
Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 622

nature machine intelligence

Article https://doi.org/10.1038/s42256-023-00668-8

A neural machine code and programming
framework for the reservoir computer

Jason Z. Kim1,2 & Dani S. Bassett   3,4

From logical reasoning to mental simulation, biological and artificial neural
systems possess an incredible capacity for computation. Such neural
computers offer a fundamentally novel computing paradigm by representing
data continuously and processing information in a natively parallel and
distributed manner. To harness this computation, prior work has developed
extensive training techniques to understand existing neural networks.
However, the lack of a concrete and low-level machine code for neural
networks precludes us from taking full advantage of a neural computing
framework. Here we provide such a machine code along with a programming
framework by using a recurrent neural network—a reservoir computer—to
decompile, code and compile analogue computations. By decompiling the
reservoir’s internal representation and dynamics into an analytic basis of its
inputs, we define a low-level neural machine code that we use to program
the reservoir to solve complex equations and store chaotic dynamical
systems as random-access memory. We further provide a fully distributed
neural implementation of software virtualization and logical circuits, and
even program a playable game of pong inside of a reservoir computer.
Importantly, all of these functions are programmed without requiring any
example data or sampling of state space. Finally, we demonstrate that we
can accurately decompile the analytic, internal representations of a full-rank
reservoir computer that has been conventionally trained using data. Taken
together, we define an implementation of neural computation that can both
decompile computations from existing neural connectivity and compile
distributed programs as new connections.

Neural systems possess an incredible capacity for computation.
From biological brains that learn to manipulate numeric symbols and
run mental simulations1–3 to artificial neural networks that are trained
to master complex strategy games4,5, neural networks are outstand-
ing computers. What makes these neural computers so compelling is
that they are exceptional in different ways from modern-day silicon
computers: the latter relies on binary representations, rapid sequential
processing6, and segregated memory and central processing unit7,
while the former utilizes continuum representations8,9, parallel

and distributed processing10,11, and distributed memory12. To
harness these distinct computational abilities, prior work has studied a
vast array of different network architectures13,14, learning algorithms15,16
and information-theoretic frameworks17–19 in both biological and
artificial neural networks. Despite these substantial advances, the
relationship between neural computers and modern-day silicon
computers remains an analogy due to our lack of a concrete and
low-level neural machine code, thereby limiting our access to neural
computation.

Received: 28 April 2022

Accepted: 26 April 2023

Published online: 12 June 2023

 Check for updates

1Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA. 2Department of Physics, Cornell University, Ithaca, NY, USA.
3Departments of Bioengineering, Physics & Astronomy, Electrical & Systems Engineering, Neurology, and Psychiatry, University of Pennsylvania,
Philadelphia, PA, USA. 4Santa Fe Institute, Santa Fe, NM, USA.  e-mail: dsb@seas.upenn.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00668-8
http://orcid.org/0000-0002-6183-4493
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00668-8&domain=pdf
mailto:dsb@seas.upenn.edu

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 623

Article https://doi.org/10.1038/s42256-023-00668-8

In this Article, we provide two such programming frameworks—
state neural programming (SNP) and dynamic neural programming
(DNP)—by constructing an analytic representational basis of the RC
neurons, alongside two architectures: open loop and closed loop.
Through SNP, we program RCs to perform operations and solve analytic
equations. Through DNP, we program RCs to store chaotic dynamical
systems as random-access memories (dRAM), virtualize the dynam-
ics of a guest RC, implement neural logic AND, NAND, OR, NOR, XOR
and XNOR, and construct neural logic circuits such as a binary adder,
flip-flop latch and multivibrator circuit. Using these circuits, we define
a simple scheme for game development on RC architectures by pro-
gramming an RC to simulate a variant of the game ‘pong’. Finally, we
decompile computations from conventionally trained RCs as analytic
functions.

Open-loop architecture with SNP for output
functions
We begin with the simplest architecture, which is an open-loop neural
computer architecture that treats the RNN as a function approxima-
tor. We conceptualize an RNN as a computing machine comprising N
neurons r, which receive k inputs x and produce m outputs o (Fig. 1a).
This machine typically supports the basic instructions of multiplication
of the neural states and inputs by weights A, B and W, the addition of
these weighted states with each other and some bias term d, the trans-
formation of the resultant quantities through an activation function
g, and evolution in time (equations (6) and (7)). The output is given
by o = Wr (Fig. 1b). Hence, the weights B, A, d and W specify the set of
instructions for the RNN to run, which we conceptualize as the low-level
neural machine code (Fig. 1c). Unlike conventional computers, these

To bring this analogy to reality, we seek a neural network with a sim-
ple set of governing equations that demonstrates many computer-like
capabilities20. One such network is a reservoir computer (RC), which
is a recurrent neural network (RNN) that receives inputs, evolves a set
of internal states forward in time and outputs a weighted sum of its
states21,22. True to its namesake, RCs can be trained to perform funda-
mental computing functions such as memory storage23,24 and manipu-
lation25,26, prediction of chaotic systems22 and model-free control27.
Owing to the simplicity of the governing equations, the theoretical
mechanism of training is understood, and recent advances have dra-
matically shortened training requirements by using a more efficient
and expanded set of input training data 28. But can we skip the training
altogether and program RCs without any sampling or simulation just
as we do for silicon computers?

These ideas have a rich history of exploration, notably includ-
ing the Neural Engineering Framework29 and system hierarchies for
brain-inspired computing30. The former defines the guiding princi-
ples—representation, transformation and dynamics—to implement
complex computations and dynamics in neuron models31. The latter
defines an extension of Turing completeness to neuromorphic com-
pleteness, and builds an interface between neuromorphic software and
hardware for program-level portability. Our work sits at the intersec-
tion of these two areas by defining an extension of the former for RCs
to program computations in existing RCs with full-rank connectivity,
decompile the computations performed by conventionally trained RCs
and omit any sampling of state space in the optimization procedure
(Supplementary Section X). Combined with the substantial advances
in experimental RC platforms32, it is now timely to formalize a program-
ming framework to develop neural software atop RC hardware.

