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Self-correcting quantum many-body control 
using reinforcement learning with tensor 
networks

Friederike Metz    1,2,4,5   & Marin Bukov    2,3 

Quantum many-body control is a central milestone en route to harnessing 
quantum technologies. However, the exponential growth of the Hilbert 
space dimension with the number of qubits makes it challenging to 
classically simulate quantum many-body systems and, consequently, to 
devise reliable and robust optimal control protocols. Here we present a 
framework for efficiently controlling quantum many-body systems based 
on reinforcement learning (RL). We tackle the quantum-control problem 
by leveraging matrix product states (1) for representing the many-body 
state and (2) as part of the trainable machine learning architecture for 
our RL agent. The framework is applied to prepare ground states of the 
quantum Ising chain, including states in the critical region. It allows us 
to control systems far larger than neural-network-only architectures 
permit, while retaining the advantages of deep learning algorithms, such 
as generalizability and trainable robustness to noise. In particular, we 
demonstrate that RL agents are capable of finding universal controls, of 
learning how to optimally steer previously unseen many-body states and of 
adapting control protocols on the fly when the quantum dynamics is subject 
to stochastic perturbations. Furthermore, we map our RL framework to 
a hybrid quantum–classical algorithm that can be performed on noisy 
intermediate-scale quantum devices and test it under the presence of 
experimentally relevant sources of noise.

Quantum many-body control is an essential prerequisite for the reliable 
operation of modern quantum technologies that are based on harness-
ing quantum correlations. For example, quantum computing often 
involves high-fidelity state manipulation as a necessary component of 
most quantum algorithms1,2. In quantum simulation, the underlying 
atomic, molecular and optical platforms require system preparation 
to a desired state before its properties can be measured and studied3–5. 
Quantum metrology relies on the controlled engineering of (critical) 

states to maximize the sensitivity to physical parameters6,7. Controlling 
many-body systems can also be considered in its own right as a numeri-
cal tool that offers insights into concepts such as quantum phases and 
phase transitions8. Moreover, it can reveal novel theoretical phenomena 
such as phase transitions in the control landscape9, and bears a direct 
relation to our understanding of quantum complexity10.

Compared with single- and few-particle physics, working in the 
quantum many-body domain introduces the formidable difficulty of 
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are chosen from a set 𝒜𝒜. To assess the quality of a given protocol, we 
compute the fidelity of the evolved state with respect to the target state:

F(τ) = | ⟨ψ∗|U(τ) |ψi⟩ |2. (1)

Throughout the study, we focus on spin-1/2 chains of size N  
with open boundary conditions. The system on lattice site j is described 
using the Pauli matrices Xj, Yj, Zj. As initial and target states we select 
area-law states, for example, ground states of the quantum Ising model 
(see section ‘State-informed many-body control’). To control chains 
composed of many interacting spins, we obtain the target ground 
state using the density matrix renormalization group (DMRG)11,13,  
and represent the quantum state as an MPS throughout the entire  
time evolution (Supplementary Section 2A).

We choose a set of experimentally relevant control unitaries 𝒜𝒜, 
which contains uniform nearest-neighbour spin–spin interactions, 
and global rotations: 𝒜𝒜 = 𝒜e±iδt± ̂Aj }, with

̂Aj ∈ 𝒜𝒜 = {∑
i

̂Xi,∑
i

̂Yi,∑
i

̂Zi,

∑
i

̂Xi ̂Xi+1,∑
i

̂Yi ̂Yi+1,∑
i

̂Zi ̂Zi+1} .
(2)

Two-qubit unitaries are capable of controlling entanglement in the 
state. Note that MPS-based time evolution is particularly efficient  
for such locally applied operators and the resulting protocols can be 
considered as a series of quantum gates.

The time duration (or angle) δt± of all unitary operators is fixed 
and slightly different in magnitude for positive and negative generators 
̂Aj, and kept constant throughout the time evolution. Hence, the prob-

lem of finding an optimal sequence reduces to a discrete combinatorial 
optimization in the exponentially large dimensional space of all pos-
sible sequences: for a fixed sequence length q, the number of all distinct 
sequences is |𝒜𝒜𝒜q; therefore, a brute-force search quickly becomes 
infeasible and more sophisticated algorithms, such as RL, are needed. 
By fixing both q and δt± prior to the optimization, in general, we  
may not be able to come arbitrarily close to the target state, but these 
constraints can be easily relaxed.

State-informed many-body control
Our MPS-based RL framework is specifically designed for preparing 
low-entangled states in 1D, such as ground states of local gapped  
Hamiltonians. Hence, in the subsequent case studies we consider 
ground states of the 1D mixed-field Ising model as an exemplary system:

̂HIsing = J
N−1
∑
j=1

̂Zj ̂Zj+1 − gx
N
∑
j=1

̂Xj − gz
N
∑
j=1

̂Zj, (3)

where gx (gz) denotes a transverse (longitudinal) field. We work in units 
of J = 1 throughout the rest of this work. In the case of negative inter
action strength J and in the absence of a longitudinal field gz = 0, the sys-
tem is integrable, and has a critical point at gx = 1 in the thermodynamic 
limit, separating a paramagnetic (PM) from a ferromagnetic (FM) phase 
(Fig. 1). For gz > 0, the model has no known closed-form expressions 
for its eigenstates and eigenenergies. In addition, for positive interac-
tions, the phase diagram features a critical line from (gx, gz) = (1, 0) to 
(gx, gz) = (0, 2) exhibiting a transition from a PM to an antiferromagnetic 
(AFM) phase (see Supplementary Section 1 for a brief introduction to 
quantum many-body physics and phase transitions).

In the rest of this section we will analyse three different control 
scenarios involving ground states of the mixed-field Ising model. In 
‘Universal ground state preparation from arbitrary states’ we consider 
the problem of universal state preparation for N = 4 spins and train a 
QMPS agent to prepare a specific target ground state starting from 

dealing with an exponentially large Hilbert space. A specific manifesta-
tion is the accurate description and manipulation of quantum entangle-
ment shared between many degrees of freedom. This poses a limitation 
for classical simulation methods, because memory and compute time 
resources scale exponentially with the system size.

Fortunately, there exists a powerful framework to simulate the 
physics of one-dimensional (1D) quantum many-body systems, based 
on matrix product states (MPS)11–14. MPS provide a compressed repre-
sentation of many-body wave functions and allow for efficient com-
putation with resources scaling only linearly in the system size for 
area-law entangled states15,16.

