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A neural machine code and programming 
framework for the reservoir computer

Jason Z. Kim1,2 & Dani S. Bassett    3,4 

From logical reasoning to mental simulation, biological and artificial neural 
systems possess an incredible capacity for computation. Such neural 
computers offer a fundamentally novel computing paradigm by representing 
data continuously and processing information in a natively parallel and 
distributed manner. To harness this computation, prior work has developed 
extensive training techniques to understand existing neural networks. 
However, the lack of a concrete and low-level machine code for neural 
networks precludes us from taking full advantage of a neural computing 
framework. Here we provide such a machine code along with a programming 
framework by using a recurrent neural network—a reservoir computer—to 
decompile, code and compile analogue computations. By decompiling the 
reservoir’s internal representation and dynamics into an analytic basis of its 
inputs, we define a low-level neural machine code that we use to program 
the reservoir to solve complex equations and store chaotic dynamical 
systems as random-access memory. We further provide a fully distributed 
neural implementation of software virtualization and logical circuits, and 
even program a playable game of pong inside of a reservoir computer. 
Importantly, all of these functions are programmed without requiring any 
example data or sampling of state space. Finally, we demonstrate that we 
can accurately decompile the analytic, internal representations of a full-rank 
reservoir computer that has been conventionally trained using data. Taken 
together, we define an implementation of neural computation that can both 
decompile computations from existing neural connectivity and compile 
distributed programs as new connections.

Neural systems possess an incredible capacity for computation.  
From biological brains that learn to manipulate numeric symbols and 
run mental simulations1–3 to artificial neural networks that are trained 
to master complex strategy games4,5, neural networks are outstand-
ing computers. What makes these neural computers so compelling is 
that they are exceptional in different ways from modern-day silicon 
computers: the latter relies on binary representations, rapid sequential 
processing6, and segregated memory and central processing unit7, 
while the former utilizes continuum representations8,9, parallel  

and distributed processing10,11, and distributed memory12. To  
harness these distinct computational abilities, prior work has studied a 
vast array of different network architectures13,14, learning algorithms15,16 
and information-theoretic frameworks17–19 in both biological and  
artificial neural networks. Despite these substantial advances, the 
relationship between neural computers and modern-day silicon  
computers remains an analogy due to our lack of a concrete and 
low-level neural machine code, thereby limiting our access to neural 
computation.
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In this Article, we provide two such programming frameworks—
state neural programming (SNP) and dynamic neural programming 
(DNP)—by constructing an analytic representational basis of the RC 
neurons, alongside two architectures: open loop and closed loop. 
Through SNP, we program RCs to perform operations and solve analytic 
equations. Through DNP, we program RCs to store chaotic dynamical 
systems as random-access memories (dRAM), virtualize the dynam-
ics of a guest RC, implement neural logic AND, NAND, OR, NOR, XOR 
and XNOR, and construct neural logic circuits such as a binary adder, 
flip-flop latch and multivibrator circuit. Using these circuits, we define 
a simple scheme for game development on RC architectures by pro-
gramming an RC to simulate a variant of the game ‘pong’. Finally, we 
decompile computations from conventionally trained RCs as analytic 
functions.

Open-loop architecture with SNP for output 
functions
We begin with the simplest architecture, which is an open-loop neural 
computer architecture that treats the RNN as a function approxima-
tor. We conceptualize an RNN as a computing machine comprising N 
neurons r, which receive k inputs x and produce m outputs o (Fig. 1a). 
This machine typically supports the basic instructions of multiplication 
of the neural states and inputs by weights A, B and W, the addition of 
these weighted states with each other and some bias term d, the trans-
formation of the resultant quantities through an activation function 
g, and evolution in time (equations (6) and (7)). The output is given 
by o = Wr (Fig. 1b). Hence, the weights B, A, d and W specify the set of 
instructions for the RNN to run, which we conceptualize as the low-level 
neural machine code (Fig. 1c). Unlike conventional computers, these 

To bring this analogy to reality, we seek a neural network with a sim-
ple set of governing equations that demonstrates many computer-like 
capabilities20. One such network is a reservoir computer (RC), which 
is a recurrent neural network (RNN) that receives inputs, evolves a set 
of internal states forward in time and outputs a weighted sum of its 
states21,22. True to its namesake, RCs can be trained to perform funda-
mental computing functions such as memory storage23,24 and manipu-
lation25,26, prediction of chaotic systems22 and model-free control27. 
Owing to the simplicity of the governing equations, the theoretical 
mechanism of training is understood, and recent advances have dra-
matically shortened training requirements by using a more efficient 
and expanded set of input training data 28. But can we skip the training 
altogether and program RCs without any sampling or simulation just 
as we do for silicon computers?

