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Structure-inducing pre-training
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Language model pre-training and the derived general-purpose methods have 
reshaped machine learning research. However, there remains considerable 
uncertainty regarding why pre-training improves the performance of 
downstream tasks. This challenge is pronounced when using language model 
pre-training in domains outside of natural language. Here we investigate this 
problem by analysing how pre-training methods impose relational structure 
in induced per-sample latent spaces—that is, what constraints do pre-training 
methods impose on the distance or geometry between the pre-trained 
embeddings of samples. A comprehensive review of pre-training methods 
reveals that this question remains open, despite theoretical analyses showing 
the importance of understanding this form of induced structure. Based on 
this review, we introduce a pre-training framework that enables a granular 
and comprehensive understanding of how relational structure can be 
induced. We present a theoretical analysis of the framework from the first 
principles and establish a connection between the relational inductive bias 
of pre-training and fine-tuning performance. Empirical studies spanning 
three data modalities and ten fine-tuning tasks confirm theoretical analyses, 
inform the design of novel pre-training methods and establish consistent 
improvements over a compelling suite of methods.

The pre-training (PT)/fine-tuning (FT) learning paradigm (also known 
as transfer learning) has had a tremendous impact on natural language 
processing (NLP) and related domains1–3. PT/FT methods have produced 
models capable of providing free-text answers to natural language 
questions4, predicting properties of proteins from sequences5 and 
enabling reaction synthesis prediction from molecular simplified 
molecular-input line-entry system (SMILES) strings6, among other 
advancements.

In NLP or NLP-derived PT/FT, for a given pre-training data modality 
𝒳𝒳, we are given a dataset X ∈ 𝒳𝒳NPT  of size NPT ∈ ℤ  and pre-train an 
encoder fθ ∶ 𝒳𝒳 𝒳 𝒳𝒳  parametrized by θ⃗, which maps 𝒳𝒳  into a latent 
space 𝒳𝒳. This encoder fθ is then transferred for use in various FT tasks 
(which are not known during PT). We evaluate PT/FT systems via the 
performance of fθ on said FT tasks.

In this Article, we are concerned primarily with the efficacy of PT/
FT for downstream tasks that operate at a per-sample level. For 

example, in NLP, evaluating the sentiment of a full restaurant review is 
a per-sample task, in contrast to identifying a named entity token within 
a sentence, which is an intra-sample, per-token task. One aspect of PT 
that drives such eventual FT performance is the induced geometry of 
the pre-trained, per-sample latent space 𝒳𝒳 (formally defined in Meth-
ods). For example, it is well documented that the sentence embeddings 
produced by pre-trained language models in NLP can be non-smooth 
and anisotropic, which harms downstream task performance7 (note 
that our use of the term language model refers to methods designed to 
produce embeddings or enable FT off of pre-trained language models, 
not to autoregressive language models for generation). In other 
domains, such as biomedical modalities, where per-sample tasks are 
even more prevalent than intra-sample tasks compared with NLP, the 
importance of this geometry only increases. Despite this importance, 
research into mechanisms to induce explicit, deep structural constraints 
in 𝒳𝒳 is limited. For example, many methods ignore the geometry  
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area is of particular interest because methods have been successful 
within NLP1,3,24, have motivated a large number of derived methods in 
non-language, biomedical modalities25–28 and are not yet fully techni-
cally understood7,29,30.

Defining explicit and deep structural constraints
Central to our hypothesis is the claim that most NLP-derived PT meth-
ods today do not impose explicit, deep constraints on the (per-sample) 
latent space geometry of 𝒳𝒳. To justify this claim, we define explicit and 
deep structural constraints through the following definitions.

Definition 1 explicit versus implicit structural constraints.  
A PT objective ℒPT imposes a structural constraint that is explicit (versus 
implicit) to the degree that it (as fθ approaches optimality) permits us to 
reason directly about the relationship (in particular, the distance) 
between any two samples zi and zj in the latent space 𝒳𝒳, where subscripts 
i and j are merely used to differentiate between these two samples in 𝒳𝒳.

Definition 2 deep versus shallow structural constraints.  
A PT objective ℒPT imposes a structural constraint that is deep (versus 
shallow) based on how much information ( for example, how many 
dimensions) would be required to fully satisfy the constraint.

For example, consider a classification PT loss with labels in the set 
𝒴𝒴, with sample i having label yi ∈ 𝒴𝒴, and using a logit layer that maps 
the induced representation of sample i to a predicted score: zi ↦ ̃yi. 
This method produces an explicit structural constraint because, near 
optimality, we can infer that the relative (cosine) distance between two 
samples zi and zj is small if and only if yi = yj. However, this constraint is 
also shallow because to fully satisfy this constraint, we need only embed 
each class c ∈ 𝒴𝒴 with a unique position pc ∈ 𝒳𝒳, then compress all sam-
ples zi near their class prototype pyi. Moreover, this distance-based 
constraint can be accomplished in a very-low-dimensional space 𝒳𝒳 (for 
example, we can distribute each pc uniformly about a two-dimensional 
unit circle, then compress all zi to appear at a minimal cosine distance 
from their class prototypes), illustrating that this constraint is very 
shallow.

In contrast, consider a contrastive method that asserts that 
zi = fθ(xi) should be close to z′i = fθ(x̃i), where ˜⃗xi  is a perturbed version 
of x⃗i  under some noising or augmentation procedure xi ↦ x̃i , but 
simultaneously far from other samples zj. While this method constrains 
the latent space to be smooth with respect to the noising process, it 
offers only an implicit constraint on 𝒳𝒳 as it is generally not possible to 
infer how the distance between distinct samples zi and zj is constrained. 
However, it imposes a deeper constraint than the classification objec-
tive because the implicit connections between samples induced by the 
noising procedure reflect relationships that cannot necessarily be 
captured in a low-dimensional space (dependent on dataset size and 
density).