While MPS-based algorithms have been used in the context of 
optimal many-body control to find high-fidelity protocols17–20, the 
advantages of deep RL for quantum control21 have so far been inves-
tigated using exact simulations of only a small number of interact-
ing quantum degrees of freedom. Nevertheless, policy-gradient and 
value-function RL algorithms have recently been established as useful 
tools in the study of quantum state preparation22–39, quantum error 
correction and mitigation40–43, quantum circuit design44–47, quantum 
metrology48,49, and quantum heat engines50,51; quantum reinforcement 
learning algorithms have been proposed as well52–56. Thus, in times of 
rapidly developing quantum simulators which exceed the computa-
tional capabilities of classical computers57, the natural question arises 
regarding scaling up the size of quantum systems in RL control studies 
beyond exact diagonalization methods. We discuss a proof-of-principle 
implementation of the algorithm on noisy intermediate-scale quantum 
(NISQ) devices for small system sizes.

In this work, we develop a deep RL framework for quantum 
many-body control, based on MPS in two complementary ways. First, 
we adopt the MPS description of quantum states: this allows us to con-
trol large interacting 1D systems, whose quantum dynamics we simulate 
within the RL environment. Second, representing the RL state in the 
form of an MPS, naturally suggests the use of tensors network as (part of)  
the deep learning architecture for the RL agent, for example, instead 
of a conventional neural network (NN) ansatz. Therefore, inspired by 
earlier examples of tensor-network-based machine learning58–60, we 
approximate the RL agent as a hybrid MPS-NN network, called QMPS. 
With these innovations at hand, the required computational resources 
scale linearly with the system size, in contrast to learning from the full 
many-body wave function. Ultimately, this allows us to train an RL 
agent to control a larger number of interacting quantum particles, as 
required by present-day quantum simulators.

As a concrete example, we consider the problem of state prepa-
ration and present three case studies in which we prepare different 
ground states of the paradigmatic mixed-field Ising chain (Fig. 1). 
We train QMPS agents to prepare target states from a class of initial 
(ground) states, and devise universal controls with respect to experi-
mentally relevant sets of initial states. In contrast to conventional 
quantum control algorithms (such as, CRAB and GRAPE17,18,61), once 
the optimization is complete, RL agents retain information during the 
training process in form of a policy or a value function. When enhanced 
with a deep learning architecture, the learned control policy genera
lizes to states not seen during training. We demonstrate how this singu-
lar feature of deep RL allows our agents to efficiently control quantum 
Ising chains (1) starting from various initial states that the RL agent 
has never encountered, and (2) in the presence of faulty or noisy con-
trols and stochastic dynamics. Thus, even in analytically intractable 
many-body regimes, an online RL agent produces particularly robust 
control protocols.

Quantum many-body control
Consider a quantum many-body system in the initial state |ψi⟩. Our 
objective is to find optimal protocols that evolve the system into a 
desired target state |ψ∗⟩. We construct these protocols as a sequence 
of q consecutive unitary operators U(τ) = ∏q

j=1 Uτj , where Uτj ∈ 𝒜𝒜   
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arbitrary initial quantum states. This example will serve as a first bench-
mark of the QMPS framework. In ‘Preparing product states from PM 
ground states’ we use the QMPS algorithm to prepare a spin-polarized 
state starting from a class of PM ground states, which shows that our 
approach produces reliable protocols in the many-body regime. Finally, 
in ‘Learning robust critical-region state preparation’ we consider N = 16 
spins and target a state in the critical region of the mixed-field Ising 
model, demonstrating that the QMPS framework can also be employed 
for highly non-trivial control tasks such as critical state preparation. 
Furthermore, we show that the obtained QMPS agent has the ability to 
self-correct protocols in the presence of noisy time evolution.

Universal ground state preparation from arbitrary states
In the noninteracting limit, J = 0, the QMPS agent readily learns how to 
control a large number of spins (Supplementary Section 3A1). Instead, 
as a non-trivial benchmark of the QMPS framework, here we teach an 
agent to prepare the ground state of the four-spin transverse-field 
Ising model at (J = −1, gx = 1, gz = 0), starting from randomly drawn initial 
states. While this control setup can be solved using the full wave func-
tion and a conventional NN ansatz (Supplementary Section 3A2), the 
uniform initial state distribution over the entire continuous Hilbert 
space creates a highly non-trivial learning problem and presents a 
first benchmark for our QMPS framework. Moreover, system sizes of 
N ≈ 4 spins already fall within the relevant regime of most present-day 
studies using quantum computers, where gate errors and decoherence 
currently prevent exact simulations at larger scales2,62,63.

We first train an agent (QMPS-1) to prepare the target ground 
state within 50 protocol steps or less, setting a many-body fidelity 
threshold of F* ≈ 0.85. The initial states during training are chosen 
to be (with probability P = 0.25) random polarized product states,  

or (with P = 0.75) random reflection-symmetric states drawn from the 
full 24 = 16-dimensional Hilbert space by sampling the wave function 
amplitudes from a normal distribution followed by normalization. 
In this way, the QMPS-1 agent has to learn to both disentangle highly 
entangled states to prepare the Ising ground state, but also to appro-
priately entangle product states to reach the entangled target (the 
learning curves of the QMPS-1 agent are shown in Supplementary 
Section 3A2). After this training stage, we test the QMPS-1 agent on a 
set of 103 random initial states and find that in ~99.8% of the cases the 
fidelity threshold is successfully reached within the 50 allowed steps. 
A (much) better fidelity cannot be achieved by the QMPS-1 agent alone, 
due to the discreteness of the action space and the constant step size 
used, rather than limitations intrinsic to the algorithm. Note that when 
following a conventional approach of training an NN directly on the 
quantum wave function, we were not able to match the performance 
of the QMPS agent given the same number of parameters and training  
episodes (Supplementary Section 3A2). This suggests that the QMPS 
architecture has a more natural structure for extracting relevant  
features from quantum state data and can already be advantageous 
for small system sizes.

To improve the fidelity between the final and the target state, 
we now train a second, independent agent (QMPS-2) with a tighter 
many-body fidelity threshold of F* ≈ 0.97. The initial states are again 
sampled randomly as mentioned above; however, we first use the 
already optimized QMPS-1 agent to reach the vicinity of the target state 
within F > 0.85. Then, we take those as initial states for the training of 
the second QMPS-2 agent.

