

Goat anti Rabbit STAR 635P, Abberior 2-0012-007-5, Dilution 1 : 250, https://abberior.shop/abberior-STAR-635P-goat-anti-rabbit-
1gG-500-II-1-mg-ml

Goat anti Rabbit Alexa Fluor 594, Thermofisher A11037, Dilution 1:100, https://www.thermofisher.com/antibody/product/Goat-anti-
Rabbit-1gG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal /A-11037
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Live F-actin dataset :
SiR-Actin, Supplier: Cytoskeleton inc., Cat: CY-SC001, Manufacturer's website : https://www.cytoskeleton.com/sir-actin.

Validation Axonal F-actin dataset and Dendritic F-actin dataset : Lavoie-Cardinal, F. et al. Neuronal activity remodels the F-actin based
submembrane lattice in dendrites but not axons of hippocampal neurons. Scientic reports 10, 1{17 (2020).
Synaptic protein dataset : Wiesner, T. et al. Activity-dependent remodeling of synaptic protein organization revealed by high
throughput analysis of STED nanoscopy images. Frontiers in neural circuits 14 (2020).
Live F-actin dataset : Manufacturer's website : https://www.cytoskeleton.com/sir-actin

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research
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Laboratory animals Neuronal cultures were prepared from neomatal Sprague Dawley rats (PO).
Wild animals The study did not involve wild animals.
Reporting on sex Sex was not considered in this study.

Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All procedures were approved by the animal care committee of Université Laval.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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