Continuous time: o = Wr

ProgrammedRandom

B

N
m

N

W

k N 1

A d

Discrete time: ot+1 = Wrt+1

1–γ r· = –r + g(Ar + Bx + d)

rt+1
 = g(Art + Bxt + d)

Machine: recurrent neural network

x1

x2

xk

Instructions: ×, +, g, time stepa b c

e f

g h i

Machine code: weighted B, A, d, W

Compile matrix: Wc

Compile matrix: Wd
x1 o1 o2 o3

Source code matrix: Od (highpass filter)

o1,t+1 =

o3,t+1 = –0.2x1,t + 0.6x1,t–1 – 0.2x1,t–2

o2,t+1 =
o3,t+1 =

1

x 1,t

x 1,t
–1

x 12 ,t–
1

x 13 ,t–
1

x 1,t
–2

x 12 ,t–
2

x 13 ,t–
2

x 12 ,t

x 13 ,t

x2 x1

Source code matrix: Oc (rotation by 90°)

o1 =

o1 = –x2, o2 = x1, o3 = x3

o2 =
o3 =

1 x 1 x 2 x 3

x 1x
2

x 1x
3

x 2x
3 x 12 x 22 x 32 x• 1 x3

Output
o

Input
x

d Programming matrix: Rc (continuous time)

r1 ≈ h1
* + x1x2 + …x1 + … +

r1 ≈
r2 ≈

rN ≈

1 x 1 x 2 x 3

x 1x
2

x 1x
3

x 2x
3 x 12 x 22 x 32 x• 1

∂h1
*

∂x1

∂2h1
*

∂x1∂x2

Programming matrix: Rd (discrete time)
r1,t+1 ≈

r1,t+1 ≈
r2,t+1 ≈

rN,t+1 ≈

1

x 1,t

x 1,t
–1

x 12 ,t–
1

x 13 ,t–
1

x 1,t
–2

x 12 ,t–
2

x 13 ,t–
2

x 12 ,t

x 13 ,t

h1
* + x1

2
,t + …x1,t +

∂h1
*

∂x1,t

∂2h1
*

∂x1
2

,t

o1

o2

om

Fig. 1 | Open-loop neural computer architecture for SNP. a, An RNN
conceptualized as a computing machine with inputs x, neurons r and outputs o,
which are all treated as variables. b, The low-level instructions supported by this
RNN. c, We randomly instantiate B, A and d, and compile only the output matrix
W. d, To convert the machine code into an algebraic form (that is, as a function of
x), we decompile the machine code into the SNP matrix Rc by first approximating
the RNN state as a function of the powers and the time derivatives of the
inputs x (equations (8)–(10)), and then by taking the Taylor series expansion
of h. Hence, the (i, j) term of Rc corresponds to the Taylor series coefficient of
neuron i and term j. e, This SNP matrix is used to program a desired output (for

example, a rotation about the x3 axis) by filling in the entries of the source code
matrix Oc, which correspond to the coefficients in front of the desired output
functions. f, This program is compiled by training an output matrix Wc that
maps Rc to Oc (equation (1)). The RNN output, Wcr(t), successfully rotates the
three-dimensional Thomas attractor input x(t). g, The discrete-time decompiler
is also composed of a Taylor series expansion, but the function h is now from
equations (11) and (12), and the time derivative terms are replaced by time lags.
h,i, We program highpass filters of various cut-off frequencies by weighting the
appropriate time-lagged terms (h), which yields high-passed versions of the
inputs (i).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 624

Article https://doi.org/10.1038/s42256-023-00668-8

instructions are simultaneously evaluated in parallel by the global set
of neurons. We randomly instantiate B, A and d, and program W.

To define a programming framework, we take the approach of trans-
lating the machine code into a representation that is meaningful to the
user. We choose that representation to be the input variables x, as the
inputs are usually meaningful and interpretable in most applications.
This translation from the low-level to the high-level programming matrix
is referred to as decompiling, and involves writing the neural states r as
a function h of the inputs x given the machine code B, A and d (Methods,
equations (8)–(10)). To write h in a more understandable form, we per-
form a Taylor series expansion of h with respect to all of the input varia-
bles xxx, ̇xxx,⋯, thereby writing the state of every neuron as a weighted sum
of linear, quadratic and higher-order polynomial terms of xxx, ̇xxx,⋯. The
weights that multiply these terms are precisely the coefficients of the
Taylor series expansion, and form an N × K matrix of coefficients Rc, where
K is the number of terms in the expansion (Fig. 1d). This matrix of coef-
ficients R is our SNP matrix in the open-loop architecture.

Next, we define the source code, which is the set of programmable
output functions given by the rowspace of R. This is because the output
of our RNN is determined by a linear combination of neural states, W,
which are weighted sums of the K expansion terms from the decom-
piler. Here, programming refers to specifying m outputs as a weighted
sum of the K terms from the decompiler, which forms an m × K matrix
Oc: the source code matrix. In this example, the RNN receives three
inputs: x1, x2 and x3. To program a 90° rotation about x3, we specify the
coefficients in matrix Oc for three outputs o1, o2 and o3 (Fig. 1e). Finally,
to compile the source code Oc into machine code W, we solve

W = argmin
W

∥ WR −O ∥ . (1)

When we drive the RNN with the complex, chaotic time series x(t) from
the Thomas attractor (Fig. 1f, blue), the RNN output is a rotated attrac-
tor Wr(t) (Fig. 1f, orange).

This process of decompiling, programming and compiling also
holds in discrete-time RNNs (Fig. 1g; see Methods, equations (11) and
(12)). Our programming matrix now consists of polynomial powers
of time-lagged inputs, which allows us to program operations such
as highpass filters (Fig. 1h). After compiling the program Od into W,
the RNN outputs (Fig. 1i, orange, yellow and purple) filter away the
lower-frequency components of an input signal (Fig. 1i, blue). See
Supplementary Section IX for the parameters used for all examples.

Closed-loop architecture with SNP to solve
algorithms
To increase the computational power of these RNNs, we use the same
SNP, but introduce a closed-loop neural architecture. The idea is to use
SNP to program some output function of the inputs as W̄rrr = fff(̄xxx,xxx), and
then feed that output back into the inputs to define an equivalence
relation between the outputs and the inputs to solve ̄xxx = fff(̄xxx,xxx). This
feedback modifies the internal recurrent weights in the RNN, allowing
it to store and modify a history of its states and inputs to store and run
algorithms. Hence, the closed-loop architecture is no longer solely a
function approximator. We consider the same RNN as in Fig. 1a, except
now with two sets of inputs, ̄xxx ∈ ℝn and xxx ∈ ℝk, and two sets of outputs,

Feedback RNN: A = A + B W Instructions pre feedback Machine code: B, B, A, d, W, Wcba

fed

ihg

Random Programmed

B B A d

n

n

m

W

W
N

k N N1

Decompile as pre-feedback (matrix Rc) Compile: min||W Rc – Oc||
new feedback connectivity:
input × A = A + BW

Compile: min||W Rd – Od||
feedback: A = A + BW
input xt: noisy sawtooth

Decompile as pre-feedback (matrix Rd)