These ideas have a rich history of exploration, notably includ-
ing the Neural Engineering Framework29 and system hierarchies for 
brain-inspired computing30. The former defines the guiding princi-
ples—representation, transformation and dynamics—to implement 
complex computations and dynamics in neuron models31. The latter 
defines an extension of Turing completeness to neuromorphic com-
pleteness, and builds an interface between neuromorphic software and 
hardware for program-level portability. Our work sits at the intersec-
tion of these two areas by defining an extension of the former for RCs 
to program computations in existing RCs with full-rank connectivity, 
decompile the computations performed by conventionally trained RCs 
and omit any sampling of state space in the optimization procedure 
(Supplementary Section X). Combined with the substantial advances 
in experimental RC platforms32, it is now timely to formalize a program-
ming framework to develop neural software atop RC hardware.
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Fig. 1 | Open-loop neural computer architecture for SNP. a, An RNN 
conceptualized as a computing machine with inputs x, neurons r and outputs o, 
which are all treated as variables. b, The low-level instructions supported by this 
RNN. c, We randomly instantiate B, A and d, and compile only the output matrix 
W. d, To convert the machine code into an algebraic form (that is, as a function of 
x), we decompile the machine code into the SNP matrix Rc by first approximating 
the RNN state as a function of the powers and the time derivatives of the 
inputs x (equations (8)–(10)), and then by taking the Taylor series expansion 
of h. Hence, the (i, j) term of Rc corresponds to the Taylor series coefficient of 
neuron i and term j. e, This SNP matrix is used to program a desired output (for 

example, a rotation about the x3 axis) by filling in the entries of the source code 
matrix Oc, which correspond to the coefficients in front of the desired output 
functions. f, This program is compiled by training an output matrix Wc that 
maps Rc to Oc (equation (1)). The RNN output, Wcr(t), successfully rotates the 
three-dimensional Thomas attractor input x(t). g, The discrete-time decompiler 
is also composed of a Taylor series expansion, but the function h is now from 
equations (11) and (12), and the time derivative terms are replaced by time lags. 
h,i, We program highpass filters of various cut-off frequencies by weighting the 
appropriate time-lagged terms (h), which yields high-passed versions of the 
inputs (i).
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instructions are simultaneously evaluated in parallel by the global set 
of neurons. We randomly instantiate B, A and d, and program W.

To define a programming framework, we take the approach of trans-
lating the machine code into a representation that is meaningful to the 
user. We choose that representation to be the input variables x, as the 
inputs are usually meaningful and interpretable in most applications. 
This translation from the low-level to the high-level programming matrix 
is referred to as decompiling, and involves writing the neural states r as 
a function h of the inputs x given the machine code B, A and d (Methods, 
equations (8)–(10)). To write h in a more understandable form, we per-
form a Taylor series expansion of h with respect to all of the input varia-
bles xxx, ̇xxx,⋯, thereby writing the state of every neuron as a weighted sum 
of linear, quadratic and higher-order polynomial terms of xxx, ̇xxx,⋯. The 
weights that multiply these terms are precisely the coefficients of the 
Taylor series expansion, and form an N × K matrix of coefficients Rc, where 
K is the number of terms in the expansion (Fig. 1d). This matrix of coef-
ficients R is our SNP matrix in the open-loop architecture.

Next, we define the source code, which is the set of programmable 
output functions given by the rowspace of R. This is because the output 
of our RNN is determined by a linear combination of neural states, W, 
which are weighted sums of the K expansion terms from the decom-
piler. Here, programming refers to specifying m outputs as a weighted 
sum of the K terms from the decompiler, which forms an m × K matrix 
Oc: the source code matrix. In this example, the RNN receives three 
inputs: x1, x2 and x3. To program a 90° rotation about x3, we specify the 
coefficients in matrix Oc for three outputs o1, o2 and o3 (Fig. 1e). Finally, 
to compile the source code Oc into machine code W, we solve

W = argmin
W

∥ WR −O ∥ . (1)

When we drive the RNN with the complex, chaotic time series x(t) from 
the Thomas attractor (Fig. 1f, blue), the RNN output is a rotated attrac-
tor Wr(t) (Fig. 1f, orange).