Existing PT method constraints
To show that existing methods broadly do not provide means to 
impose structural constraints that are simultaneously deep and 
explicit, we survey over 90 existing PT methods based on how their 
objective functions constrain the 𝒳𝒳 (Extended Data Fig. 1 and Sup-
plementary Information). For full details on our review findings, see 
Methods. Throughout all examined methods, we find that deep, 
explicit structural constraints are rarely employed. Instead, most 
methods either (1) impose no per-sample PT objectives at all (for 
example, text-generation models, which are often not used for embed-
dings at all but rather for prompting or generative applications3,8,9,31), 
(2) use explicit, but shallow, supervised PT objectives (for example, 
BERT’s NSP objective, A Lite BERT’s (ALBERT’s) sentence-order predic-
tion (SOP) objective or various multi-task objectives1,10,11), or (3) use 
implicit, but deep, unsupervised or self-supervised contrastive  
PT objectives (for example, contrastive sentence embedding los
ses12,13,18,19,32 or other noising-based or augmentation-based  
approaches14–17).

of 𝒳𝒳 by imposing no PT loss over the whole-sample embeddings3,8,9. 
Other methods impose either only shallow constraints, such as through 
an auxiliary classification PT objective1,10,11, or deeper structural con-
straints, but in an implicit manner, such as through data 
augmentation-based12–17 or noising-based18,19 contrastive losses. While 
such methods can be powerful and have been successful in many areas, 
we argue that the lack of a clear framework to design PT methods that 
impose structural constraints on 𝒳𝒳 that are simultaneously explicit 
(similar to supervised classification losses) and deep (similar to 
noising-based and augmentation-based contrastive losses) is a sub-
stantial weakness.

On the basis of this observation, we develop a framework under 
which the PT objective is subdivided into two components: first, a 
language model imputation or denoising objective that leverages 
intra-sample relationships, and second, a loss term driven to regularize 
the geometry of the per-sample latent space 𝒳𝒳 to reflect the connectiv-
ity patterns of a user-specified graph GPT. By relying on graphs to cap-
ture the structure we wish to induce in 𝒳𝒳, this framework allows us to 
specify PT methods that induce deep structure in an explicit manner, 
filling exactly the gap identified above. In addition, this paradigm can 
capture diverse relationships, such as those motivated by external 
knowledge (for example, ref. 20), self-supervised constraints (for 
example, refs. 21,22) or distances between samples in an alternative 
modality (for example, ref. 23). Moreover, this PT framework is simul-
taneously specific to allow us to make theoretical guarantees about 
how different PT graphs impact FT performance, general enough to 
encompass a variety of PT methods and sufficiently expressive to 
motivate new PT methods that have not been previously studied. In 
addition to theoretical analysis, we demonstrate empirically that defin-
ing new methods according to our framework, using explicit forms of 
real-world structure, yields significant benefits over competitive PT 
baselines across three modalities and ten FT tasks.

Our work advances PT/FT research through three contributions. 
First, through a comprehensive review and detailed commentary, we 
show that existing PT methods do not induce structural constraints 
over 𝒳𝒳 that are simultaneously deep and explicit. Second, we establish 
a framework for describing PT methods, which provides a mechanism 
to design PT methods that explicitly induce deep structural constraints 
in 𝒳𝒳 by a user-specified PT graph GPT. We further support this framework 
with theoretical results quantifying how the graph’s structure relates 
to FT task performance. Crucially, this formalization in our new PT 
paradigm offers insight into when PT does or does not add value over 
supervised learning alone. Third, we show that structure-inducing PT 
methods through our framework perform at or above the level of exist-
ing PT methods across three data modalities and ten FT tasks.

Results
General PT problem formulation
Given a dataset XPT ∈ 𝒳𝒳NPT , a PT method aims to learn an encoder 
fθ ∶ 𝒳𝒳 𝒳 𝒳𝒳 such that fθ can be transferred to FT tasks that are unknown 

at PT time. While we can leverage additional information at PT time to 
inform the training of fθ (for example, PT-specific labels YPT), the 
encoder fθ must take only samples from 𝒳𝒳  as inputs so that it can be 
used for FT. PT methods typically solve this problem by training fθ to 
minimize a PT loss ℒPT over XPT. For example, in the model Bidirectional 
Encoder Representations from Transformers (BERT), 𝒳𝒳  consists of 
free-text samples, fθ is a transformer model and ℒPT consists of both a 
masked language modelling per-token loss and the next-sentence- 
prediction (NSP) per-sample loss1.

Our definition of PT ignores secondary applications of the PT 
objective; for example, autoregressive language models (for exam-
ple, Generative Pre-trained Transformer (GPT)-3 (ref. 3)) are often 
used for their generative use directly and not as commonly used to 
acquire embeddings or in transfer learning. Therefore, we are pri-
marily interested in PT methods derived from NLP PT methods. This 
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Across all surveyed methods, we find that only four methods 
impose simultaneously explicit and deep constraints: Knowledge 
Embedding and Pre-trained LanguagE Representation (KEPLER)33, Con-
trastive Knowledge-aware GNN (CK-GNN)23, XLM-K34 and WebFormer35. 
All four can be described as some form of per-sample graph alignment, 
in which an external, PT knowledge graph GPT or connectivity algorithm 
is employed over a subset of PT samples, and the output embeddings 
of pairs of samples zi = fθ(xi) and zj = fθ(xj) are constrained to reflect 
their relationships in the PT graph. This form of constraint is explicit, 
as the graph GPT contains explicit relationships that will be induced in 
the output latent space, but also deep, as the geometry of the graph 
GPT can be arbitrarily complex.

However, all these methods have major limitations. In KEPLER and 
XLM-K, the per-sample embeddings are only constrained to a restricted 
set of samples corresponding to entity descriptions from a knowledge 
graph. As such, no constraints are implied on the general domain 
free-text samples in 𝒳𝒳 alone33,34. In CK-GNN, the graph connectivity is 
derived from a cluster-restricted one-nearest-neighbour graph in an 
alternative modality’s distance space, which may offer a limited 
higher-order structure. Unlike the NLP approaches, this method has no 
intra-sample (for example, per-token) PT task23. Finally, in WebFormer, 
the graph used is inferred from the structure of the HyperText Markup 
Language (HTML) underlying web pages, and relationships are only 
constrained at the per-sample level for limited structural relationships 
within the HTML. Furthermore, WebFormer is a specialized model 
specifically for processing web content (text and HTML elements), so 
this approach cannot be directly generalized to other domains35. Moreo-
ver, these methods explore only the particular contexts of their models. 
They offer no general framework for realizing these deep, explicit 
per-sample constraints in other contexts and do not explore any theory 
on how these constraints relate to performance for FT tasks23,33–35.