True STFT

Fr
eq

ue
nc

y

RNN STFT

t t

o = o
1.4

True XOutput o over time
–1.4

Equation: I + X + XX + XXТ = X

Continuous: 1γ r
· = –r + g(Ar + Bx + Bx + d)

Discrete: rt+1 = g(Art + Bxt + Bxt + d)

Continuous: 1γ r
· = –r + g(Ar + Bx + d)

Discrete: rt+1 = g(Art + Bxt + d)

Feedback: replace x with o = Wr

Program output function (matrix Oc)
solves algebraic equation: f (x,x) = x

Program output function (matrix Od)
sample lag operator: f (xi+1,t) = xi,t+1

xt

ot =

rt+1

r ≈

ot =

o =

1 xt (xt, xt)

11

xt1 xt (xt, xt) (xt, xt)(xt, xt)

Fourier coe�icients: oi,t = ∑T–1 cos()xj+1,tj = 0
2πij

T

x1

…
…

…
…

xn

x1

xk

o1

on

o1

om

xxxxxxx, xxxxxxxx, x

Fig. 2 | Closed-loop neural computer architecture for SNP. a, Schematic of the
closed-loop architecture with two input sets, ̄xxx and x, and two output sets, ̄ooo and
o, where feedback occurs by setting ̄xxx = ̄ooo. b, Instruction before and after
feedback for continuous-time and discrete-time RNNs. c, B̄,B, Ā and d are
randomly initialized, while W̄ and W are programmed. d, A scaled subset of the
decompiled matrix Rc containing constant, linear, and quadratic terms in the
inputs. e, These terms are used to program the left-hand side of the Lyapunov
equation into the source code matrix Oc. f, After compiling Oc into W and
performing feedback, a new RNN is defined with recurrent connections

A = Ā+ B̄W̄ , and when this RNN is driven with input matrix X, its output
converges to the solution of the Lyapunov equation. Here, we set W = W̄ such
that output o matched the feedback output ̄ooo. g, Decompiled Rd for the
discrete-time RNN. h, A sample lag operator is programmed for the output used
for feedback, ̄ooo, and a Fourier transformation is programmed into the output that
is not fed back, o. i, When both outputs are compiled and W̄ is fed back, then
driving the resultant RNN with a noisy sawtooth successfully lags the input xt and
generates the short-time Fourier transform of the input.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 625

Article https://doi.org/10.1038/s42256-023-00668-8

̄ooo ∈ ℝn and ooo ∈ ℝm (Fig. 2a and equation (13)). We feed one set of out-
puts back into the inputs such that ̄ooo = ̄xxx , which will determine the
internal connectivity of the RNN. Using SNP, we program an output
̄ooo = W̄rrr = ̄fff(̄xxx,xxx) and perform feedback as A = Ā + B̄W̄ (Fig. 2b,c and

equation (14)).
As a demonstration, we program an RNN to solve the continuous

Lyapunov equation,

I + X̄ + XX̄ + X̄X⊤ = X̄, (2)

where X and X̄ are 6 × 6 matrices such that the pre-programmed RNN
receives n = 36 inputs as ̄xxx and k = 36 inputs as x. Given X, the solution
X̄ to equation (2) is important for control theory33 and neuroscience34,
and is often referred to as the controllability Gramian. To program
equation (2) into our RNN, we first decompile the neural states r into
the SNP matrix Rc with respect to our input variables ̄xxx and x (Fig. 2d).
Next, we fill in matrix Oc with the coefficients of all constant, linear and
quadratic terms from equation (2) (Fig. 2e). Then, we compile the pro-
gram Oc by solving for argminW̄ ∥ W̄Rc −Oc ∥, and define the recurrent
connections of a new feedback RNN, A = Ā + B̄W̄ , which evolves as
equation (14). By driving this new RNN with a matrix X, the output con-
verges to the solution X̄ of equation (2) (Fig. 2f).

As a demonstration for discrete-time systems, we program an RNN
to store a substantial time history of a stochastic, non-differentiable
time series xt, and perform a short-time Fourier transform. Starting
with our decompiled RNN states (Fig. 2g), we write a program, Ōd, to
store time history across n = 49 inputs for ̄xxxt, by defining a sample lag
operator that shifts the state of all inputs down by one index (Fig. 2h
and equation (15)). Then, using this lagged history, we write another
program, Od, that outputs a short-time Fourier transform (equation
(16)) with a sliding window of length n. We compile these two programs
by minimizing ∥ W̄Rd − Ōd ∥ and ∥WRd − Od∥, and define the recurrent
connectivity of a new feedback RNN—where A = Ā + B̄W̄—according
to equation (14). By driving this RNN with a stochastic sawtooth wave
of amplitude 0.2, period of eight samples and noise that is uniformly
distributed about 0 with a width of 0.1, the RNN matches the true
short-time Fourier transform (for a performance comparison with
conventional RCs and FORCE, see Supplementary Section VII).

Closed-loop RNN with DNP to simulate and
virtualize
Here we define a second, dynamical programming framework, DNP,
which allows explicit programming of time history for continuous-time
RNNs (for an extended discussion, see Supplementary Section VIII).
Building on SNP where we decompiled the neural states r, we now
decompile the activation function g, which encodes both state and
dynamic information through a rearrangement of equation (6). We
substitute rrr ≈ hhh(̄xxx,xxx) into equation (13) as

rrr + 1
γ
̇rrr = ggg(Ahhh(̄xxx,xxx) + B̄ ̄xxx + Bxxx + ddd). (3)

Hence, our DNP decompiler takes the Taylor series coefficients of g
instead of h, allowing us to program not only output functions of the
input states, but also the input time history.

As a demonstration, we consider an RNN with 15 states, rrr∘ ∈ ℝ15,
which receives three inputs ̄xxx ∈ ℝ3. We will use the closed-loop architec-
ture where Ā

∘
, B̄

∘
 and d∘ are randomly initialized, which is decompiled

according to equation (3) (Fig. 3a). Because our decompiled code consists
of analytic state and time-derivative variables, we can compile W̄

∘
 to map

RNN states to input states, and RNN time derivatives to input time deriva-
tives. Prior work has trained RNNs to simulate time-evolving systems by
copying exemplars22 or sampling the dynamical state space35. Here we
achieve the same simulation without any samples in a chaotic Lorenz
attractor that evolves according to ̇̄xxx = f(̄xxx), such that

W̄ggg(̄xxx) = W̄ (rrr + 1
γ
̇rrr) = ̄xxx + 1

γ
̇̄xxx = ̄xxx + 1

γ
f(̄xxx). (4)

Here, ‘programming’ refers to the construction of a matrix Ō
∘
c

comprising the coefficients of ̄xxx + 1
γ
f(̄xxx) preceding the variables

1, ̄x1, ̄x2, ̄x3, ̄x1 ̄x2,⋯ of the program matrix G∘
c (Fig. 3b). Once we

compile this code and perform feedback by defining new connectivity
A = Ā + B̄W̄ , the evolution of the RNN simulates the Lorenz attractor
(Fig. 3c).