This process of decompiling, programming and compiling also 
holds in discrete-time RNNs (Fig. 1g; see Methods, equations (11) and 
(12)). Our programming matrix now consists of polynomial powers 
of time-lagged inputs, which allows us to program operations such 
as highpass filters (Fig. 1h). After compiling the program Od into W, 
the RNN outputs (Fig. 1i, orange, yellow and purple) filter away the 
lower-frequency components of an input signal (Fig. 1i, blue). See 
Supplementary Section IX for the parameters used for all examples.

Closed-loop architecture with SNP to solve 
algorithms
To increase the computational power of these RNNs, we use the same 
SNP, but introduce a closed-loop neural architecture. The idea is to use 
SNP to program some output function of the inputs as W̄rrr = fff( ̄xxx,xxx), and 
then feed that output back into the inputs to define an equivalence 
relation between the outputs and the inputs to solve ̄xxx = fff( ̄xxx,xxx). This 
feedback modifies the internal recurrent weights in the RNN, allowing 
it to store and modify a history of its states and inputs to store and run 
algorithms. Hence, the closed-loop architecture is no longer solely a 
function approximator. We consider the same RNN as in Fig. 1a, except 
now with two sets of inputs, ̄xxx ∈ ℝn and xxx ∈ ℝk, and two sets of outputs, 
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Fig. 2 | Closed-loop neural computer architecture for SNP. a, Schematic of the 
closed-loop architecture with two input sets, ̄xxx  and x, and two output sets, ̄ooo and 
o, where feedback occurs by setting ̄xxx = ̄ooo. b, Instruction before and after 
feedback for continuous-time and discrete-time RNNs. c, B̄,B, Ā and d are 
randomly initialized, while W̄  and W are programmed. d, A scaled subset of the 
decompiled matrix Rc containing constant, linear, and quadratic terms in the 
inputs. e, These terms are used to program the left-hand side of the Lyapunov 
equation into the source code matrix Oc. f, After compiling Oc into W and 
performing feedback, a new RNN is defined with recurrent connections 

A = Ā+ B̄W̄ , and when this RNN is driven with input matrix X, its output 
converges to the solution of the Lyapunov equation. Here, we set W = W̄  such 
that output o matched the feedback output ̄ooo. g, Decompiled Rd for the 
discrete-time RNN. h, A sample lag operator is programmed for the output used 
for feedback, ̄ooo, and a Fourier transformation is programmed into the output that 
is not fed back, o. i, When both outputs are compiled and W̄  is fed back, then 
driving the resultant RNN with a noisy sawtooth successfully lags the input xt and 
generates the short-time Fourier transform of the input.
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̄ooo ∈ ℝn and ooo ∈ ℝm  (Fig. 2a and equation (13)). We feed one set of out-
puts back into the inputs such that ̄ooo = ̄xxx , which will determine the 
internal connectivity of the RNN. Using SNP, we program an output 
̄ooo = W̄rrr = ̄fff( ̄xxx,xxx)  and perform feedback as A = Ā + B̄W̄  (Fig. 2b,c and 

equation (14)).
As a demonstration, we program an RNN to solve the continuous 

Lyapunov equation,

I + X̄ + XX̄ + X̄X⊤ = X̄, (2)

where X and X̄  are 6 × 6 matrices such that the pre-programmed RNN 
receives n = 36 inputs as ̄xxx  and k = 36 inputs as x. Given X, the solution 
X̄  to equation (2) is important for control theory33 and neuroscience34, 
and is often referred to as the controllability Gramian. To program 
equation (2) into our RNN, we first decompile the neural states r into 
the SNP matrix Rc with respect to our input variables ̄xxx  and x (Fig. 2d). 
Next, we fill in matrix Oc with the coefficients of all constant, linear and 
quadratic terms from equation (2) (Fig. 2e). Then, we compile the pro-
gram Oc by solving for argminW̄ ∥ W̄Rc −Oc ∥, and define the recurrent 
connections of a new feedback RNN, A = Ā + B̄W̄ , which evolves as 
equation (14). By driving this new RNN with a matrix X, the output con-
verges to the solution X̄  of equation (2) (Fig. 2f).