Overall, our review of PT methods establishes unequivocally that 
PT methods capable of providing explicit, deep structural constraints 
are significantly under-explored. Across all the methods we reviewed, 
only four methods leverage constraints are explicit and deep, all of 
which have significant limitations, and there is no consensus on how 
to constrain the 𝒳𝒳 explicitly and deeply. These findings motivate our 
framework, which offers insight into realizing deep, explicit structural 
constraints in PT models across diverse contexts and provides theoreti-
cal guidance on how structural constraints relate to FT performance. 
As we show in our results, inducing deep, explicit constraints through 
our framework will induce significant benefits over existing PT meth-
odologies across three diverse biomedical domains.

Structure-inducing PT
Our PT problem framework includes two small but important differ-
ences from the standard formulation (Fig. 1).

First, we assume that we have as an additional input to the PT 
problem a graph GPT = (V, E) where vertices (V) denote PT samples 
within XPT (for example, xPT∣xPT ∈ XPT ⊆ V) and edges (E) represent 
user-specified relationships. Notably, while we take the graph GPT as 
input to the PT problem, we cannot use it as a direct input to fθ. Just like 
in traditional PT, fθ must take as input only samples from 𝒳𝒳. This is 
because otherwise, we cannot apply fθ to the same general class of FT 
tasks over domain 𝒳𝒳.

Second, we decompose the PT loss ℒPT  into two components, 
weighted with hyperparameter 0 ≤ λSI ≤ 1:

ℒPT = (1 − λSI)ℒM + λSIℒSI.

ℒM is a traditional, intra-sample objective (for example, a language 
model), and ℒSI is a new, structure-inducing objective designed to 
regularize the per-sample latent space geometry by the relationships 
(edges) in GPT. Under our framework, ℒSI is only allowable for GPT, fθ and 
𝒳𝒳  if it permits some stable optima at which point a radius 
nearest-neighbour connectivity algorithm under some distance func-
tion in 𝒳𝒳 will recover GPT (formal constraint is in Methods). Note that 
this constraint strikes a connection between our framework and the 
wealth of existing research focused on graph representation  
learning36–41. These techniques do indeed offer valuable insights into 
how to sample minibatches over graph-structured data and devise 
losses for graph embeddings; however, many methods for actually 
modelling graph-structured data, including deep attributed graph 
embeddings and graph convolutional neural networks, should not be 
seen as replacements for our techniques here as they are typically not 
adaptable to contexts in which the graph is not known at inference 
time, and so they could not be used in our PT setting where fθ must take 
in only inputs from 𝒳𝒳 directly.

As the loss term added ℒSI is explicitly designed to induce the 
structure of GPT in 𝒳𝒳, we call methods (in particular methods leveraging 
deep, explicit structural constraints) trained under our framework 
structure-inducing pre-training (SIPT) methods. Many existing PT 
approaches can be re-realized as SIPT methods, including 
classification-based PT objectives such as NSP or SOP, contrastive 
methods, or existing graph alignment methods (Methods). Although 
SIPT is designed to make it easier to induce deep, explicit structural 
constraints, it is also flexible enough to capture implicit or shallow 
structural constraints.

Theoretical analyses
Under our framework, one can link the structure of the PT graph GPT 
to eventual FT task performance. In particular, as an SIPT embedder f 
over graph GPT approaches optimality under the loss ℒSI, it produces 
an embedding space such that nearest-neighbour performance for 
any downstream task is lower bounded by the performance that could 
be obtained via the nearest-neighbour algorithm over graph GPT (The-
orem 1). This fact directly connects the geometry of the graph GPT with 
the eventual FT performance of an SIPT embedder f. Furthermore, it 
demonstrates the advantage of employing an explicit constraint rather 
than an implicit one; by controlling the structure of GPT, users can 
directly choose to add different inductive biases to the PT process in 
a manner that has a provable impact on the eventual suitability for 
downstream FT tasks.

Theorem 1. Let XPT be a PT dataset, let GPT be a PT graph and let fθ∗ 
be an encoder pre-trained under a PT objective permissible under our 
framing that realizes an ℒSI value no more than ℓ*. Then, under embedder 
f, the nearest-neighbour accuracy for an FT task y converges as dataset size 
increases to at least the local consistency (Supplementary Definition 3) 
of y over GPT.

We establish two corollaries of Theorem 1 that illustrate the 
importance of choosing graphs GPT that impose deep structural  
constraints.

Pre-training graph

Pre-training dataset

Structure-inducing objective

Masking objective

Unlinked

Linked

Fig. 1 | Our PT framework. We re-cast the PT formulation by taking a PT graph GPT 
as an auxiliary input. GPT is used to define a structure-inducing objective ℒSI, 
which pushes a PT encoder fθ to embed samples such that samples are close in the 
latent space if and only if they are linked in GPT.
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Corollary 1. Let XPT ∈ 𝒳𝒳N be a PT dataset with corresponding labels 
y ∈ 𝒴𝒴N

PT. Define GPT = (XPT, E) such that (xi, xj) ∈ E if and only if yi = yj.
Then, the local consistency for a given FT task y(FT) over GPT (and thus 

by Theorem 1, the nearest-neighbour accuracy for any optimized SIPT 
embedder) is upper bounded by the probability that a sample xi’s FT label 
y(FT)i  agrees with the majority class label for task y(FT) over the clique 

consisting of all nodes with the same PT label yi as xi.
Corollary 2. Let XPT be a PT dataset that can be realized over a valid 

manifold ℳ . Assume XPT is sampled with full support over ℳ . Let 
GPT(XPT, E) be an r-nearest-neighbour graph over ℳ  ( for example, 
(xi, xj) ∈ E if and only if the geodesic distance between the two points on 
ℳ  is less than r: 𝒟𝒟ℳ(xi,xj) < r). Let y(FT) be an FT classification task that 
is almost everywhere smooth on the manifold.

Then, as the PT dataset size (and thus the size of GPT) tends to ∞, 
and r tends to zero, the local consistency of y(FT) over GPT (and thus by 
Theorem 1 the nearest-neighbour accuracy of an SIPT embedder) will 
likewise tend to one.