More generally, DNP allows us to program systems of the form
̇̄xxx = f(̄xxx), which raises an interesting phenomenon. We program another

Dynamical decompiler (matrix G°c)

Dynamical decompiler (matrix Gc)

Code dynamic memory (matrix O°c)
code o° = x + x, where x = f(x)

Compile ||W°G°c – O°c||, feedback

Compile ||WGc – Oc||, feedback

Output: W°r°

g°15 ≈

g ≈

r°r°r°1,…, r°151r°r°r°1,…, r°151

g°2 ≈
g°1 ≈

g°1 ≈
o°1 = x1 + x1 + x2= 1 – ()
o°1 =
o°2 =
o°3 =

1
o3

o2 o1

o3

o2 o1

o1 =

o15 =

A° = A° + B°W°

W° = W°

o°1
o°2
o°3

Output: W°Wr
A = A + BW

W = W

o1o2o3
o15

g°1* + x1 +
∂g°1*
∂x1

∂g°1*
∂x2

x2 + x3 + …
∂g°1*
∂x3

x2 – x1

γ°
1

· ·

γ°
1

γ°

1
γ°

Code RNN dynamics (matrix Oc)
code o = r° + 1γ r°, where r°
is the guest RNN dynamics

x2 3x2 2x2 1

x 2x
3

x 1x
3x 3x 2x 1

x 1x
2 1 x2 3x2 2x2 1

x 2x
3

x 1x
3x 3x 2x 1

x 1x
2

··

a b c

d e f

Fig. 3 | Simulation and virtualization using DNP. a, The machine code (B̄
∘,ddd∘) of

the guest RNN with 14 neurons and 3 inputs is decompiled into DNP matrix G∘
c by

taking the Taylor series coefficients of g∘ as equation (3). b, Therefore, the
programs we write are not output functions of ̄xxx, but are rather given by ̄xxx+ 1

γ∘
̇̄xxx,

where ̇̄xxx = f(̄xxx) for a dynamical system. c, After compiling into W̄
∘

 and performing
feedback, the evolution of the guest RNN projects onto the programmed Lorenz

dynamical system. d, The machine code (B̄,ddd) of the 2,000 neuron host RNN with
15 inputs is decompiled into DNP matrix Gc. e, The program is the set of

coefficients for the state and dynamics rrr∘ + 1
γ
̇rrr∘ of the guest RNN. f, After

compiling and feedback, the time evolution of the host RNN emulates the
time-evolution of the guest RNN, which itself is simulating a Lorenz attractor.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 626

Article https://doi.org/10.1038/s42256-023-00668-8

RNN rrr ∈ ℝ2000—the host—to emulate the dynamics of the feedback
RNN rrr∘ ∈ ℝ15—the guest—that itself was programmed to evolve about
the Lorenz attractor. We decompile the host RNN using DNP (Fig. 3d),

write the code of the guest RNN in the format rrr∘ + 1
γ
̇rrr∘ (Fig. 3e), and

compile the code into matrix W̄ (Fig. 3f). The 2,000 state host RNN
emulates the 15 state guest RNN, which is simulating a Lorenz attractor.
A larger host can emulate multiple guests as a virtual machine36.

Op-codes, composition and dynamic RAM
Here we extend more of the functionality of general purpose comput-
ers to RNNs. The first functionality is support for op-codes, which is
typically a string of bits specifying which instruction to run. We add
control inputs c as a string of 0s and 1s such that

1
γ
̇rrr = −rrr + ggg(Ārrr + B̄ ̄xxx + Bxxx + Cccc + ddd),

which pushes the pre-programmed RNN to different fixed points,
thereby generating a unique SNP at each point (Fig. 4a). Then, we pro-
gram different matrix operations (Fig. 4b), and simultaneously compile
each source code at a different SNP (Fig. 4c) into matrix W̄ . When we
drive our RNN with matrices P and Q at different c, the RNN outputs
each operation (Fig. 4d).

The second functionality is the ability to compose more com-
plicated programs from simpler programs. We note that, in SNP, the
output is programmed and compiled to perform an operation on the
inputs, such as a matrix multiplication and vector addition for a neural
processing unit (NPU, Fig. 4e). By feeding these outputs into another
NPU, we can perform a successive series of feedback operations to
define and solve more complex equations, such as least-squares regres-
sion (NPU, Fig. 4e).

The third functionality is the random access of chaotic dynamical
memories. The control inputs c drive the RNN to different fixed points,
thereby generating unique DNPs Gc1 ,c2 (Fig. 4f). By compiling a single
matrix W that maps each DNP to a unique attractor (Fig. 4g,h), the feed-
back RNN with internal connectivity A = Ā + B̄W̄ autonomously evolves
about each of the four chaotic attractors at different values of c (Fig. 4i).

A logical calculus using recurrent neural circuits
This dynamical programming framework allows us to greatly expand
the computational capability of our RNNs by programming neural
implementations of logic gates. While prior work has established the
ability of biological and artificial networks to perform computations,
here we provide an implementation that makes full use of existing
computing frameworks. We program logic gates into distributed RNNs
by using a simple dynamical system

̇x = ax3 + bx + z, (5)

where a, b and z are parameters. This particular system has the nice
property of hysteresis, where when z = 0.1, the value of x converges
to x = 0.1, but when z = −0.1, the value of x jumps discontinuously to
converge at x = −0.1 (Fig. 5a). This property enables us to program logic
gates (Fig. 5b). Specifically, by defining the variable z as a product of two
input variables p and q, we can program in the dynamics in equation (5)
to evolve to −0.1 or 0.1 for different patterns of p and q.