This two-stage learning schedule can, in principle, be continued 
to increase the fidelity threshold even further. The learning curves of 
the QMPS-2 optimization are shown in Fig. 2a. In Fig. 2b,c we present 
the obtained protocols for four exemplary initial states. Overall, the 
combined two-agent QMPS is able to reach the fidelity threshold of 
F* ≈ 0.97 for approximately 93% of the randomly drawn initial states 
within the 50 episode steps that were imposed during training. We 
emphasize that this result is already non-trivial, given the restricted 
discrete action space, and the arbitrariness of the initial state.

Let us now exhibit two major advantages of RL against conven-
tional quantum control algorithms. (i) After training we can double the 
allowed episode length for each agent to 100 steps. Since this allows 
for longer protocols, we find that the target state can be successfully 
prepared for 99.5% of the initial states (compared to the previously 
observed 93%). Note that this feature is a unique advantage of (deep) 
RL methods, where the policy depends explicitly on the quantum state: 
during training, the agent learns how to take optimal actions starting 
from any quantum state and hence, it is able to prepare the target state 
if it is given sufficient time. Moreover, (ii) in this example we achieve  
universal quantum state preparation, that is, the trained RL agent  
succeeds in preparing the target state irrespective of the initial state. 
This is not possible with conventional control techniques where the 
optimal protocol is usually tailored to a specific initial state, and the 
optimization has to be rerun when starting from a different state. In 
‘Implementation on NISQ devices’, we show how the trained QMPS 
architecture can be implemented to apply the RL agent on NISQ devices.

Preparing product states from PM ground states
In general, a (Haar) random quantum many-body state is volume-law 
entangled and, hence, it cannot be approximated by an MPS of a fixed 
bond dimension. Moreover, it becomes increasingly difficult to dis-
entangle an arbitrarily high entangled state for larger system sizes64. 
Therefore, when working in the truly quantum many-body regime, 
we have to restrict to initial and target states that are not volume-law 
entangled.

As an example, here we consider a many-body system of N = 32 
spins and learn to prepare the z-polarized state from a class of 
transverse-field Ising ground states (J = −1, gz = 0). Once high-fidelity 
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Fig. 1 | Many-body control studies in the ground state phase diagram of the 
quantum Ising model, analysed in this work. An RL agent is trained to prepare a 
ground state of the transverse-field Ising model from random initial states 
(control study A, magenta), the z-polarized product state from a class of PM 
ground states (control study B, green), and a ground state in the critical region of 
the mixed-field Ising model from PM ground states of opposite interaction 
strength (control study C, cyan). The optimized agent outputs a control protocol 
as a sequence of operators ̂Aj, which time evolve the initial spin state into the 
desired target state (marked by a star).
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protocols are found, they can be inverted to prepare any such Ising 
ground state from the z-polarized state, which presents a relevant 
experimental situation (Supplementary Section 3B). Many-body 
ground state preparation is a prerequisite for both analogue and digital 
quantum simulation, and enables the study of a variety of many-body 
phenomena such as the properties of equilibrium and nonequilibrium 
quantum phases and phase transitions.

To train the agent, we randomly sample initial ground states on 
the PM side of the critical point: 1.0 < gx < 1.1. The difficulty in this state 
preparation task is determined by the parameter gx defining the initial 
state: states deeper into the PM phase are more easy to ‘rotate’ into the 
product target state, while states close to the critical regime require 
the agent to learn how to fully disentangle the initial state to reach  
the target. We train a QMPS agent on a system of N = 32 spins, which is 
infeasible to simulate using the full wave function and is far out of reach 
for NN-based approaches. We set the single-particle fidelity threshold 
to F∗sp = N√F∗ = 0.99  (corresponding many-body fidelity F* ≈ 0.72) 
and allow at most 50 steps per protocol.

Figure 3b shows the successfully reached final fidelity when  
the trained QMPS agent is tested on unseen initial states, for various  
values of gx. First, notice that the agent is also able to prepare the  
target state for initial states with gx > 1.1 that lie outside of the training 
region (dashed vertical lines). Hence, we are able to extrapolate optimal 
control protocols well beyond the training data distribution, without 
additional training. Similar generalization capabilities have already 
been demonstrated for supervised learning tasks such as Hamiltonian 
parameter estimation65. However, this is not true for states inside the 
critical region, gx ≲ 1, and in the FM phase (gx ≪ 1); such behaviour is not 
surprising, because these many-body states have very different prop-
erties compared with those used for training. Note that in contrast to 
the previous control study of ‘Universal ground state preparation from 
arbitrary states’, the initial training data states are not i.i.d. (independ-
ent and identically distributed) over the full 232 dimensional Hilbert 
space as we only train on PM ground states of the Ising model. There-
fore, the agent cannot be expected to generalize to arbitrary initial 
states in this case. Interestingly, it follows that the onset of criticality 
can be detected in the structure of control protocols, as the number 
of required gates (actions) and, in particular, of entangling unitaries, 
increases rapidly as one approaches the critical point (Fig. 3c).

Discontinuities in the achieved fidelity (Fig. 3b) arise due to the 
fixed, constant step size δt±: we observe distinct jumps in the final 
fidelity, whenever the length of the protocol sequence increases.  
This is a primary consequence of the discrete control action space.  
Its physical origin can be traced back to the need for a more frequent 
use of disentangling two-site unitaries, for initial states approaching 
the critical region.

Figure 3a shows the optimal protocol at gx = 1.01: first, the agent 
concatenates three ̂Y -rotations (δt+ = π/12) in a global gate, which shows 
that it learns the orientations of the initial x paramagnet and the 
z-polarized target (yellow shaded region). This is succeeded by a 
non-trivial sequence containing two-body operators. A closer inspec-
tion (Supplementary Fig. 10 and Video 1) reveals that the agent  
discovered a generalization of Euler-angle rotations in the multi-qubit 
Hilbert space (blue shaded region). This is remarkable, because it points 
to the ability of the agent to construct compound rotations, which is a 
highly non-trivial combinatorial problem for experimentally relevant 
constrained action spaces. This can be interpreted as a generalization 
of dynamical decoupling sequences introduced in state-of-the-art 
nuclear magnetic resonance experiments and used nowadays in quan-
tum simulation, optimal quantum sensing and to protect quantum 
coherence66–68. We verified that this protocol is a local minimum of the 
control landscape.