Informally, these corollaries establish that when a shallow struc-
tural constraint is used (for example, a supervised classification objec-
tive), then the associated SIPT-equivalent model permits only minimal 

guarantees for FT performance, driven by the extent to which an FT 
task label is consistent within the classes under the supervised PT 
objective. In contrast, if a deep structural constraint is used, realized 
in Corollary 2 via GPT being a nearest-neighbour graph over an arbitrary 
manifold ℳ, then an SIPT model permits a theoretical guarantee for 
FT performance that approaches unity as the PT dataset size grows for 
any FT task that is smooth over ℳ.

This theoretical analysis shows that we can directly connect the 
structure induced in 𝒳𝒳 to downstream FT performance. As such, new 
PT methods that leverage graphs GPT with deeper structural constraints 
can markedly improve performance, as we will demonstrate on 
real-world datasets in our experiments. Complete proofs for all theo-
retical results and semi-synthetic experiments validating our theoreti-
cal findings in practice are in Methods.

Datasets and tasks
We examine three data modalities for our experiments: ‘Proteins’, con-
taining protein sequences; ‘Abstracts’, containing free-text biomedical 
abstracts; and ‘Networks’, containing subgraphs of protein–protein 
interaction (PPI) networks.

In each data modality, we use different PT datasets and leverage 
different kinds of PT graphs GPT, test on publicly available benchmarks 
for FT tasks and compare our SIPT methods with compelling baselines 
spanning both per-sample and per-token methods (Tables 1–3). Further 
details on these aspects are in Methods.

ℒSI and training procedures
As discussed in the definition of our framework, an SIPT method differs 
from a standard PT method by (1) the choice of graph GPT (Table 1) and 
(2) the design of the structure-inducing loss ℒSI. To define ℒSI in our 
experiments, we leverage ideas from structure-preserving metric learn-
ing42–44. Structure-preserving metric learning is a form of metric learn-
ing where positive relationships are defined by edges in a graph rather 
than a shared supervised label. We adapt two losses, a traditional con-
trastive loss45 and a multi-similarity loss46, from supervised metric 
learning to the graph-based, structure-preserving context of ℒSI terms 
in SIPT.

In addition to these losses, in the Abstracts and Proteins domains, 
we use a warm-start procedure to initialize PT from existing language 
models rather than beginning from scratch. This saves significant 
computational time and allows for a powerful ablation study to isolate 
performance improvements to introducing our ℒSI term. Second, we 
perform extensive hyperparameter tuning studies on these two 
domains to identify appropriate values for λSI, and adapt those findings 
to the Networks domain. Further details about the experimental set-up, 
including formal statements of our contrastive and multi-similarity 
losses, are in Methods. Note that, as is standard in PT applications, for 
each PT algorithm and data modality, we pre-train a single model on 

Table 1 | A summary of our datasets, tasks and benchmarks

Proteins Abstracts Networks

Data modality (xi is a…) Protein sequence Biomedical paper abstract Protein–protein interaction network ego-graph

PT dataset Tree of life20 Microsoft Academic Graph21,22 Ref. 26

(xi, xj) ∈ GPT xi interacts with xj xi’s paper cites xj’s paper xi’s central protein agrees on all but nine Gene Ontology 
labels with xj’s central protein.

Per-token baseline TAPE5 SciBERT53 Attribute masking26

Per-sample baseline PLUS52 BioLinkBERT56 Multi-task learning26

FT dataset TAPE5 SciBERT53 Ref. 26

For example, for the Proteins domain, our PT dataset is the set of protein sequences contained in the tree-of-life dataset20, proteins are linked in our PT graph GPT if and only if they interact 
according to the tree-of-life graph. In addition, we compare the FT tasks in the TAPE benchmark against the raw, per-token baseline publicly available in the TAPE model5 and the per-sample 
baseline published in the PLUS PT model52.

Table 2 | Mean (± standard deviation) relative reduction of 
error (defined to be ([baseline error] − [GPT model error])/
[baseline error]) of models trained under our framework 
versus published per-token or per-sample baselines

Domain Task Versus per-token PT Versus per-sample

Relative reduction 
of error

Δ Relative reduction 
of error

Δ

Proteins RH 7.0% ± 1.2 ↑ 8.4% ± 2.4 ↑

FL −0.8% ± 1.3 ~  12.8% ± 1.1 ↑

ST 13.1% ± 2.5 ↑ 2.2% ± 2.8 ~ 

SS 4.5% ± 0.2 ↑ 4.5% ± 0.2 ↑

CP 10.5%a ↑ NA

Abstracts PF 0.3% ± 0.2 ~  0.8% ± 0.3 ↑

SC 2.4% ± 4.1 ~  −1.1% ± 5.5 ~ 

AA 17.7% ± 6.5 ↑ 11.6% ± 16.2 ~ 

SRE 6.7% ± 0.4 ↑ −3.6% ± 10.1 ~ 

Networks 7.8% ± 5.2 ~  5.1% ± 2.7 ↑

Higher numbers indicate models under our framework reduce error more and thus 
outperform baselines. The Δ column indicates whether the model offers a statistically 
significant improvement (↑ and bolded), no significant change (~) or a statistically significant 
decrease (↓ and bolded). Statistical significance is assessed via a t-test at significance 
level P < 0.1. aPer-sample analysis and variance estimates for CP were infeasible due to the 
computational cost of this task. FT tasks are described in Table 3.
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the PT dataset, then fine-tune that one pre-trained model on each FT 
task independently; in other words, in no setting do we need to pre-train 
a separate model per FT task.

SIPT matches or outperforms all baselines
To analyse our experiments, we compute the relative reduction of 
error of the best-performing SIPT model versus the per-token or 
per-sample baselines across all FT tasks (Table 2). In 10 out of 15 cases, 
SIPT improves over existing methods; in no case does it do worse than 
either baseline. In some cases, the gains in performance are signifi-
cant, with improvements of approximately 17% (0.05 macro-F1 raw 
change) on ACL-ARC (AA), 6% on SciERC relation extraction (SRE) 
(0.01 macro-F1 absolute change) and 4% on remote homology (RH; 
2% absolute accuracy change). SIPT models further establish a new 
state-of-the-art performance on AA and RH and match state-of-the-art 

performance on fluorescence (FL), stability (ST) and paper field (PF). 
See Table 3 and Supplementary Information for details on these 
tasks, and recall that the F1 metric is the harmonic mean of precision  
and recall.