These logic gates can now take full advantage of existing com-
puting frameworks. For example, we can construct a full adder using
neural circuits that take Boolean values p and q as the two numbers to
be added, and a ‘carry’ value from the previous addition operation. The
adder outputs the sum s and the output carry v. We show the inputs and

Unique sNPL Rc1,c2
 per c1, c2a

e

f g h

i

b c

d

NPU and other RNNs can be recursively composed to solve more complex problems

Unique dNPL Gc1,c2
 per c1, c2 Source code

rn
Gc1 = 1,c2 = 0

Gc1 = 1,c2 = 1

Gc1 = 0,c2 = 1
Gc1 = 0,c2 = 0

NPU
M
b o
x

–M
b
x

o = Mx + b o = –M Mx +M b + x = x

Inputs
M b Evolution of output over time

True x…

–1.3 1.3

Error

–Mx + b

o
M

⊥

x

Join R = [R00, R01, R10, R11], O = [O00, O01, O10, O11], compile WSource code

Join G = [G00, G01, G10, G11], O = [O00, O01, O10, O11], compile W

After feedback, RNN randomly accesses memories by c1 and c2

A = A + BW (0, 0) (0, 1) (1, 0) (1, 1)

R00
O00 : +Rc1 = 1,c2 = 1 oij

oij

oij

oij

p ij q ij
p ijq

ij
p ik

q kj

Rc1 = 1,c2 = 0

rn

Rc1 = 0,c2 = 1

r3r2
r1

Rc1 = 0,c2 = 0

r n–
1

r n–
1

O01 : –

O10 : 2о

O11 : ×

1

R01 R10 R11

W

O00 O01 O10 O11

O

O

P – Q

P × Q

OP + Q
c1 :0
c2:0

c1:1
2P ο Q O

O

c2:0

c1:0
c2:1

c1:1
c2:1

Select op with c1 and c2

Q
c2c1

–2 2

P

r3r2r1

G00 G01 G10 G11 O00 O01 O10 O11

W

O00 Lorenz

O01 Rossler

O10 Halvorsen

O11 Sprott N c1
c2

o1
o2
o3

⊥ ⊥

Fig. 4 | Extensions to op-codes, composition and dynamic RAM. a, Biasing an
RNN with different control inputs c1, c2 produces a unique SNP Rc1 ,c2. b, Source
code for programming four matrix operations: elementwise addition,
subtraction and multiplication, and matrix multiplication. c, The code is
simultaneously compiled by concatenating all SNPs into R and all source codes
into Ō, and solving argminW̄ ∥ W̄R− Ō ∥. d, The RNN is driven by two matrices,
P and Q, while switching the op-code c1, c2 to yield the desired operation. e, A
neural processing unit (NPU) that performs matrix multiplication and vector

addition can be connected to another NPU such that their composition yields a
more complex algebraic equation. Here the equation is for least-squares
regression, and the programmed RNN composition evolves forward in time to
solve the least-squares problem. f, Biasing an RNN with different control inputs
c1, c2 produces a unique DNP Gc1 ,c2. g, Source code for different chaotic attractors.
h, The code is simultaneously compiled by concatenating all DNPs into G, and all
source codes into Ō, and solving argminW̄ ∥ W̄G− Ō ∥. i, By changing c1 and c2, we
retrieve the stored memories, thereby forming our dRAM.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 627

Article https://doi.org/10.1038/s42256-023-00668-8

outputs of a fully neural adder in Fig. 5c, forming the basis of our ability
to program neural logic units, which are neural analogues of existing
arithmetic logic units.

The emulation of these neural logic gates to circuit design extends
even to recurrent circuit architectures. For example, the set–reset (SR)
latch—commonly referred to as a flip-flop—is a circuit that holds per-
sistent memory, and is used extensively in computer random-access
memory (RAM). We construct a neural SR latch using two NOR gates
with two inputs, p and q (Fig. 5d). When p = 0.1 is pulsed high, the output
o = − 0.1 changes to low. When q is pulsed high, the output changes to
high. When both p and q are held low, then the output is fixed at its most
recent value (Fig. 5d). As another example, we can chain an odd number of
inverting gates (that is, NAND, NOR and XOR) to construct a multivibrator
circuit that generates oscillations (Fig. 5e). Because the output of each
gate will be the inverse of its input, if p is high, then q is low and o is high.
However, if we use o as the input to the first gate, then p must switch to low.
This discrepancy produces constant fluctuations in the states of p, q and
o, which generate oscillations that are offset by the same phase (Fig. 5e).

Game development and decompiling trained RNNs
To demonstrate the flexibility and capacity of our framework, we pro-
gram a variant of the game ‘pong’ into our RNN as a dynamical system.
We begin with the game design by defining the relevant variables and
behaviours (Fig. 6a). The variables are the coordinates of the ball, x, y,
the velocity of the ball, ̇x, ̇y, and the position of the paddle, xp. Addition-
ally, we have the variables that determine contact with the left, right
and upper walls as cl, cr and cu, respectively, and the variable that deter-
mines contact with the paddle, cp. The behaviour that we want is for
the ball to travel with a constant velocity until it hits either a wall or the
paddle, at which point the ball should reverse direction.

Here we run into our first problem: how do we represent contact
detection—a fundamentally discontinuous behaviour—using continu-
ous dynamics? Recall that we have already done so to program logic
gates in Fig. 5a by using the bifurcation of the cubic dynamical system in
equation (5). Here we will use the exact same equation, except rather than
changing the parameter z to shift the dynamics up and down (Fig. 5a),
we will set the parameter b to skew the shape. As an example, for the
right-wall contact cr, we will let b = x − xr (Fig. 6b). When the ball is to
the left such that x < xr, then cr approaches 0. When the ball is to the
right such that x > xr, then cr becomes non-zero. To set the velocity of
the ball, we use the SR latch developed in Fig. 5d. When neither wall is

in contact, then cr and cl are both low, and the latch’s output does not
change. When either the right or the left wall is in contact, then either
cr or cl pulses the latch, producing a shift in the velocity (Fig. 6c). Com-
bining these dynamical equations together produces the code for our
pong program (Fig. 6d), and the time evolution of our programmed
RNN simulates a game of pong (Fig. 6e).

To demonstrate the capacity of our programming framework
beyond compiling programs, we decompile the internal representa-
tion of a reservoir that has been trained to perform an operation. We
instantiate a reservoir with random input matrix B and random recur-
rent matrix A, drive the reservoir with a sum of sinusoids—thereby gen-
erating a time series r(t)—and train the output weights W to reconstruct
highpass-filtered versions of the inputs (Fig. 6f). To understand what
the reservoir has learned, we decompile the reservoir state given A and
B into the SNP matrix Rd according to equation (12), and find that the
output WRd as an analytic function of the inputs and time derivatives
closely matches the true filter coefficients (Fig. 6g).

Discussion
Neural computation exists simultaneously at the core of and the inter-
section between many fields of study. From the differential binding
of neurexins in molecular biology37 and neural circuits in neurosci-
ence38–42, to the RNNs in dynamical systems43 and neural replicas of
computer architectures in machine learning44, the analogy between
neural and silicon computers has generated growing and interdiscipli-
nary interest. Our work provides one possible realization of this analogy
by defining a dynamical programming framework for RNNs that takes
full advantage of their natively continuous and analytic representation,
their parallel and distributed processing, and their dynamical evolution.