As a demonstration for discrete-time systems, we program an RNN 
to store a substantial time history of a stochastic, non-differentiable 
time series xt, and perform a short-time Fourier transform. Starting 
with our decompiled RNN states (Fig. 2g), we write a program, Ōd, to 
store time history across n = 49 inputs for ̄xxxt, by defining a sample lag 
operator that shifts the state of all inputs down by one index (Fig. 2h 
and equation (15)). Then, using this lagged history, we write another 
program, Od, that outputs a short-time Fourier transform (equation 
(16)) with a sliding window of length n. We compile these two programs 
by minimizing ∥ W̄Rd − Ōd ∥ and ∥WRd − Od∥, and define the recurrent 
connectivity of a new feedback RNN—where A = Ā + B̄W̄—according 
to equation (14). By driving this RNN with a stochastic sawtooth wave 
of amplitude 0.2, period of eight samples and noise that is uniformly 
distributed about 0 with a width of 0.1, the RNN matches the true 
short-time Fourier transform (for a performance comparison with 
conventional RCs and FORCE, see Supplementary Section VII).

Closed-loop RNN with DNP to simulate and 
virtualize
Here we define a second, dynamical programming framework, DNP, 
which allows explicit programming of time history for continuous-time 
RNNs (for an extended discussion, see Supplementary Section VIII). 
Building on SNP where we decompiled the neural states r, we now 
decompile the activation function g, which encodes both state and 
dynamic information through a rearrangement of equation (6). We 
substitute rrr ≈ hhh( ̄xxx,xxx) into equation (13) as

rrr + 1
γ
̇rrr = ggg(Ahhh( ̄xxx,xxx) + B̄ ̄xxx + Bxxx + ddd). (3)

Hence, our DNP decompiler takes the Taylor series coefficients of g 
instead of h, allowing us to program not only output functions of the 
input states, but also the input time history.

As a demonstration, we consider an RNN with 15 states, rrr∘ ∈ ℝ15, 
which receives three inputs ̄xxx ∈ ℝ3. We will use the closed-loop architec-
ture where Ā

∘
, B̄

∘
 and d∘ are randomly initialized, which is decompiled 

according to equation (3) (Fig. 3a). Because our decompiled code consists 
of analytic state and time-derivative variables, we can compile W̄

∘
 to map 

RNN states to input states, and RNN time derivatives to input time deriva-
tives. Prior work has trained RNNs to simulate time-evolving systems by 
copying exemplars22 or sampling the dynamical state space35. Here we 
achieve the same simulation without any samples in a chaotic Lorenz 
attractor that evolves according to ̇̄xxx = f( ̄xxx), such that

W̄ggg( ̄xxx) = W̄ (rrr + 1
γ
̇rrr) = ̄xxx + 1

γ
̇̄xxx = ̄xxx + 1

γ
f( ̄xxx). (4)

Here, ‘programming’ refers to the construction of a matrix Ō
∘
c   

comprising the coefficients of ̄xxx + 1
γ
f( ̄xxx)  preceding the variables 

1, ̄x1, ̄x2, ̄x3, ̄x1 ̄x2,⋯  of the program matrix G∘
c  (Fig. 3b). Once we  

compile this code and perform feedback by defining new connectivity 
A = Ā + B̄W̄ , the evolution of the RNN simulates the Lorenz attractor 
(Fig. 3c).

More generally, DNP allows us to program systems of the form 
̇̄xxx = f( ̄xxx), which raises an interesting phenomenon. We program another 
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Fig. 3 | Simulation and virtualization using DNP. a, The machine code ( B̄
∘,ddd∘) of 

the guest RNN with 14 neurons and 3 inputs is decompiled into DNP matrix G∘
c by 

taking the Taylor series coefficients of g∘ as equation (3). b, Therefore, the 
programs we write are not output functions of ̄xxx, but are rather given by ̄xxx+ 1