Figure 2 shows how performance evolves over FT iterations for the 
Networks dataset to determine whether the improvements observed 
at the final converged values are present throughout training. We see 
that SIPT methods converge faster to better performance than both 
baselines. Raw results across all settings are presented in Extended 
Data Tables 3 and 4.

SIPT performance gains are robust
SIPT performance gains persist across all three data modalities 
and all different GPT types. This shows that explicitly regularizing 
the per-sample latent space geometry offers value across NLP, 
non-language sequences and non-sequential domains. Furthermore, 
leveraging graphs, including those defined by external knowledge, by 
self-supervised signals in the data directly, and by nearest-neighbour 
methods over multi-task label spaces, is beneficial. Furthermore, these 
improvements exist compared with standard language modelling 
approaches and against existing methods that impose per-sample PT 
objectives, including single- and multi-task classification objectives.

Gains are attributable to SIPT loss ℒSI
As outlined in Methods, our experimental design permits us to deter-
mine how much of the observed gains in Table 2 are due to the SIPT 
loss component, as opposed to, for example, continued training, new 
PT data or the batch selection procedures used in our method, which 
also indirectly leverage the knowledge inherent in GPT. Unsurprisingly, 
some gains are observed due to these other factors, and performance 
gains shrink when considering these ablation studies. However, even 
when comparing against the maximal performance baseline or ablation 
study overall, neither the direction of observed relationships nor the 
statistical significance of observed comparisons changes. Therefore, we 
can conclusively state that the performance improvements observed 
here are uniquely attributable to the structure-inducing components 
introduced by our framework. Full ablation study results can be found 
in Extended Data Tables 3 and 4.

Discussion
Despite the breadth of research into PT methods, methods for impos-
ing explicit and deep structural constraints over the per-sample, PT 

Table 3 | FT tasks

FT dataset FT task Description Metric

Name Abbreviation

TAPE5 Remote homology RH Per-sequence classification task to predict protein fold 
category

Accuracy

Secondary structure SS Per-token classification task to predict amino acid structural 
properties

Accuracy

Stability ST Per-sequence regression task to predict stability Spearman’s ρ

Fluorescence FL Per-sequence regression task to predict fluorescence Spearman’s ρ

Contact prediction CP Intra-sequence classification to predict which pairs of 
amino acids are in contact in the protein’s three-dimensional 
conformation

Precision @ L/5

SciBERT53 Paper field PF Per-sentence classification problem to predict a paper’s area 
of study from its title

Macro-F1

SciCite SC Per-sentence classification problem to predict citation intent Macro-F1

ACL-ARC AA Per-sentence classification problem to predict citation intent Macro-F1

SciERC relation extraction SRE Per-sentence relation extraction Macro-F1

Networks26 Multi-label binary classification into 40 Gene Ontology terms Macro-AUROC
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Fig. 2 | FT performance over Networks. Mean ± standard deviation FT AUROC 
as a function of FT iteration for the Networks dataset. Differences in variance 
scale result from different runs triggering early stop at different iterations. The 
SIPT method converges faster and performs better than intra-sample (masked 
node modelling) or per-sample (multi-task classification) PT. MT-PT indicates 
using traditional, supervised, multi-task pre-training alone. Mask-PT represents 
performing mask-imputation pre-training alone, whereas SIPT indicates the 
combination of the two approaches through our SIPT framework.
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latent space 𝒳𝒳 are under-explored (Extended Data Fig. 1). Our theo-
retical and empirical analyses show that this deficit matters. In par-
ticular, we define a PT framework, SIPT, under which the PT loss is 
subdivided into two components: one that is designed to capture 
intra-sample (for example, per-token) relationships and one that is 
intended to constrain the per-sample latent space to capture relation-
ships between samples given by a user-specified PT graph GPT. Under 
our framework, we show theoretically and via experiments that the 
structure induced in 𝒳𝒳 can be directly connected to eventual FT per-
formance. Empirically, we show that SIPT methods leveraging a variety 
of PT graphs can consistently outperform existing PT methods across 
three real-world domains.

Our work highlights several important directions for future 
research. For example, are there losses better suited than metric 
learning losses for PT graphs—for example, can we leverage the graph 
distance alongside the intra-batch distance to improve negative sam-
pling strategies? In addition, can we produce theoretical results on the 
convergence of pre-trained models? For example, can we advance the 
understanding of when and how pre-trained models converge to solu-
tions that recover GPT? In a different direction, can pre-trained models 
reflect forms of structure beyond nearest-neighbour relationships—for 
example, by leveraging higher-order topological considerations or by 
matching a distance function rather than a discrete graph? In addition, 
further exploring the structure-inducing objective’s impact on the 
underlying models’ internal mechanisms, as explored via explainable 
artificial intelligence techniques, would be an exciting avenue for 
future work. We anticipate that further analyses of these and other 
questions will lead to new PT methods and enable PT to be successful 
across diverse domains.

Methods
Structure-inducing losses
We use a multi-similarity loss46, parameterized by positive pair weight, 
w+, negative pair weight, w−, and fixed hyperparameter, t, given below:

ℒSI =
1

Nw+
log (1 + ∑

(i, j)∈E
e−w+(⟨ fθ(xi), fθ(xj)⟩−t))

+ 1
Nw−

log (1 + ∑
(i, j)∉E

ew−(⟨ fθ(xi), fbfθ(xj)⟩−t)) .

We also leverage a contrastive loss modelled after the version in 
ref. 45. For this loss, we assume we are given the following mappings: 
‘pos’, which maps x into a positive node (that is, linked to x in GPT), and 
‘neg’, which maps x into a negative node (that is, not linked to x in GPT). 
The union of a seed minibatch B of points XB and its images under ‘pos’ 
and ‘neg’ mappings form a full minibatch. This loss is specified by the 
positive and negative margin parameters μ+ and μ− as:

ℒ(CL)
SI = 1

N
∑

xi∈X
max ( 𝒟𝒟(xxxi,pos(xi))

−μ+,0 ) +
1
N
∑

xi∈X
max(μ− − 𝒟𝒟(xi,neg(xi)),0).

The Proteins dataset and FT tasks
We use a dataset of ~1.5 million protein sequences from the Stanford 
tree-of-life dataset20 (https://snap.stanford.edu/tree-of-life/data.html). 
The associated GitHub repository for this resource lists a Massachu-
setts Institute of Technology (MIT) license.