This work also makes an important contribution to the increasing
interest in alternative computation. A clear example is the vast array
of systems—such as molecular45, DNA46 and single photon47—that
implement Boolean logic gates. Other examples include the design
of materials that compute48,49 and store memories50,51. Perhaps of
most relevance are physical instantiations of reservoir computing in
electronic, photonic, mechanical and biological systems32. Our work
demonstrates the potential of alternative computing frameworks to be
fully programmable, thereby shifting paradigms away from imitating
silicon computer hardware6, and towards defining native program-
ming frameworks that bring out the full computational capability of
each system.

Input z shifts attractor Build logic gates with specific choices of zb

c

a

d eFull adder of neural circuit elements

Logic table

Persistent memory: an SR latch Multivibrator circuit oscillations

AND

NAND
0.1–0.1

x = ax3 + bx + z·

x

x
p

p
p

p o

q o′

p

p

p q o

q

o

q

o

qu s

s

v

v

q
u

q

p
q

OR

NOR
p
q

p
q

XOR

XNOR
p
q

p
qz = –0.1

z = 0.1·

Fig. 5 | Programming logic gates and circuits using dynamical neural
networks. a, Phase diagram of a cubic dynamical system. When z = 0.1, the
variable x tends towards the stable fixed point x* = 0.1. When z = −0.1, the system
bifurcates, and a new stable fixed point emerges at x* = −0.1. b, By setting z equal
to various products of two input variables p and q, the output evolves according

to different Boolean logic gates, and we program these logic gate dynamics into
our RNNs. c–e, By connecting these neural logic gates, we can form neural
circuits that add Boolean numbers (c), store persistent Boolean states according
to a SR latch with output o and hidden variable o′ (d), and oscillate at a fixed phase
difference due to the propagation delay of inversion operations (e).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 628

Article https://doi.org/10.1038/s42256-023-00668-8

One of the main current limitations is the linear approximation
of the RC dynamics. While prior work demonstrates substantial com-
putational ability for RCs with largely fluctuating dynamics (that is,
computation at the edge of chaos52), the approximation used in this
work requires that the RC states stay reasonably close to the operating
points. While we are able to program a single RC at multiple operating
points that are far apart, the linearization is a prominent limitation.
Future extensions would use more advanced dynamical approxima-
tions into the bilinear regime using Volterra kernels53 or Koopman
composition operators54 to better capture non-linear behaviours.

Finally, we report in the Supplementary Section XI an analysis of
the gender and the racial makeup of the authors we cited in a Citation
Diversity Statement.

Methods
Open-loop architecture with SNP
In our framework, we conceptualize an RNN comprising N neurons
rrr ∈ ℝN, which receive k inputs xxx ∈ ℝk and produce m outputs ooo ∈ ℝm.
This machine has weights A ∈ ℝN×N, B ∈ ℝN×k, and W ∈ ℝm×N, and some
bias term ddd ∈ ℝN×1. If the RNN evolves in continuous time, the instruc-
tions are

1
γ
̇rrr(t) = −rrr(t) + ggg(Arrr(t) + Bxxx(t) + ddd), (6)

where 1/γ is a time constant. If the RNN evolves in discrete time, these
instructions are

rrrt+1 = ggg(Arrrt + Bxxxt + ddd). (7)

We decompile the neural states r as a function h of the inputs x
given the machine code B, A and d in three steps. First, we linearize the
dynamics in equation (6) about a stable fixed point r* and an operating
point x* to yield

1
γ
̇rrr(t) ≈ A∗rrr(t) + ggg(Arrr∗ + Bxxx(t) + ddd) − dggg(Arrr∗ + Bxxx(t) + ddd) ∘ Arrr∗⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

uuu(xxx(t))
,

(8)

where A* = (dg(Ar* + Bx* + d)∘A − I). Second, because our system is now
linear, we can write the neural states as the convolution of the impulse
response and the inputs as

rrr(t) ≈ γ∫
t

−∞
eγA

∗(t−τ)uuu(xxx(τ))dτ. (9)

Third, to obtain r(t) as an algebraic function without an integral,
we perform a Taylor series expansion of this convolution with respect
to t to yield

Pong setupa

b

c

f g

d eContact yields bifurcation

Velocity with an SR latch

Conventional training of W on highpass-filtered data Decompiled RNN representation of output operator

Input:
sum of sines

D
ec

om
pi

le
d

w
ei

gh
ts

Tr
ue

fil
te

r

Compile W + feedback Recurrent neural video games: pong

yu

y

x
x, y

xl xr

xp x

1

x + x/γ
x + x/γ

x′ + x′/γ
y + y/γ
y + y/γ

y′ + y′/γ
cr + cr/γ
cl + cl/γ

cu + cu/γ
cp + cp/γ

cr

xp

o1
o2

x

o1

o2

o3

x < xr
x > xr

cr

cr
2

cl
2

x′

x x′ y′ c r c l
c p x p

xc
r

xc
l

yc
u

yc
p c r c l

c u c p
xc

px
p

x 1,t x 12 ,t
x 13 ,t

x 13 ,t–
2

x 1,t
–1

x 12 ,t–
1

x 13 ,t–
1

x 1,t
–2

x 12 ,t–
2

x 13 ,t–
3

x 1,t
–3

x 12 ,t–
3

xc
p

xc
l

x′
c r

yc
p

c px
p c r c l

c u c px x′ y y′

yc
p

y′
c uy y

x cu
2

cp
2

y′

y

x1,t+1 =
x2,t+1 =
x3,t+1 =

o1,t+1 =
o2,t+1 =
o3,t+1 =

Fig. 6 | Programming pong using neural circuits and bifurcations. a, Design of
a pong variant. The wall positions (xl, xr, yu) and the paddle’s y-coordinate are
fixed as constants. The variables are the ball’s position (x, y) and velocity (̇x, ̇y),
the paddle’s position (xp), and the variables determining contact with the walls
and paddle (cl, cr, cu, cp). The code matrix Ōc (scaled for visualization) is shown.
b, Contact detection with the right wall is implemented using a supercritical
pitchfork bifurcation by scaling the b term in equation (5) by x − xr. When x < xr,
the contact variable cr goes to 0. When x > xr, a bifurcation occurs and cr becomes
non-zero. c, These contact variables are used to drive an SR latch whose output is

the ball’s velocity. d, An RNN simulating a playable game of pong in its head.
e, The colour from blue to yellow represents the evolution of time. The bottom
square is the movement of the paddle, and the circle is the movement of the
marker. f, Conventional training of a reservoir by first driving it with an input time
series to generate the reservoir time series r(t), and then training an output
matrix W to reconstruct highpass-filtered versions of the input. g, The
decompiled analytic outputs of the trained reservoir closely match the true
highpass filter coefficients.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 629

Article https://doi.org/10.1038/s42256-023-00668-8

rrr(t) ≈ hhh(xxx(t), ̇xxx(t), ̈xxx(t),⋯). (10)

We provide a detailed analytical derivation of h in the Supplemen-
tary Sections I–III, and demonstrate the goodness of the approxima-
tions in Supplementary Sections IV–VI.