We also investigated the system-size dependence of optimal pro-
tocols in this control study. To our surprise, we find that agents trained 
on the N = 32 spin system produce optimal protocols that perform 
reasonably well on smaller (N = 8) as well as larger (N = 64) systems. 
Hence, this control problem admits a certain degree of transferability, 
which worsens for initial states closer to the finite-size dominated  
critical region (Supplementary Section 3B).

The MPS-based control framework enables us to readily analyse 
the physical entanglement growth during training, via the bond dimen-
sion of the quantum state χψ. The protocol exploration mechanism 
in QMPS causes the agent to act mostly randomly during the initial 
stages of learning. This translates to random sequences of unitary 
gates that can lead to an increase of quantum entanglement (Fig. 3c, 
inset). In our simulations, we set the maximum allowed bond dimen-
sion to χψ = 16, which is sufficient for the considered initial and target 
states to be approximated reliably. However, not all states encountered 
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AFM ground state at J = +1, gx = gz = 0.1 (d), and a random state (e). The QMPS-2 
agent starts from the final state reached by the QMPS-1 agent (purple shaded 
area). The many-body fidelity F between the instantaneous and the target state is 
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QMPS-1,2 agents use fixed time steps of δt± = (π/8, π/16)+, (π/13, π/21)−, indicated 
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can be represented with such a small bond dimension, as reflected by 
large truncation errors during training (Supplementary Section 3B). 
Nonetheless, as training progresses, the agent learns to take actions 
that do not create excessive entanglement (Fig. 3c). Therefore, the 
truncation error naturally decreases, as training nears completion. As 
a consequence, the final converged protocols visit states that lie within 
a manifold of low-entangled states. Moreover, increasing χψ does not 
change these observations. We believe that this mechanism relies on 
the area-law nature of the initial and target states, and we expect it to 
open up the door towards future control studies deeper in the genuine 
many-body regime.

Learning robust critical-region state preparation
States in the critical region possess non-trivial correlations and show 
strong system-size dependence, which make manipulating them highly 
non-trivial. In particular, the required time duration to adiabatically 
prepare critical states diverges with the number of particles, whereas 
sweeping through critical points reveals properties of their universality 
classes69. Therefore, finding optimal control strategies away from the 
adiabatic limit is an important challenge. Critical state preparation is 
also of practical relevance for modern quantum metrology, where the 
enhanced sensitivity of critical states to external fields is leveraged to 
perform more precise measurements6.

Our final objective is to prepare a ground state in the critical 
region of the mixed-field Ising chain (J = +1, gx = 0.5, gz = 1.5) starting  
from non-critical PM ground states of the same model with flipped 
interaction strength: J = −1, 1.0 < gx < 1.5, 0 < gz < 0.5 (Fig. 1). Hence, 
the agent has to learn to connect ground states of two distinct 

Hamiltonians. This scenario is often relevant in typical experimental 
setups where only a single-sign interaction strength can be realized: 
for example, the initial state comes from the J < 0 Ising model, while 
the ground state of interest belongs to the antiferromagnatic Ising 
Hamiltonian. In general, two completely distinct parent Hamiltonians 
can be used for the initial and target states, one of which being acces-
sible in the quantum simulator platform at hand, while the other being 
the object of interest.

We train our QMPS agent on N = 16 spins with a single-particle 
fidelity threshold of F∗sp = 0.97 (F* ≈ 0.61), and a maximum episode 
length of 50. Figure 4a shows the achieved fidelity between the  
target state and the final state, for different initial ground states  
corresponding to a rectangular region in the (gx, gz)-plane. Notice that 
the agent is able to generalize to unseen initial states lying far  
outside the training region (white rectangle), and fails only close to  
the critical point of the transverse-field Ising model (gx = 1, gz = 0)  
and for a few isolated initial states well outside of the training region.

We now demonstrate that our QMPS agent shows remarkable  
generalization capabilities in noisy environments. In particular, we 
analyse how robust the trained QMPS agent is to stochastic perturba-
tions in the time evolution of the state—a common problem in NISQ 
computing devices70. In what follows, we consider two different sources 
of noise independently: (1) At each time step, with probability ϵ, a ran-
dom action rather than the selected one is enforced. This type of noise 
mimics bit- or phase-flip errors, which occur in quantum computing; 
(2) Gaussian random noise with zero mean and standard deviation σ, 
is added to the time duration δt± of each unitary operator; this can, for 
instance, result from imperfect controls in the experimental platform.

Noise type (1) is equivalent to using an ϵ-greedy policy. Hence, 
the states encountered when acting with such a policy, could have, in 
principle, been visited during training. Owing to the generalization 
capabilities of RL, it is reasonable to expect that an agent will act opti-
mally after non-optimal actions have occurred, attempting to correct 
the ‘mistake’. In Fig. 4c,d, we show the achieved final fidelity (Fig. 4c) 
and the required number of steps (Fig. 4d) for ϵ = 0.02. Overall, the 
fidelity threshold can still be reached in the majority of test cases. 
The randomness typically results in longer protocols indicating that 
the agent indeed adapts to the new states encountered. Interestingly, 
in the noise-free case, the agent fails to prepare the target state for 
a few points outside the training region (orange points in Fig. 4a); 
this can be attributed to incorrectly estimated Q-values that have not 
fully converged to the optimal ones outside of the training interval. 
However, when adding the perturbation, the agent is able to correct 
its mistake in one of the shown instances and prepares the target state 
successfully (Fig. 4c).

Recall that we use a different time step δt± for positive and negative 
actions. This way the agent is not just able to undo a non-optimal action 
by performing its inverse; rather, it has to adjust the entire sequence of 
incoming unitaries in a non-trivial way. The ability of the QMPS agent 
to adapt is demonstrated in Fig. 4g where we plot the fidelity during 
time evolution starting from an arbitrary initial ground state. At time 
step t = 5, we perturb the protocol by taking six different actions, and let 
the agent act according to the trained policy afterwards; this results in 
six distinct protocol branches. In each of them, the agent tries to maxi-
mize the fidelity and successfully reaches the fidelity threshold after a 
few extra protocol steps (Supplementary Video 2). In Supplementary 
Section 3C we provide further examples showing that this behaviour 
is generic, and can also be observed for different initial states.