γ∘
̇̄xxx, 

where ̇̄xxx = f( ̄xxx) for a dynamical system. c, After compiling into W̄
∘

 and performing 
feedback, the evolution of the guest RNN projects onto the programmed Lorenz 

dynamical system. d, The machine code ( B̄,ddd) of the 2,000 neuron host RNN with 
15 inputs is decompiled into DNP matrix Gc. e, The program is the set of 

coefficients for the state and dynamics rrr∘ + 1
γ
̇rrr∘ of the guest RNN. f, After 

compiling and feedback, the time evolution of the host RNN emulates the 
time-evolution of the guest RNN, which itself is simulating a Lorenz attractor.
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RNN rrr ∈ ℝ2000—the host—to emulate the dynamics of the feedback 
RNN rrr∘ ∈ ℝ15—the guest—that itself was programmed to evolve about 
the Lorenz attractor. We decompile the host RNN using DNP (Fig. 3d), 

write the code of the guest RNN in the format rrr∘ + 1
γ
̇rrr∘ (Fig. 3e), and 

compile the code into matrix W̄  (Fig. 3f). The 2,000 state host RNN 
emulates the 15 state guest RNN, which is simulating a Lorenz attractor. 
A larger host can emulate multiple guests as a virtual machine36.

Op-codes, composition and dynamic RAM
Here we extend more of the functionality of general purpose comput-
ers to RNNs. The first functionality is support for op-codes, which is 
typically a string of bits specifying which instruction to run. We add 
control inputs c as a string of 0s and 1s such that

1
γ
̇rrr = −rrr + ggg(Ārrr + B̄ ̄xxx + Bxxx + Cccc + ddd),

which pushes the pre-programmed RNN to different fixed points, 
thereby generating a unique SNP at each point (Fig. 4a). Then, we pro-
gram different matrix operations (Fig. 4b), and simultaneously compile 
each source code at a different SNP (Fig. 4c) into matrix W̄ . When we 
drive our RNN with matrices P and Q at different c, the RNN outputs 
each operation (Fig. 4d).

The second functionality is the ability to compose more com-
plicated programs from simpler programs. We note that, in SNP, the 
output is programmed and compiled to perform an operation on the 
inputs, such as a matrix multiplication and vector addition for a neural 
processing unit (NPU, Fig. 4e). By feeding these outputs into another 
NPU, we can perform a successive series of feedback operations to 
define and solve more complex equations, such as least-squares regres-
sion (NPU, Fig. 4e).

The third functionality is the random access of chaotic dynamical 
memories. The control inputs c drive the RNN to different fixed points, 
thereby generating unique DNPs Gc1 ,c2 (Fig. 4f). By compiling a single 
matrix W that maps each DNP to a unique attractor (Fig. 4g,h), the feed-
back RNN with internal connectivity A = Ā + B̄W̄  autonomously evolves 
about each of the four chaotic attractors at different values of c (Fig. 4i).

A logical calculus using recurrent neural circuits
This dynamical programming framework allows us to greatly expand 
the computational capability of our RNNs by programming neural 
implementations of logic gates. While prior work has established the 
ability of biological and artificial networks to perform computations, 
here we provide an implementation that makes full use of existing 
computing frameworks. We program logic gates into distributed RNNs 
by using a simple dynamical system

̇x = ax3 + bx + z, (5)

where a, b and z are parameters. This particular system has the nice 
property of hysteresis, where when z = 0.1, the value of x converges 
to x = 0.1, but when z = −0.1, the value of x jumps discontinuously to 
converge at x = −0.1 (Fig. 5a). This property enables us to program logic 
gates (Fig. 5b). Specifically, by defining the variable z as a product of two 
input variables p and q, we can program in the dynamics in equation (5) 
to evolve to −0.1 or 0.1 for different patterns of p and q.

These logic gates can now take full advantage of existing com-
puting frameworks. For example, we can construct a full adder using 
neural circuits that take Boolean values p and q as the two numbers to 
be added, and a ‘carry’ value from the previous addition operation. The 
adder outputs the sum s and the output carry v. We show the inputs and 
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Fig. 4 | Extensions to op-codes, composition and dynamic RAM. a, Biasing an 
RNN with different control inputs c1, c2 produces a unique SNP Rc1 ,c2. b, Source 
code for programming four matrix operations: elementwise addition, 
subtraction and multiplication, and matrix multiplication. c, The code is 
simultaneously compiled by concatenating all SNPs into R and all source codes 
into Ō, and solving argminW̄ ∥ W̄R− Ō ∥. d, The RNN is driven by two matrices,  
P and Q, while switching the op-code c1, c2 to yield the desired operation. e, A 
neural processing unit (NPU) that performs matrix multiplication and vector 