To decompile discrete-time RNNs, first we linearize equation (7)
about a stable fixed point r* and operating point x*:

rrrt+1 = A∗rrrt + ggg(Arrr∗ + Bxxxt + ddd) − dggg(Arrr∗ + Bxxxt + ddd) ∘ Arrr∗⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
uuu(xxxt)

,
(11)

where A* = dg(Ar* + Bx* + d)∘A. Second, we write rt+1 as the convolved
sum of inputs

rrrt+1 =
t

∑
n=0

A∗nuuu(xxxt−n) = hhh(xxxt,xxxt−1,⋯), (12)

which we Taylor series expand to yield the N × K coefficient matrix for
K expansion terms.

Closed-loop architecture with SNP
For the closed-loop architecture with SNP, we begin with the
pre-programmed RNNs,

1
γ
̇rrr = −rrr + ggg(Ārrr + B̄ ̄xxx + Bxxx + ddd), rrrt+1 = ggg(Ārrrt + B̄ ̄xxxt + Bxxxt + ddd), (13)

for continuous-time and discrete-time systems, respectively (Fig. 2b).
Using SNP, we program an output ̄ooo = W̄rrr = ̄fff(̄xxx,xxx) and perform feedback
as A = Ā + B̄W̄ to yield

1
γ
̇rrr = −rrr + ggg((Ā + B̄W̄)rrr + Bxxx + ddd), rrrt+1 = ggg((Ā + B̄W̄)rrrt + Bxxxt + ddd), (14)

for continuous-time and discrete-time systems, respectively.
The sample lag operator is defined as

̄oi,t+1 = ̄f(̄xxxt, xt) = {
̄xi+1,t 1 ≤ i < n

xt i = n,
(15)

which shifts the state of all inputs down by one index. The short-time
Fourier transform with a sliding window of length n is defined as

oi,t+1 =
n−1
∑
j=0

cos (2πij
n

) ̄xj+1,t,oi+n,t+1 =
n−1
∑
j=0

sin (2πij
n

) ̄xj+1,t. (16)

Data availability
There are no data with mandated deposition used in the manuscript or
supplement. All data in the main text and Supplementary Information
are generated by the code that is publicly available online.

Code availability
All figures were directly generated in MATLAB from the code available
on Code Ocean, available upon publication at https://codeocean.com/
capsule/7809611/tree/v1 (ref. 55).

References
1. Nieder, A. & Dehaene, S. Representation of number in the brain.

Annu. Rev. Neurosci. 32, 185–208 (2009).
2. Salmelin, R., Hari, R., Lounasmaa, O. V. & Sams, M. Dynamics of brain

activation during picture naming. Nature 368, 463–465 (1994).
3. Hegarty, M. Mechanical reasoning by mental simulation. Trends

Cogn. Sci. 8, 280–285 (2004).

4. Silver, D. et al. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 484–489 (2016).

5. Silver, D. et al. Mastering the game of Go without human
knowledge. Nature 550, 354–359 (2017).

6. Patterson, D. A. & Hennessy, J. L. Computer Organization and
Design ARM Edition: The Hardware Software Interface (Morgan
Kaufmann, 2016).

7. Von Neumann, J. First draft of a report on the EDVAC. IEEE Ann.
Hist. Comput. 15, 27–75 (1993).

8. Singh, C. & Levy, W. B. A consensus layer V pyramidal neuron can
sustain interpulse-interval coding. PLoS ONE 12, e0180839 (2017).

9. Gollisch, T. & Meister, M. Rapid neural coding in the retina with
relative spike latencies. Science 319, 1108–1111 (2008).

10. Sigman, M. & Dehaene, S. Brain mechanisms of serial and parallel
processing during dual-task performance. J. Neurosci. 28,
7585–7598 (2008).

11. Nassi, J. J. & Callaway, E. M. Parallel processing strategies of the
primate visual system. Nat. Rev. Neurosci. 10, 360–372 (2009).

12. Rissman, J. & Wagner, A. D. Distributed representations in
memory: insights from functional brain imaging. Annu. Rev.
Psychol. 63, 101–128 (2012).

13. Cho, K., Van Merriënboer, B., Bahdanau, D. & Bengio, Y. On the
properties of neural machine translation: encoder–decoder
approaches. Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation 103–111 (2014).

14. Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R. &
Bullmore, E. T. The rich club of the C. elegans neuronal
connectome. J. Neurosci. 33, 6380–6387 (2013).

15. Werbos, P. J. Backpropagation through time: what it does and how
to do it. Proc. IEEE 78, 1550–1560 (1990).

16. Caporale, N. & Dan, Y. Spike timing–dependent plasticity: a
Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

17. Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck
method. Preprint at arXiv https://doi.org/10.48550/arXiv.
physics/0004057 (2000).

18. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images.
Nature 381, 607–609 (1996).

19. Kline, A. G. & Palmer, S. Gaussian information bottleneck and the
non-perturbative renormalization group. New J. Phys. 24, 033007
(2021).

20. Lukoševičius, M., Jaeger, H. & Schrauwen, B. Reservoir computing
trends. Künstl. Intell. 26, 365–371 (2012).

21. Jaeger, H. The “echo state” approach to analysing and training
recurrent neural networks—with an erratum note. Bonn, Germany:
German National Research Center for Information Technology
GMD Technical Report 148, 13 (2001).

22. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity
from chaotic neural networks. Neuron 63, 544–557 (2009).

23. Lu, Z., Hunt, B. R. & Ott, E. Attractor reconstruction by machine
learning. Chaos 28, 061104 (2018).

24. Kocarev, L. & Parlitz, U. Generalized synchronization,
predictability, and equivalence of unidirectionally coupled
dynamical systems. Phys. Rev. Lett. 76, 1816 (1996).

25. Smith, L. M., Kim, J. Z., Lu, Z. & Bassett, D. S. Learning continuous
chaotic attractors with a reservoir computer. Chaos 32, 011101
(2022).

26. Kim, J. Z., Lu, Z., Nozari, E., Pappas, G. J. & Bassett, D. S. Teaching
recurrent neural networks to infer global temporal structure from
local examples. Nat. Mach. Intell. 3, 316–323 (2021).