In contrast to the ϵ-noise, adding Gaussian random noise (2) with 
standard deviation σ to the time step duration δt±, results in states that 
the agent has not seen during training. This source of noise, therefore, 
explicitly tests the ability of the agent to generalize beyond the acces-
sible state space, and in particular to interpolate between quantum 
many-body states. Figure 4e,f displays the achieved fidelity and the 
corresponding protocol length for σ = 0.01. We find that the QMPS 
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Fig. 3 | Transverse-field Ising control. a, Optimal protocol obtained, starting 
from an initial ground state at gx = 1.01 (see Fig. 2 for action legend). The cyan 
shaded segment indicates a generalized Euler-angle-like many-body rotation.  
b, Final single-particle fidelities Fsp = N√F  starting from initial ground states  
with transverse-field value gx. The target state is the z-polarized product state. 
The grey dashed line denotes the fidelity threshold (F∗sp = 0.99, F* ≈ 0.72): it is 
surpassed for most initial states except at the critical point gx ≈ 1 (cyan dot). The 
red vertical dashed lines contain the training region. c, The number of actions 
(unitaries) in the QMPS protocols versus the initial state parameter gx. The 
protocol starting from the critical state (gx ≈ 1) does not reach the fidelity 
threshold and is truncated after 50 episode steps. Inset: the half-chain von 
Neumann entanglement entropy of final states during training decreases as 
learning improves. The dark green curve denotes the average over 200 episodes. 
N = 32 spins (Supplementary Video 1).
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agent is also robust to this type of noise. In Fig. 4h we plot the fidelity 
trajectories starting from the same initial state using five different 
random seeds; this illustrates that our agent adapts successfully to 
previously unencountered many-body states, and steers the protocol 
online to reach beyond the fidelity threshold (Supplementary Video 3).

The robustness of QMPS agents to noise and, in general, to stochas
ticity in the quantum gates demonstrates yet another advantage of 
deep RL methods over conventional quantum-control techniques. 
The latter typically perform suboptimally in noisy systems because the 
optimization does not take into account the quantum state information 
during the time evolution, and the optimal protocols are specifically 
optimized for a fixed trajectory of quantum states27. By contrast, QMPS 
value functions are optimized on a large class of states and, as shown 
above, can interpolate and extrapolate to new, seen and unseen states 
as long as the deep learning approximation stays sufficiently accurate. 
Therefore, unlike conventional quantum-control algorithms, QMPS 
agents have the ability to automatically self-correct their protocols on 
the fly, that is, while the system is being time evolved.

Implementation on NISQ devices
The present QMPS framework requires the quantum state to be acces-
sible at each time step for both training and inference purposes; yet, 
quantum states are not observable in experiments without performing 
expensive quantum-state tomography. On the other hand, MPS-based 
quantum state tomography presents a possible and efficient way of 
retrieving the quantum state in a form that can be straightforwardly 
integrated in the QMPS framework71–73. Alternatively, there already exist 
efficient encoding strategies that map MPS into quantum circuits74–80. 
Moreover, several proposals were recently developed in which MPS are 
harnessed for quantum machine learning tasks, for example as part of 
hybrid classical-quantum algorithms81–83 or as classical pre-training 
methods84,85.

Similar ideas can be applied to the QMPS architecture by mapping 
the trainable MPS to a parametrized quantum circuit, thus directly 

integrating the QMPS framework in quantum computations with  
NISQ devices and hence, eliminating the need for quantum state 
tomography. This allows us to perform the expensive training routine 
on readily available classical computers while the inexpensive inference 
step can be performed on quantum hardware.

The mapping of the QMPS to a quantum circuit is described in 
detail in Supplementary Section 4A. Figure 5 shows the resulting QMPS 
circuit framework for the case of N = 4 spins/qubits in which the original 
QMPS state ||θℓQ⟩ is represented as unitary gates (purple boxes). To 
calculate the Q-values Qθ(ψ, a) given an input quantum state |ψ⟩,  
we first compute the fidelity between the input and the QMPS state

||⟨θℓQ|ψ⟩||
2
= | ⟨0|U†

θUψ |0⟩ |
2, (4)

which can be obtained via sampling on a quantum computer. Alter-
natively, the overlap can also be accessed by performing a swap test, 
albeit requiring additional ancilla qubits and non-local gates86,87. The 
computed fidelities for each QMPS circuit are then fed into the classical 
NN giving rise to a hybrid quantum–classical machine learning architec-
ture as shown in Fig. 5. If necessary, the parameters of the QMPS circuit 
Uθ can be fine-tuned by performing some additional optimization.

We test the QMPS circuit framework on the first control study 
task ‘Universal ground state preparation from arbitrary states’. In what  
follows we only report results for the QMPS-1 agent trained on a fidelity 
threshold of F* ≈ 0.85; the generalization to include the QMPS-2 agent  
is straightforward. We translate the optimized QMPS to the corres
ponding quantum circuit and investigate the effects of noise in the 
quantum computation on the QMPS framework.

To simulate incoherent errors, we consider a depolarizing noise 
channel E:

E(ρ) = (1 − λ)ρ + λ I
2N , (5)
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Fig. 4 | Self-correcting mixed-field Ising control. a,b, Final single-particle 
fidelity Fsp = N√F  (a) and corresponding protocol length (b) versus the initial 
Ising ground state parameter values gx and gz. The target is a state in the critical 
region of the Ising model at (J = +1, gx = 0.5, gz = 1.5). Training started only from 
initial states sampled randomly from the enclosed white rectangle. Each part of 
the colour bars is shown on a linear scale with the fidelity threshold (F∗sp = 0.97, 
F* ≈ 0.61) and the maximum episode length during training (50), indicated by 
black lines. c–f, Same as a and b but for noisy evolution. c,d, At each time step, 
actions other than the one selected by the agent are taken with probability 
ϵ = 0.02. e,f, White Gaussian noise with standard deviation σ = 0.01 is added to the 
time step δt± of all applied unitaries. g, Time-dependence of the single-particle 