addition can be connected to another NPU such that their composition yields a 
more complex algebraic equation. Here the equation is for least-squares 
regression, and the programmed RNN composition evolves forward in time to 
solve the least-squares problem. f, Biasing an RNN with different control inputs 
c1, c2 produces a unique DNP Gc1 ,c2. g, Source code for different chaotic attractors.  
h, The code is simultaneously compiled by concatenating all DNPs into G, and all 
source codes into Ō, and solving argminW̄ ∥ W̄G− Ō ∥. i, By changing c1 and c2, we 
retrieve the stored memories, thereby forming our dRAM.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 627

Article https://doi.org/10.1038/s42256-023-00668-8

outputs of a fully neural adder in Fig. 5c, forming the basis of our ability 
to program neural logic units, which are neural analogues of existing 
arithmetic logic units.

The emulation of these neural logic gates to circuit design extends 
even to recurrent circuit architectures. For example, the set–reset (SR) 
latch—commonly referred to as a flip-flop—is a circuit that holds per-
sistent memory, and is used extensively in computer random-access 
memory (RAM). We construct a neural SR latch using two NOR gates 
with two inputs, p and q (Fig. 5d). When p = 0.1 is pulsed high, the output 
o = − 0.1 changes to low. When q is pulsed high, the output changes to 
high. When both p and q are held low, then the output is fixed at its most 
recent value (Fig. 5d). As another example, we can chain an odd number of 
inverting gates (that is, NAND, NOR and XOR) to construct a multivibrator 
circuit that generates oscillations (Fig. 5e). Because the output of each 
gate will be the inverse of its input, if p is high, then q is low and o is high. 
However, if we use o as the input to the first gate, then p must switch to low. 
This discrepancy produces constant fluctuations in the states of p, q and 
o, which generate oscillations that are offset by the same phase (Fig. 5e).

Game development and decompiling trained RNNs
To demonstrate the flexibility and capacity of our framework, we pro-
gram a variant of the game ‘pong’ into our RNN as a dynamical system. 
We begin with the game design by defining the relevant variables and 
behaviours (Fig. 6a). The variables are the coordinates of the ball, x, y, 
the velocity of the ball, ̇x, ̇y, and the position of the paddle, xp. Addition-
ally, we have the variables that determine contact with the left, right 
and upper walls as cl, cr and cu, respectively, and the variable that deter-
mines contact with the paddle, cp. The behaviour that we want is for 
the ball to travel with a constant velocity until it hits either a wall or the 
paddle, at which point the ball should reverse direction.

Here we run into our first problem: how do we represent contact 
detection—a fundamentally discontinuous behaviour—using continu-
ous dynamics? Recall that we have already done so to program logic 
gates in Fig. 5a by using the bifurcation of the cubic dynamical system in 
equation (5). Here we will use the exact same equation, except rather than 
changing the parameter z to shift the dynamics up and down (Fig. 5a),  
we will set the parameter b to skew the shape. As an example, for the 
right-wall contact cr, we will let b = x − xr (Fig. 6b). When the ball is to 
the left such that x < xr, then cr approaches 0. When the ball is to the 
right such that x > xr, then cr becomes non-zero. To set the velocity of 
the ball, we use the SR latch developed in Fig. 5d. When neither wall is 

in contact, then cr and cl are both low, and the latch’s output does not 
change. When either the right or the left wall is in contact, then either 
cr or cl pulses the latch, producing a shift in the velocity (Fig. 6c). Com-
bining these dynamical equations together produces the code for our 
pong program (Fig. 6d), and the time evolution of our programmed 
RNN simulates a game of pong (Fig. 6e).

To demonstrate the capacity of our programming framework 
beyond compiling programs, we decompile the internal representa-
tion of a reservoir that has been trained to perform an operation. We 
instantiate a reservoir with random input matrix B and random recur-
rent matrix A, drive the reservoir with a sum of sinusoids—thereby gen-
erating a time series r(t)—and train the output weights W to reconstruct 
highpass-filtered versions of the inputs (Fig. 6f). To understand what 
the reservoir has learned, we decompile the reservoir state given A and 
B into the SNP matrix Rd according to equation (12), and find that the 
output WRd as an analytic function of the inputs and time derivatives 
closely matches the true filter coefficients (Fig. 6g).