Two proteins are linked in GPT for this dataset if and only if they are 
documented in the scientific literature to interact, according to the 
tree-of-life interaction dataset. This is an external knowledge graph.

For FT, we use the Tasks Assessing Protein Embeddings (TAPE) FT 
benchmark tasks5, including remote homology (RH), a per-sequence 

classification task to predict protein fold category (metric: accuracy); 
secondary structure (SS), a per-token classification task to predict 
amino acid structural properties (metric: accuracy); stability (ST) 
and fluorescence (FL), per-sequence, regression tasks to predict a 
protein’s stability and fluorescence, respectively (metric: Spearman’s 
ρ); and contact prediction (CP), an intra-sequence classification task 
to predict which pairs of amino acids are in contact in the protein’s 
three-dimensional conformation (metric: precision at L/5 where L is 
protein length). All of these tasks are from publicly available datasets 
that can be obtained directly on TAPE’s GitHub (https://github.com/
songlab-cal/tape#data), which lists no licences for these datasets 
though the overall GitHub is released under a BSD 3-Clause ‘New’ or 
‘Revised’ License. RH tasks a model to predict a protein fold category 
at a per-sequence level. This task’s dataset contains 12,312/736/718 
train/validation/test proteins and is originally sourced from ref. 47. 
SS is a per-token, multi-class classification problem, evaluated using 
accuracy, which tasks a model to predict the structural properties of 
each amino acid in the final, folded protein. This task’s dataset contains 
8,678/2,170/513 train/validation/test proteins and is sourced from ref. 
48. ST tasks a model to predict the protein’s stability in response to envi-
ronmental conditions. This task’s dataset contains 53,679/2,447/12,839 
train/validation/test proteins, originally sourced from ref. 49. FL 
requires a model to predict how brightly a protein will fluoresce. This 
task’s dataset contains 21,446/5,362/27,217 train/validation/test pro-
teins and is originally sourced from ref. 50. Finally, CP requires a model 
to predict whether any given pair of amino acids from a protein are less 
than 8 Å apart or not. This task’s dataset is sourced from ProteinNet51.

In these experiments, we compare against the published TAPE 
model5, which uses a language modeling task alone as our per-token 
comparison point, and the Protein sequence representations Learned 
Using Structural information (PLUS)52 model, which optimizes for LM 
and supervised classification jointly, for our per-sample comparison 
point.

The Abstracts dataset and FT tasks
We use a dataset of ~650,000 free-text scientific article abstracts from 
the Microsoft Academic Graph (MAG) dataset21,22. The Abstracts PT data 
(the MAG dataset) is licensed with an Open Data Commons Attribution 
License (ODC-By) v1.0 license.

Two abstracts are linked in GPT for this dataset if and only if their 
corresponding papers cite one another. This is a self-supervised graph.

Here, we use a subset of the FT tasks used in the SciBERT paper53, 
including paper field (PF), SciCite (SC), ACL-ARC (AA) and SciERC 
relation extraction (SRE), all of which are per-sentence classification 
problems (metric: macro-F1). PF tasks models to predict a paper’s area 
of study from its title, SC and AA tasks both predict an ‘intent’ label 
for citations, and SRE is a relation extraction task. All FT datasets can 
be obtained from the SciBERT GitHub (https://github.com/allenai/
scibert), which lists no dataset-specific licences but is released with an 
Apache-2.0 license. The PF task asks models to predict a paper’s area of 
study given its title. This task’s dataset contains 84,000/5,599/22,399 
train/validation/test sentences. Although the original dataset is derived 
from the MAG21, it was formulated into this task format by SciBERT 
directly53. The SC task challenges models to predict an ‘intent’ label for 
sentences that cite other scientific works within academic articles. This 
task’s dataset contains 7,320/916/1,861 train/validation/test sentences 
and is originally sourced from ref. 54. The AA task requires models to 
predict an ‘intent’ label for sentences that cite other scientific works 
within academic articles. This task’s dataset contains 1,688/114/139 
train/validation/test sentences and is originally sourced from ref. 55.

We compare against the published SciBERT model53 as our 
per-token comparison and the BioLinkBERT model56 as our per-sample 
comparison. BioLinkBERT augments language modelling with a clas-
sification task to predict whether the input text consists of two sen-
tences from the same document, linked documents (where linkage 
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is determined via a citation graph) or unlinked documents. In this 
way, it uses similar information as used to build our PT graph but 
via a single-task classification loss rather than the more general 
structure-inducing losses we use here. Recently, more successful base 
language models have been proposed beyond the SciBERT model (such 
as PubMedBERT57) and switching to using those to initialize our SIPT 
models in the warm-start procedures would probably further improve 
performance across all models. However, given the computational 
expense of model PT, we retain the use of SciBERT for our initialization 
model (and accordingly for our corresponding per-token baseline) and 
leave the investigation of PubMedBERT for future work.

The Networks dataset and FT tasks
We use a dataset of ~70,000 PPI ego networks here, sourced from ref. 
26. Each sample here describes a single protein, realized as a biological 
network (that is, an attributed graph) corresponding to the ego network 
about that protein (that is, a small subgraph containing all nodes within 
the target protein) in a broader PPI graph. Unlike our other domains, 
this domain does not contain sequences. The Networks PT dataset 
releases its code and dataset files under an MIT license.

This dataset is labelled with the presence or absence of any of 
4,000 protein Gene Ontology terms associated with the central 
protein in each PPI ego network. Leveraging these labels, two PPI 
ego networks are linked in GPT if and only if the Hamming distance 
between their observed label vectors is no more than nine. This is an 
alternative-representation nearest-neighbour graph.

We study only one FT task in this setting, which is the multi-label 
binary classification of the 40 Gene Ontology term annotations (metric: 
macro area under the receiver operating characteristic curve (AUROC)) 
used in ref. 26. We use the PT set for FT training and evaluate the model 
on a held-out random 10% split.

We compare against both attribute-masking26 and multi-task 
supervised PT.

Experimental set-up
To minimize computational burden, we do not pre-train a 
structure-inducing model from scratch for Proteins and Abstracts 
datasets. Instead, we initialize a model from the per-token baseline 
directly, then perform additional PT for only a small number of epochs 
under the SIPT loss subdivision. We assess both multi-similarity and 
contrastive ℒSI variants in these domains. On the Networks dataset, we 
pre-train all models (including baselines) from scratch, and based on 
early experimental results, we only assess the contrastive loss 
variant.