fidelity starting from an arbitrary initial ground state, and following the trained 
agent. The red curve denotes the unperturbed (noise-free) QMPS protocol. At 
time step five (indicated by the black arrow), the QMPS protocol is perturbed by 
enforcing five suboptimal actions. All subsequent actions are selected again 
according to the trained QMPS policy without perturbation (blue curves). The 
inset displays a zoom-in of the vicinity of the fidelity threshold (dashed grey line), 
showing that each protocol terminates successfully. h, Same as g but for 
dynamics subject to Gaussian noise in every time step δt±, for five different 
random seeds giving rise to five distinct protocols. N = 16 spins. See 
Supplementary Videos 2 and 3.
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and apply it after each action and QMPS gate. Here, ρ denotes the quan-
tum state density matrix and λ is the depolarizing noise parameter, 
which is set to λ1 = 10−4 for all single-qubit gates. We plot the success 
rate as a function of the two- and three-qubit gate errors λ2/3 for 1,000 
randomly sampled initial states in Fig. 5b (purple line). For error rates 
λ2/3 < 10−3 the QMPS agent is able to successfully prepare the target state 
in almost all runs. However, the performance deteriorates with increas-
ing error parameter λ2/3. Let us note that we have used the same error 
rate for both two- and three-qubit gates. On a physical quantum device, 
the three-qubit gate will be decomposed into a sequence of two-qubit 
gates and hence the introduced noise will be amplified. However, the 
decomposition, the resulting circuit depth and the sources of noise vary 
with the hardware type. For example, transpiling (that is, decomposing) 
the QMPS circuit on an IBM Quantum device results in approximately 
100 two-qubit gates, while on an IonQ device we require only around  
30 two-qubit gates. Thus, we chose the simplified noise model of  
equation (5) to study the QMPS circuits in a hardware agnostic way.

We also report the results obtained when truncating the bond 
dimension from a χ = 4 QMPS to a χ = 2 QMPS which gives rise to at most 
two-qubit gates in the final circuit. In this case, the success probabilities 

(orange dashed line in Fig. 5b) do not reach 100% even for small error 
rates. This indicates that a bond dimension of χ = 4 is indeed required 
to faithfully represent the QMPS state.

Finally, in Fig. 5c we show the success rates when starting from 
three different initial states: the fully z-polarized state |0000⟩   
(green), the GHZ state (|0000⟩ + |1111⟩)/√2 (blue), and a ground state 
of the mixed-field Ising model at J = +1, gx = gz = 0.1 (red). The success 
probability of unity can be maintained for error rates λ one order of 
magnitude larger than for the random initial state case. Physical states 
such as the GHZ or ground states possess only a small amount of entan-
glement and hence allow us to prepare the target state using a relatively 
small number of two-qubit gates (Fig. 2b,c). Thus, the resulting  
protocols are automatically more robust to two-qubit gate errors.

The effect of other decoherence channels (amplitude and phase 
damping) on the QMPS circuit framework leads to qualitatively similar 
results and is further discussed in Supplementary Section 4B. Further-
more, we also analyse the self-correcting property of the agent in the 
presence of coherent gate errors.

Let us briefly discuss the bottlenecks of the current QMPS circuit  
framework. The QMPS circuit depicted in Fig. 5 is composed of a 
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Fig. 5 | QMPS circuit framework and universal four-qubit control. a, A hybrid 
quantum–classical algorithm. On the quantum device, we first prepare the initial 
state and apply the already inferred protocol actions as gates. In the example 
above, the initial state is the fully z-polarized state, that is, |0⟩⊗4, and two actions 
are performed: a global rotation around ̂X  followed by a global two-qubit  
̂Y ̂Y  rotation. The resulting state |ψ⟩ represents the input to the QMPS network. 

The QMPS tensors θQ = A(1) ⋯ A(N) can be mapped to unitary gates on a quantum 
circuit. To compute the Q-values, we first apply the inverse of the QMPS circuit 
unitary U†

θ and measure the output in the computational basis. The fraction of 
all-zero measurement outcomes is an approximation to the fidelity | ⟨θQ|ψ⟩ |2. 
Note that this denotes the fidelity with respect to the Q-value network state ||θQ⟩ 
and not the target quantum state which is not required during protocol 
inference. The fidelity estimates are then fed into the NN on a classical computer. 
From the resulting Q-values we can infer the next action and repeat these steps 
until the target state is reached. b, We sample 1,000 random initial states and 
apply the QMPS circuit framework in the presence of depolarizing noise with 

error parameter λ2/3 for all two-and three-qubit gates. Note that the noise 
parameter for all single-qubit gates is always fixed to λ1 = 10−4. We set the number 
of measurement shots to 4,096 and plot the percentage of runs in which the 
target state is successfully reached against the noise strength. The success rate 
under exact, noise-free computation (without sampling) is shown as a black 
dashed line. The success probability when acting completely random is always 
zero. We provide both, the results for the full χ = 4 QMPS circuit (purple solid  
line) and the truncated χ = 2 QMPS (orange dash-dotted line). Insets: the 
corresponding average number of protocols steps T̄  as a function of the noise 
strength λ. The standard deviation is indicated by the shaded areas. c, Same as in 
b except that we start each protocol from a fixed initial state: the fully z-polarized 
state (green solid line), the GHZ state (blue dashed line), and a ground state  
of the mixed-field Ising model at J = +1, gx = gz = 0.1 (red dashed–dotted line).  
To compute the success rates and the average protocol length we average over 
500 different runs. Note that the x-axis scale is shifted by one order of magnitude 
compared with b.
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three-qubit gate and more generally an MPS with bond dimension 
χ = 2n will naturally give rise to (n + 1)-qubit gates. While three-qubit 
gates will likely be implemented in near-term quantum computers, the 
gates realized in current NISQ devices are commonly composed of at 
most two-qubit gates. Hence, any gates acting on more than two qubits 
would need to be decomposed into two-qubit gates, which usually gives 
rise to deep circuits. Instead, we can use alternative MPS-to-circuit 
mappings that would lead to at most two-qubit gates in the final circuit  
(see Supplementary Section 4A for a detailed discussion)74–80. Finally, 
the sampling of the fidelity in equation (4) requires a number of meas-
urement shots that could in principle grow exponentially in the system 
size. One possible solution is to choose a different Q-value network 
ansatz such as a matrix product operator (Supplementary Section 
2D). The resulting computation can then be interpreted as measuring 
an observable, which can be performed efficiently on larger systems. 
We find that for the specific N = 4 QMPS example, the number of meas-
urements required for successfully preparing the target state can be 
chosen relatively small, that is, ~500 to reach success rates close to 
unity (Supplementary Fig. 18a).