Discussion
Neural computation exists simultaneously at the core of and the inter-
section between many fields of study. From the differential binding 
of neurexins in molecular biology37 and neural circuits in neurosci-
ence38–42, to the RNNs in dynamical systems43 and neural replicas of 
computer architectures in machine learning44, the analogy between 
neural and silicon computers has generated growing and interdiscipli-
nary interest. Our work provides one possible realization of this analogy 
by defining a dynamical programming framework for RNNs that takes 
full advantage of their natively continuous and analytic representation, 
their parallel and distributed processing, and their dynamical evolution.

This work also makes an important contribution to the increasing 
interest in alternative computation. A clear example is the vast array 
of systems—such as molecular45, DNA46 and single photon47—that 
implement Boolean logic gates. Other examples include the design 
of materials that compute48,49 and store memories50,51. Perhaps of 
most relevance are physical instantiations of reservoir computing in 
electronic, photonic, mechanical and biological systems32. Our work 
demonstrates the potential of alternative computing frameworks to be 
fully programmable, thereby shifting paradigms away from imitating 
silicon computer hardware6, and towards defining native program-
ming frameworks that bring out the full computational capability of 
each system.
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Fig. 5 | Programming logic gates and circuits using dynamical neural 
networks. a, Phase diagram of a cubic dynamical system. When z = 0.1, the 
variable x tends towards the stable fixed point x* = 0.1. When z = −0.1, the system 
bifurcates, and a new stable fixed point emerges at x* = −0.1. b, By setting z equal 
to various products of two input variables p and q, the output evolves according 

to different Boolean logic gates, and we program these logic gate dynamics into 
our RNNs. c–e, By connecting these neural logic gates, we can form neural 
circuits that add Boolean numbers (c), store persistent Boolean states according 
to a SR latch with output o and hidden variable o′ (d), and oscillate at a fixed phase 
difference due to the propagation delay of inversion operations (e).
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One of the main current limitations is the linear approximation 
of the RC dynamics. While prior work demonstrates substantial com-
putational ability for RCs with largely fluctuating dynamics (that is, 
computation at the edge of chaos52), the approximation used in this 
work requires that the RC states stay reasonably close to the operating 
points. While we are able to program a single RC at multiple operating 
points that are far apart, the linearization is a prominent limitation. 
Future extensions would use more advanced dynamical approxima-
tions into the bilinear regime using Volterra kernels53 or Koopman 
composition operators54 to better capture non-linear behaviours.

Finally, we report in the Supplementary Section XI an analysis of 
the gender and the racial makeup of the authors we cited in a Citation 
Diversity Statement.

Methods
Open-loop architecture with SNP
In our framework, we conceptualize an RNN comprising N neurons 
rrr ∈ ℝN, which receive k inputs xxx ∈ ℝk  and produce m outputs ooo ∈ ℝm. 
This machine has weights A ∈ ℝN×N, B ∈ ℝN×k, and W ∈ ℝm×N, and some 
bias term ddd ∈ ℝN×1. If the RNN evolves in continuous time, the instruc-
tions are

1
γ
̇rrr(t) = −rrr(t) + ggg(Arrr(t) + Bxxx(t) + ddd), (6)

where 1/γ is a time constant. If the RNN evolves in discrete time, these 
instructions are

rrrt+1 = ggg(Arrrt + Bxxxt + ddd). (7)

We decompile the neural states r as a function h of the inputs x 
given the machine code B, A and d in three steps. First, we linearize the 
dynamics in equation (6) about a stable fixed point r* and an operating 
point x* to yield

1
γ
̇rrr(t) ≈ A∗rrr(t) + ggg(Arrr∗ + Bxxx(t) + ddd) − dggg(Arrr∗ + Bxxx(t) + ddd) ∘ Arrr∗⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

uuu(xxx(t))
,

(8)

where A* = (dg(Ar* + Bx* + d)∘A − I). Second, because our system is now 
linear, we can write the neural states as the convolution of the impulse 
response and the inputs as

rrr(t) ≈ γ∫
t

−∞
eγA

∗(t−τ)uuu(xxx(τ))dτ. (9)