Ablation analyses
Note that the warm-start procedure described above on the Proteins 
and Abstracts domains allows a powerful ablation study: by addition-
ally training a PT model from the per-token baseline with λSI = 0, we can 
uniquely assess the impact of the new loss term, rather than simply 
additional training or the different PT dataset. We perform this ablation 
study for all relevant datasets. For the Networks dataset, no other abla-
tion studies are needed to assess the impact of the loss term, given all 
models are trained from scratch with the same early-stop procedures.

Selection of λSI model parameter
For the Proteins and Abstracts datasets, to choose the optimal value 
of λSI for use at PT time, we pre-trained several models and evaluated 
their efficacy in a link-retrieval task on GPT = (V, E). In particular, we 
score a node embedder f by embedding all nodes n ∈ V as f(n), then rank 
all other nodes n′ by the Euclidean distance between f(n) and f(n′), and 
assess this ranked list via label ranking average precision, normalized 
discounted cumulative gain, average precision and mean reciprocal 
rank, where a node n′ is deemed to be a ‘successful’ retrieval for n if 
(n,n′) ∈ E. In this way, note that we choose λSI in a manner that is inde-

pendent of the FT task and can be determined solely based on the PT 
data. The final results for these experiments are shown in Extended 
Data Table 5 for the proteins dataset and Extended Data Table 6 for 
scientific articles. Ultimately, this process suggests that λSI of 0.1 is a 
robust setting, and as such, 0.1 was used directly for the Networks task 
without further optimization.

Model architecture and other model parameters
The architectures of our encoders for the Proteins and Abstracts 
domains are entirely determined from our source models in TAPE5 
and SciBERT53. In particular, for proteins and scientific articles, we use 
a 12-layer transformer with a hidden size of 768, an intermediate size 
of 3,072 and 12 attention heads. Provided TAPE and SciBERT tokeniz-
ers are also used. A single linear layer to the output dimensionality of 
each task is used as the prediction head, taking as input the output of 
the final layer’s [CLS] token as a whole-sequence embedding. We also 
tested either PT for a single or four additional epochs based on valida-
tion set performance. We ultimately used a single epoch for proteins 
and four for scientific articles.

For the Networks domain, we match the architecture used in the 
original source26 for the mask model runs, save that for computational 
efficiency, scale the batch size up as high as possible, then proportion-
ally scale up the learning rate to account for the larger batch size. This 
corresponds to a batch size of 1,024, a learning rate of 0.01, a graph con-
volutional neural network (GCNN) with a Graph Isomorphism Network 
(GIN) encoder, embedding dimensions of 300, 5 layers, 10% dropout, 
mean pooling and a node feature combination strategy ( JK) of ‘last’.

FT hyperparameters (learning rate, batch size and the number of 
epochs) were determined based on a combination of existing results, 
hyperparameter tuning and machine limitations. On Proteins, most 
hyperparameters were set to follow those reported for a LM PT model 
in ref. 58, although additional limited hyperparameter searches were 
performed to validate that these choices were adequate. As the original 
source for these hyperparameters was an LM PT model, any bias here 
should be against SIPT, meaning this is a conservative choice. Early 
stopping (based on the number of epochs without observing improve-
ment in the validation set performance) was employed, and batch size 
was set as large as possible considering the underlying machine. For 
the PLUS reproduction, we compared hyperparameters analogous to 
the reported PLUS hyperparameters for other tasks and analogous to 
our hyperparameters for other tasks and used those that performed 
best on the validation set. For scientific articles, we performed a grid 
search to optimize downstream task performance on the validation 
set, with the learning rate varying between 5 × 10−6 and 5 × 10−5 and the 
number of epochs between 2 and 5. The same grid search was used 
in the original SciBERT method. We additionally match the SciBERT 
benchmark by applying a dropout of 0.1, using the Adam optimizer 
with linear warm-up and decay, a batch size of 32, and no early stopping. 
For the Networks, FT hyperparameters were again chosen to match the 
original source model26 to save the increase in batch size and learning 
rate. No additional hyperparameter search was performed.

Final hyperparameters for each downstream task are shown in 
Extended Data Table 1 for proteins and Extended Data Table 2 for sci-
entific articles.

Implementation and compute environments
We leverage PyTorch for our codebase. FT Experiments and Networks 
PT were run over various Ubuntu machines (versions ranged from 
16.04 to 20.04) with various NVIDIA graphics processing units. Proteins 
and Abstracts PT runs were performed on a Power 9 system, each run 
using 4 NVIDIA 32 GB V100 graphics processing units with InfiniBand 
at half precision.

Systematic review of PT methods
Papers were selected via a manual search of the NLP and NLP-derived 
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PT methods (that is, methods focused primarily on other domains or 
multi-modal domains were excluded) via Google Scholar and by crawl-
ing through references of papers already included. Citation counts for 
each work were obtained via Google Scholar on 2 August 2022. Publica-
tion date (used to calculate citations per month since publication date) 
was computed as the earlier of either (1) the paper’s venue-specific date 
of publication or (2) the first submission date to the arXiv or bioRxiv 
platforms, as referenced via an exact title match. A manual review was 
done to classify how PT methods constrain latent space geometry and 
assign subjective, numerical ‘shallow–deep’ and ‘explicit–implicit’ 
axes scores. In total, over 90 methods were examined, of which 74 
were suitable for inclusion in numerical review results (Extended Data 
Fig. 1). Supplementary Information summarizes and categorizes all 
methods considered (and reasons for exclusions are given). Note that 
our framework focuses on NLP-derived PT methods, but we do not 
examine generative PT methodology focused on high-dimensional 
continuous distributions, such as diffusion models59. However, these 
methods have succeeded in other domains, such as computer vision.

Data availability
Our synthetic datasets and pointers to real-world datasets 
are publicly available at https://github.com/mmcdermott/
structure_inducing_pre-training.