Discussion
In this work we introduced a tensor network-based Q-learning frame-
work to control quantum many-body systems (Fig. 6). Incorporating 
an MPS into the deep learning architecture allows part of the Q-value 
computation to be efficiently expressed as an overlap between two 
MPS wave functions. As a result, larger system sizes can be reached 
compared with learning with the full wave function. We emphasize that 
standard RL algorithms with conventional NN architectures cannot 
handle quantum many-body states, whose number of components 
scale exponentially with the number of spins: for example, for N = 32 
spins, there are 232 ≈ 1010 wave function components to store which is 
prohibitively expensive. By contrast, our MPS learning architecture 
only requires linear scaling with the system size N. Furthermore, we 
found that the hyperparameters of the optimization and, in particular, 
the number of training episodes do not require finetuning with the 

system size, and stayed roughly constant (Supplementary Section 2C). 
Summarizing, QMPS proposes the use of a tensor-network variational 
ansatz inspired by quantum many-body physics to offer a novel RL 
learning architecture.

QMPS-based RL is designed for solving the quantum many-body 
control problem by learning a value function that explicitly depends on 
the quantum state. Therefore, a successfully trained QMPS agent is capa-
ble of devising optimal protocols for a continuous set of initial states, 
and selects actions on the fly according to the current state visited. As 
a result, a QMPS agent has the ability to self-correct mistakes in the 
protocols when the dynamics is stochastic, even before the protocols 
have come to an end. Moreover, we illustrated that the agent can inter-
polate and extrapolate to new quantum states not seen during training. 
Remarkably, we observed this behaviour over test regions several times 
the size of the training region. To the best of our knowledge, there does 
not exist a quantum control algorithm that exhibits such desirable 
features, as these are based on deep learning capabilities: conventional 
quantum control algorithms require to rerun the optimization when the 
initial state has been changed, and thus lack any learning capabilities.

The generalization capabilities, the robustness to noise, and the 
feasibility of universal state preparation (for small system sizes) are 
advantages of the QMPS framework over competitive optimal control 
algorithms. These features are especially relevant for experiments 
and modern quantum technologies that heavily rely on quantum 
many-body control, and in particular for NISQ devices. Moreover, we 
demonstrated that the present QMPS framework can be integrated in 
quantum device simulations by mapping the optimized MPS ansatz 
to gates in a quantum circuit. The resulting hybrid quantum–classical 
algorithm allows us to control quantum states directly on the device 
without the need of performing expensive quantum state tomography. 
Thus, unlike NNs, using an MPS learning architecture also facilitates 
the use of RL agents on NISQ devices.

Our work opens up the door to further research on tensor 
network-based RL algorithms for quantum (many-body) control. Due 
to the modular structure of the architecture, the QMPS can be replaced 
by various tensor networks, such as tree tensor networks88 or the 
multi-scale entanglement renormalization ansatz89; these would allow 
different classes of states to be represented efficiently, and affect the 
expressivity of the ansatz. Moreover, the infinite-system size descrip-
tion of iMPS can be used to devise control strategies in the thermo
dynamic limit for which an efficient mapping to quantum circuits exist 
as well79. Similarly, systems with periodic boundary conditions can be 
studied80. Furthermore, tensor networks come with a comprehensive 
toolbox for analysing their properties, such as the entanglement struc-
ture and correlations. Hence, tensor-network-based reinforcement 
learning will enable us to study the data, the training, and the expres-
sivity of the ansatz using well-understood concepts from quantum 
many-body physics90,91.

Finally, we mention that it is straightforward to use RL algorithms 
other than Q-learning in conjunction with our MPS-based ansatz. While 
we chose the Deep Q-Network (DQN) framework since it is off-policy and, 
therefore, more data-efficient compared to policy-gradient methods  
(Supplementary Section 2B), the latter would more naturally allow for 
continuous action spaces. In turn, with continuous controls, target  
states can be reached with higher fidelity31. One can also adapt  
the reward function and, for instance, consider the energy density or 
various distance measures beyond the fidelity.

Methods
RL framework
In RL, a control problem is defined within the framework of an environ-
ment that encompasses the physical system to be controlled, and a 
trainable agent that chooses control actions to be applied to the system 
(Fig. 6)92. The environment is described by a state space 𝒮𝒮 and a set of 
physical laws that govern the dynamics of the system. We consider 
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unitary operators chosen from a predefined set 𝒜𝒜. The reward rt is given by the 
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trainable parameters of the QMPS are determined by the feature vector 
dimension df and the bond dimension χQ.
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episodic training, and reset the environment after a maximum number 
T of time steps. At each time step t during the episode, the agent 
observes the current state st ∈ 𝒮𝒮 and receives a scalar reward signal rt. 
Depending on the current state st, the agent chooses the next action 
at+1 from a set of allowed actions 𝒜𝒜; this, in turn, alters the state to st+1. 
The feedback loop between agent and environment is known as a 
Markov decision process. The goal of the agent is to find an optimal 
policy (a function mapping states to actions) that maximizes the 
expected cumulative reward in any state (Supplementary Section 2B).

States. In our quantum many-body control setting, the RL state space 
𝒮𝒮 comprises all quantum states |ψ⟩ of the 2N-dimensional many-body 
Hilbert space. Here, we consider states in the form of an MPS with a 
fixed bond dimension χψ: if χψ < χmax  is smaller than the maximum 
bond dimension χmax = 2N/2, long-range entanglement cannot be fully 
captured, and the resulting MPS becomes a controlled approximation 
to the true quantum state (Supplementary Section 2A). Hence, state 
preparation of volume-law entangled states is restricted to intermedi-
ate system sizes when using MPS. On the other hand, for large system 
sizes, the control problems of interest typically involve initial and target 
states that are only weakly entangled such as ground states of local 
many-body Hamiltonians. In these cases, the optimal protocol may not 
create excessive entanglement suggesting that the system follows the 
ground state of a family of local effective Hamiltonians93,94, similar to 
shortcuts-to-adiabaticity control95, and thus, justifying an MPS-based 
description.

Actions. If not specified otherwise, the set of available actions 𝒜𝒜  
contains local spin–spin interactions and single-particle rotations,  
as defined in equation (2).