Third, to obtain r(t) as an algebraic function without an integral, 
we perform a Taylor series expansion of this convolution with respect 
to t to yield
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Fig. 6 | Programming pong using neural circuits and bifurcations. a, Design of 
a pong variant. The wall positions (xl, xr, yu) and the paddle’s y-coordinate are 
fixed as constants. The variables are the ball’s position (x, y) and velocity ( ̇x, ̇y), 
the paddle’s position (xp), and the variables determining contact with the walls 
and paddle (cl, cr, cu, cp). The code matrix Ōc (scaled for visualization) is shown.  
b, Contact detection with the right wall is implemented using a supercritical 
pitchfork bifurcation by scaling the b term in equation (5) by x − xr. When x < xr, 
the contact variable cr goes to 0. When x > xr, a bifurcation occurs and cr becomes 
non-zero. c, These contact variables are used to drive an SR latch whose output is 

the ball’s velocity. d, An RNN simulating a playable game of pong in its head.  
e, The colour from blue to yellow represents the evolution of time. The bottom 
square is the movement of the paddle, and the circle is the movement of the 
marker. f, Conventional training of a reservoir by first driving it with an input time 
series to generate the reservoir time series r(t), and then training an output 
matrix W to reconstruct highpass-filtered versions of the input. g, The 
decompiled analytic outputs of the trained reservoir closely match the true 
highpass filter coefficients.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 629

Article https://doi.org/10.1038/s42256-023-00668-8

rrr(t) ≈ hhh(xxx(t), ̇xxx(t), ̈xxx(t),⋯ ). (10)

We provide a detailed analytical derivation of h in the Supplemen-
tary Sections I–III, and demonstrate the goodness of the approxima-
tions in Supplementary Sections IV–VI.

To decompile discrete-time RNNs, first we linearize equation (7) 
about a stable fixed point r* and operating point x*:

rrrt+1 = A∗rrrt + ggg(Arrr∗ + Bxxxt + ddd) − dggg(Arrr∗ + Bxxxt + ddd) ∘ Arrr∗⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
uuu(xxxt)

,
(11)

where A* = dg(Ar* + Bx* + d)∘A. Second, we write rt+1 as the convolved 
sum of inputs

rrrt+1 =
t

∑
n=0

A∗nuuu(xxxt−n) = hhh(xxxt,xxxt−1,⋯ ), (12)

which we Taylor series expand to yield the N × K coefficient matrix for 
K expansion terms.

Closed-loop architecture with SNP
For the closed-loop architecture with SNP, we begin with the 
pre-programmed RNNs,

1
γ
̇rrr = −rrr + ggg(Ārrr + B̄ ̄xxx + Bxxx + ddd), rrrt+1 = ggg(Ārrrt + B̄ ̄xxxt + Bxxxt + ddd), (13)

for continuous-time and discrete-time systems, respectively (Fig. 2b). 
Using SNP, we program an output ̄ooo = W̄rrr = ̄fff( ̄xxx,xxx) and perform feedback 
as A = Ā + B̄W̄  to yield

1
γ
̇rrr = −rrr + ggg((Ā + B̄W̄)rrr + Bxxx + ddd), rrrt+1 = ggg((Ā + B̄W̄)rrrt + Bxxxt + ddd), (14)

for continuous-time and discrete-time systems, respectively.
The sample lag operator is defined as

̄oi,t+1 = ̄f( ̄xxxt, xt) = {
̄xi+1,t 1 ≤ i < n

xt i = n,
(15)

which shifts the state of all inputs down by one index. The short-time 
Fourier transform with a sliding window of length n is defined as

oi,t+1 =
n−1
∑
j=0

cos (2πij
n

) ̄xj+1,t,oi+n,t+1 =
n−1
∑
j=0

sin (2πij
n

) ̄xj+1,t. (16)

Data availability
There are no data with mandated deposition used in the manuscript or 
supplement. All data in the main text and Supplementary Information 
are generated by the code that is publicly available online.

Code availability
All figures were directly generated in MATLAB from the code available 
on Code Ocean, available upon publication at https://codeocean.com/
capsule/7809611/tree/v1 (ref. 55).
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