Code availability
Python implementation of the methodology developed and used in 
the study is available via the project website at https://zitniklab.hms.
harvard.edu/projects/SIPT. The code to reproduce results, documen-
tation, and usage examples are at https://github.com/mmcdermott/
structure_inducing_pre-training.
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Extended Data Fig. 1 | Existing Pre-training (PT) Methods. A summary of 
74 existing natural language processing (NLP) and NLP-derived PT methods, 
categorized into clusters based on how they impose structural constraints 
over the PT (per-sample) latent space. Clusters are arranged on axes via manual 
judgements on whether the imposed constraint is shallow vs. deep and implicit 
vs. explicit. Clusters are sized such that the area corresponds to the number 
of citations methods included in that cluster have received on average per 
month since first publication, according to Google Scholar’s citation count. 

“None” captures models that leverage no pre-training loss over the per-sample 
embedding. “NSP” refers to “Next-sentence Prediction,” the per-sample PT task 
introduced in BERT1. “SOP” refers to “Sentence-order Prediction,” the per-
sample PT task introduced in ALBERT10. Note that over 90 studies in total were 
considered in our review, but only 74 met the inclusion criteria to be included in 
this figure. These methods are described in more detail in the Supplementary 
Information.
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Extended Data Table 1 | Final hyperparameters for our Proteins domain

Task Batch Size LR

Remote Homology 16 1e-5

Fluorescence 128 5e-5

Stability 512 1e-4

Secondary Structure 16 1e-5

Final hyperparameters for our Proteins domain. All tasks used 200 total epochs and performed early stopping after 25 epochs of no validation set improvement. LR, learning rate.
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Extended Data Table 2 | Final hyperparameters for our AbstrActs dataset

Task Number of epochs LR

Paper Field 2 5e-5

ACL-ARC 4/5 5e-5

SciCite 3/2 1e-5

Final hyperparameters for our AbstrActs dataset. All models used a batch size of 32 and no early stopping to match the original SciBERT paper53. LR, learning rate. A / B = [LM PT 
Hyperparameter] / [SIPT Hyperparameter].
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Extended Data Table 3 | Results for the Proteins Domain

Model RH FL ST SS CP

TAPE 21% 0.68 0.73 73% 0.32

PLUS 19.8% ± 1.7* 0.63 0.76 73% N/A

LM PT 23.8% ± 1.1 0.67 ± 0.00 0.76 ± 0.02 73.9% ± 0.0 0.38

SIPT-C 25.1% ± 0.6 0.68 ± 0.00 0.77 ± 0.01 73.9% ± 0.0 0.38

SIPT-M 26.6% ± 1.0 0.68 ± 0.00 0.76 ± 0.01 74.2% ± 0.1 0.39

Results of the TAPE Transformer5, the PLUS Transformer52 (*: our measurements), our LM PT baseline, and two SIPT variants ("-C” indicates the contrastive loss, “-M” the multisimilarity loss). 
Higher is better, and best-performing results per task are bolded.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00647-z

Extended Data Table 4 | Results for the Abstracts Domain

Model PF SC AA SRE

SciBERT 0.66 0.85 0.71 0.80

BioLinkBERT 0.66 ± 0.0 0.86 ± 0.01 0.73 ± 0.04 0.82 ± 0.02

LM PT 0.66 ± 0.0 0.85 ± 0.01 0.70 ± 0.05 0.80 ± 0.01

SIPT-C 0.66 ± 0.0 0.86 ± 0.01 0.76 ± 0.02 0.81 ± 0.00

SIPT-M 0.66 ± 0.0 0.85 ± 0.00 0.73 ± 0.05 N/A

Results of the original SciBERT53 model, our own LM PT baseline, and two SIPT variants ("-C” indicates the contrastive loss, “-M” the multisimilarity loss). Higher is better, and best-performing 
results per task are bolded.
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Extended Data Table 5 | PT Link Retrieval Performance for the Proteins Domain

Method λSI LRAP nDCG AP MRR

Random Baseline N/A 0.88% 27.1% 0.88% 0.003

TAPE5 N/A 8.50% 34.9% 2.41% 0.226

LM PT Baseline 0 8.92% 38.0% 2.33% 0.238

SIPT (TAPE Initialized) 0.01 9.69% 39.1% 2.56% 0.254

0.10 10.95% 39.4% 3.46% 0.260

0.50 10.54% 40.3% 3.43% 0.246

0.90 10.12% 39.0% 3.16% 0.237

0.99 14.50% 37.5% 3.13% 0.236

PT set link-retrieval performance for a random baseline, the raw TAPE model, and SIPT for various weighting parameters λSI on the dataset of protein sequences. LRAP, label ranking average 
precision; nDCG, normalized discounted cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values indicate better performance. Highlighted in grey are realizations 
of SIPT framework that yield better results than the strongest baseline, providing evidence that incorporating sequence-level relational information into PT (i.e., λSI > 0) leads to improved 
performance.
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Extended Data Table 6 | PT Link Retrieval Performance for the Abstracts Domain

Method λSI LRAP nDCG AP MRR

Random Baseline N/A 0.89% 26.0% 0.27% 0.016

SciBERT53 N/A 17.22% 52.8% 5.16% 0.272

LM PT Baseline (SciBERT initialized) 0 16.79% 35.4% 5.00% 0.271

DAPT CS RoBERTa59 N/A 32.56% 50.3% 12.86% 0.459

LM PT Baseline (CS RoBERTa initialized) 0 30.58% 48.3% 12.36% 0.438

SIPT (SciBERT initialized)

0.01 42.26% 58.7% 14.23% 0.536

0.10 34.73% 52.5% 9.39% 0.457

0.50 32.85% 50.8% 8.37% 0.438

0.90 31.61% 49.8% 7.82% 0.426

0.99 30.72% 49.0% 6.80% 0.415

SIPT (CS RoBERTa initialized)

0.01 33.32% 51.2% 8.61% 0.448

0.10 25.46% 44.4% 5.88% 0.359

0.50 25.08% 44.0% 6.08% 0.355

0.90 22.43% 41.6% 4.27% 0.317

0.99 22.38% 41.5% 4.68% 0.316

PT set link-retrieval performance for a random baseline, the raw SciBERT model, and SIPT for various weighting parameters λSI on the scientific articles dataset. LRAP, label ranking average 
precision; nDCG, normalized discounted cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values indicate better performance. Highlighted in grey are realizations 
of SIPT framework that yield better results than the strongest baseline, providing evidence that incorporating sequence-level relational information into PT (i.e., λSI > 0) leads to improved 
performance.
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