Rewards. Since our goal is to prepare a specific target state, a natural 
figure of merit to maximize is the fidelity Ft = ∣〈ψt∣ψ*〉∣2 between the 
current state |ψt⟩ and the target state |ψ∗⟩. To avoid a sparse-reward 
problem caused by exponentially small overlaps in many-body systems, 
we choose the log-fidelity per spin at each time step as a reward: 
rt = N−1 log(Ft). Moreover, we set a fidelity threshold F*, which the agent 
has to reach for an episode to be terminated successfully. Note that  
the agent receives a negative reward at each step; this provides an 
incentive to reach the fidelity threshold in as few steps as possible, to 
avoid accruing a large negative return R = ∑T

t=1 rt, thus leading to short 
optimal protocols. For assessing the performance of the QMPS agent 
to prepare the target state, we show the final single-particle fidelity 
Fsp = N√F  as it represents a more intuitive quantity than the related  
log fidelity used in quantum simulation experiments. A detailed  
comparison of the control study results in terms of the achieved single- 
and many-body fidelities can be found in Supplementary Section 3.

In the case where the target state is the ground state of a  
Hamiltonian H, we can also define the reward in terms of the  
energy expectation value Et = ⟨ψt|H|ψt⟩ . Specifically, we can choose 
rt = N−1(E0 − Et), where E0 = ⟨ψ∗|H|ψ∗⟩  is the ground state energy.  
Similarly to the log-fidelity, this reward is always negative and becomes 
zero when evaluated on the target ground state. If the target state and 
therefore also its energy is a priori not known, one can alternatively 
replace E0 with a large negative baseline which ensures that the rewards 
are always negative during training. Another advantage of the energy 
reward is the fact that expectation values can be efficiently calculated 
on a quantum device (in contrast to the fidelity). We report results 
obtained with this reward definition in Supplementary Section 3A2.

Training. Each training episode starts by sampling an initial state  
followed by taking environment (state evolution) steps. An episode 
terminates once the fidelity threshold is reached. After every envi-
ronment step an optimization step is performed (see Supplementary 
Section 2B for a detailed explanation of the algorithm).

We note in passing that we do not fix the length of an episode (the 
number of protocol steps) beforehand and the agent is always trying 
to find the shortest possible protocol to prepare the target state. How-
ever, we terminate each episode after a maximum number of allowed 
steps even if the target state has not been successfully prepared yet: 
otherwise episodes, especially at the beginning of training, can become 
exceedingly long leading to unfeasible training times.

Matrix product state ansatz for Q-learning (QMPS)
We choose Q-learning to train our RL agent (Supplementary  
Section 2B), since it is off-policy and, thus, more data-efficient com-
pared with policy-gradient methods. The optimal Q-function Q*(ψ, a) 
defines the total expected return starting from the state |ψ⟩, selecting 
the action a and then following the optimal protocol afterwards. Intui-
tively, the optimal action in a given state maximizes Q*(ψ, a). Hence, if 
we know Q*(ψ, a) for every state–action pair, we can solve the control 
task. In Q-learning this is achieved indirectly, by first finding Q*.  
This approach offers the advantage to re-use the information stored 
in Q* even after training is complete.

Since the state space is continuous, it becomes infeasible to learn 
the exact Q*-values for each state. Therefore, we approximate Q∗ ≈ Q∗

θ 
using a function parametrized by variational parameters θ, and employ 
the DQN algorithm to train the RL agent96. In this work, we introduce 
an architecture for the Q*-function, based on a combination of an MPS 
and an NN, called QMPS, which is specifically tailored for quantum 
many-body states that can be expressed as a MPS (Fig. 6). We emphasize 
that the QMPS is independent of the MPS representation of the  
quantum state, and has its own bond dimension χQ.

To calculate Qθ(ψ, a) for each possible action a in a quantum state 
|ψ⟩, we first compute the overlap between the quantum state MPS and 
the QMPS. The contraction of two MPS can be performed efficiently 
and scales only linearly in the system size for fixed bond dimensions. 
The output vector of the contraction corresponding to the dangling 
leg of the central QMPS tensor, is then interpreted as a feature vector 
of dimension df, which is used as an input to a small fully-connected NN 
(Fig. 6). Adding a NN additionally enhances the expressivity of the Q∗

θ 
ansatz by making it nonlinear. The final NN output contains the 
Q*-values for each different action.

The QMPS feature vector can be naturally written as an overlap 
between the quantum state MPS |ψ⟩ and the QMPS ||θQ⟩. Thus, the 
Q*-value can be expressed as

Qθ(ψ,a) = fθ (N−1 log (|⟨θQ|ψ⟩|2)) , (6)

where fθ(⋅) denotes the NN. We additionally apply the logarithm and 
divide by the number of spins N to scale the QMPS framework to a 
larger number of particles. Note also that the QMPS does not represent 
a physical wave function (it is not normalized); however, for ease of 
notation, we still express it using the bra-ket formalism.

Thus, the trainable parameters θ of the Q*-function contain the 
N + 1 complex-valued QMPS tensors ||θQ⟩, plus the real-valued weights 
and biases of the subsequent NN. The QMPS feature dimension df and 
the QMPS bond dimension χQ are hyperparameters of the optimization, 
which determine the number of variational parameters of the MPS in 
analogy to the hidden dimension of NNs. An advantage of the MPS 
architecture is that we can open up the black box of the ansatz and 
training using well-understood concepts from the MPS toolbox. For 
example, it allows us to analyse the correlations in the quantum state 
and the QMPS by studying its entanglement properties.

Alternatively to the MPS ansatz, we can also represent the para
meters of the Q-value network in terms of a matrix product operator 
θ̂Q. The Q-value computation then amounts to computing the expecta-
tion value of the matrix product operator ansatz with respect to the 
input quantum state, that is, Qθ(ψ,a) = fθ(⟨ψ|θ̂Q|ψ⟩). For a detailed expla-
nation of this architecture, we refer to the Supplementary Section 2D. 
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Furthermore, in Supplementary Section 3A2 we provide a performance 
comparison of different QMPS/NN architecture choices for the N = 4 
qubit problem discussed in ‘Universal ground state preparation from 
arbitrary states’.

Note that the resources (time and memory) for training the QMPS 
framework scale at worst polynomially in any of the parameters of the 
system and the ansatz, such as the QMPS bond dimension χQ, the feature 
dimension df, and the local Hilbert space dimension d = 2. Furthermore, 
QMPS reduces an exponential scaling of the resources with the system 
size N to a linear scaling in N, therefore, allowing efficient training on 
large spin systems.

Data availability
The data used in the figures and the code to generate them are avail-
able on GitHub97.

Code availability
The software code can be accessed on GitHub97.
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