27. Canaday, D., Pomerance, A. & Gauthier, D. J. Model-free control
of dynamical systems with deep reservoir computing. J. Phys.
Complex. 2, 035025 (2021).

28. Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. Next
generation reservoir computing. Nat. Commun. 12, 5564 (2021).

http://www.nature.com/natmachintell
https://codeocean.com/capsule/7809611/tree/v1
https://codeocean.com/capsule/7809611/tree/v1
https://doi.org/10.48550/arXiv.physics/0004057
https://doi.org/10.48550/arXiv.physics/0004057

Nature Machine Intelligence | Volume 5 | June 2023 | 622–630 630

Article https://doi.org/10.1038/s42256-023-00668-8

29. Eliasmith, C. & Anderson, C. H. Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems
(MIT Press, 2003).

30. Zhang, Y. et al. A system hierarchy for brain-inspired computing.
Nature 586, 378–384 (2020).

31. Eliasmith, C. et al. A large-scale model of the functioning brain.
Science 338, 1202–1205 (2012).

32. Tanaka, G. et al. Recent advances in physical reservoir computing:
a review. Neural Netw. 115, 100–123 (2019).

33. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics,
limitations and algorithms for complex networks. IEEE Trans.
Control Netw. Syst. 1, 40–52 (2014).

34. Karrer, T. M. et al. A practical guide to methodological
considerations in the controllability of structural brain networks.
J. Neural Eng. 17, 026031 (2020).

35. Bekolay, T. et al. Nengo: a Python tool for building large-scale
functional brain models. Front. Neuroinform. 7, 48 (2014).

36. Rosenblum, M. & Garfinkel, T. Virtual machine monitors: current
technology and future trends. Computer 38, 39–47 (2005).

37. Südhof, T. C. Synaptic neurexin complexes: a molecular code for
the logic of neural circuits. Cell 171, 745–769 (2017).

38. Lerner, T. N., Ye, L. & Deisseroth, K. Communication in neural
circuits: tools, opportunities, and challenges. Cell 164, 1136–1150
(2016).

39. Feller, M. B. Spontaneous correlated activity in developing neural
circuits. Neuron 22, 653–656 (1999).

40. Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety.
Nat. Neurosci. 18, 1394–1404 (2015).

41. Maass, W., Joshi, P. & Sontag, E. D. Computational aspects of
feedback in neural circuits. PLoS Comput. Biol. 3, e165 (2007).

42. Clarke, L. E. & Barres, B. A. Emerging roles of astrocytes in neural
circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

43. Sussillo, D. Neural circuits as computational dynamical systems.
Curr. Opin. Neurobiol. 25, 156–163 (2014).

44. Graves, A. et al. Hybrid computing using a neural network with
dynamic external memory. Nature 538, 471–476 (2016).

45. Kompa, K. & Levine, R. A molecular logic gate. Proc. Natl Acad.
Sci. USA 98, 410–414 (2001).

46. Zhang, M. & Ye, B.-C. A reversible fluorescent DNA logic gate
based on graphene oxide and its application for iodide sensing.
Chem. Commun. 48, 3647–3649 (2012).

47. Pittman, T., Fitch, M., Jacobs, B. & Franson, J. Experimental
controlled–not logic gate for single photons in the coincidence
basis. Phys. Rev. A 68, 032316 (2003).

48. Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Pattern
recognition with “materials that compute”. Sci. Adv. 2, e1601114
(2016).

49. Stern, M., Hexner, D., Rocks, J. W. & Liu, A. J. Supervised learning
in physical networks: from machine learning to learning
machines. Phys. Rev. X 11, 021045 (2021).

50. Pashine, N., Hexner, D., Liu, A. J. & Nagel, S. R. Directed aging,
memory, and nature’s greed. Sci. Adv. 5, eaax4215 (2019).

51. Chen, T., Pauly, M. & Reis, P. M. A reprogrammable mechanical
metamaterial with stable memory. Nature 589, 386–390 (2021).

52. Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M. & Asada, M.
Information processing in echo state networks at the edge of
chaos. Theory Biosci. 131, 205–213 (2012).

53. Svoronos, S., Stephanopoulos, G. & Aris, R. Bilinear approximation
of general non-linear dynamic systems with linear inputs. Int. J.
Control 31, 109–126 (1980).

54. Bevanda, P., Sosnowski, S. & Hirche, S. Koopman operator
dynamical models: learning, analysis and control. Annu. Rev.
Control 52, 197–212 (2021).

55. Kim, J. Z. & Bassett, D. S. A neural machine code and
programming framework for the reservoir computer. Code Ocean
https://doi.org/10.24433/CO.7077387.v1 (2023).

Acknowledgements
We gratefully acknowledge M. X. Lim, K. A. Murphy, H. Ju, D. Zhou
and J. Stiso for conversations and comments on the manuscript.
J.Z.K. acknowledges support from the National Science Foundation
Graduate Research Fellowship No. DGE-1321851, and the Cornell
Bethe/KIC/Wilkins Theory Postdoctoral Fellowship. D.S.B.
acknowledges support from the John D. and Catherine T. MacArthur
Foundation, the ISI Foundation, the Alfred P. Sloan Foundation, an
NSF CAREER award PHY-1554488, and the NSF through the University
of Pennsylvania Materials Research Science and Engineering Center
(MRSEC) DMR-1720530.

Author contributions
J.Z.K. conceived the initial idea and developed the analyses in
conversation with D.S.B. J.Z.K. and D.S.B. prepared the manuscript. All
authors contributed to discussions and approved the manuscript.

Competing Interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-023-00668-8.

Correspondence and requests for materials should be addressed to
Dani S. Bassett.

Peer review information Nature Machine Intelligence thanks Adrian
Valente, Brian DePasquale and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natmachintell
https://doi.org/10.24433/CO.7077387.v1
https://doi.org/10.1038/s42256-023-00668-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A neural machine code and programming framework for the reservoir computer
	Open-loop architecture with SNP for output functions
	Closed-loop architecture with SNP to solve algorithms
	Closed-loop RNN with DNP to simulate and virtualize
	Op-codes, composition and dynamic RAM
	A logical calculus using recurrent neural circuits
	Game development and decompiling trained RNNs
	Discussion
	Methods
	Open-loop architecture with SNP
	Closed-loop architecture with SNP

	Acknowledgements
	Fig. 1 Open-loop neural computer architecture for SNP.
	Fig. 2 Closed-loop neural computer architecture for SNP.
	Fig. 3 Simulation and virtualization using DNP.
	Fig. 4 Extensions to op-codes, composition and dynamic RAM.
	Fig. 5 Programming logic gates and circuits using dynamical neural networks.
	Fig. 6 Programming pong using neural circuits and bifurcations.

