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Multitask joint strategies of self-supervised 
representation learning on biomedical 
networks for drug discovery

Xiaoqi Wang    1,5, Yingjie Cheng    1,5, Yaning Yang1, Yue Yu    2, Fei Li    3  & 
Shaoliang Peng    1,2,4 

Self-supervised representation learning (SSL) on biomedical networks 
provides new opportunities for drug discovery; however, effectively 
combining multiple SSL models is still challenging and has been rarely 
explored. We therefore propose multitask joint strategies of SSL on 
biomedical networks for drug discovery, named MSSL2drug. We design six 
basic SSL tasks that are inspired by the knowledge of various modalities, 
inlcuding structures, semantics and attributes in heterogeneous biomedical 
networks. Importantly, fifteen combinations of multiple tasks are evaluated 
using a graph-attention-based multitask adversarial learning framework in 
two drug discovery scenarios. The results suggest two important findings: 
(1) combinations of multimodal tasks achieve better performance than 
other multitask joint models; (2) the local–global combination models yield 
higher performance than random two-task combinations when there are 
the same number of modalities. We thus conjecture that the multimodal 
and local–global combination strategies can be treated as the guideline of 
multitask SSL for drug discovery.

Drug discovery is an important task for improving the quality of human 
life; however, it is an expensive, time-consuming and complicated 
process that has a high chance of failure1,2. To improve the efficiency 
of drug discovery, a great number of researchers are devoted to devel-
oping or leveraging deep learning to speed up its intermediate steps, 
such as molecular property predictions3,4, drug–target interaction 
(DTI) predictions5–11 and drug–drug interaction (DDI) predictions12,13. 
A key advantage to these methods is that deep learning algorithms 
can capture the complex nonlinear relationships between input and 
output data14.

Deep learning techniques have in the past few years gradually 
emerged as a powerful paradigm for drug discovery. Most deep learn-
ing architectures such as convolutional15 and recurrent16 neural net-
works operate only on regular grid-like data (for example, 2D images 
and text sequences), and are not well suited for graph data (for example, 

DDI and DTI networks); however, in the real world, biomedical data 
are often formed as graphs or networks. In particular, biomedical 
heterogeneous networks (BioHNs) that integrate multiple types of 
data source are used extensively for life-science research. This is intui-
tive as BioHNs are well suited for modelling complex interactions in 
biological systems. For example, BioHNs incorporating DDIs, DTIs, 
protein–protein interactions (PPIs) and protein–disease associations 
can naturally simulate the 'multi-drug, multi-target, multi-disease’ bio-
logical processes within the human body17. In the context of biomedical 
networks applications, graph neural networks (GNNs)18–20—deep learn-
ing architectures specifically designed for graph structure data—are 
used to improve drug discovery. Past works21–24 have used GNNs to 
generate the representation of each node in BioHNs, and formulate 
drug discovery as the node- or edge-level prediction problems. Such 
graph neural network-based drug discovery approaches have exhibited 

Received: 14 January 2022

Accepted: 2 March 2023

Published online: 24 April 2023

 Check for updates

1College of Computer Science and Electronic Engineering, Hunan University, Changsha, China. 2Peng Cheng Laboratory, Shenzhen, China. 3Computer 
Network Information Center, Chinese Academy of Sciences, Beijing, China. 4The State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan 
University, Changsha, China. 5These authors jointly supervised this work: Xiaoqi Wang, Yingjie Cheng.  e-mail: pittacus@gmail.com; slpeng@hnu.edu.cn

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00640-6
http://orcid.org/0000-0001-5041-4269
http://orcid.org/0000-0001-7232-9946
http://orcid.org/0000-0002-9865-2212
http://orcid.org/0000-0003-4895-7330
http://orcid.org/0000-0002-4647-2615
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00640-6&domain=pdf
mailto:pittacus@gmail.com
mailto:slpeng@hnu.edu.cn


Nature Machine Intelligence | Volume 5 | April 2023 | 445–456 446

Article https://doi.org/10.1038/s42256-023-00640-6

achieve better performance on various downstream tasks. Follow-
ing the immense success of SSL on computer vision25,26 and natural 
language processing27,28, SSL models built upon BioHNs are attract-
ing increasing attention and have been successfully applied to drug 
discovery29–32. Unfortunately, most existing methods often design 
a single SSL task to train GNNs for drug discovery, thus leading to a 
built-in bias towards the single task while ignoring the multiperspec-
tive characteristics of BioHNs. To cope with the potential bottleneck 
in single-task-driven SSL applications, there have been a few attempts 
at leveraging multiple SSL tasks for facilitating the performance of 
drug discovery33–35. These methods aim to integrate the advantages of 
various types of SSL tasks via multitask learning paradigms; however, 
most past approaches train GNNs according to a fixed joint strategy 

high-precision predictions, but most existing methods heavily depend 
on the size of the training samples; that is, only large-scale training 
samples can help models achieve great performance. The performance 
drastically changes with the variation in the size of the training sample. 
Unfortunately, data labelling is expensive and time-consuming. These 
graph-based deep learning models that rely on large-scale labelled data 
may therefore not be satisfactory in real drug development scenarios.

Self-supervised representation learning (SSL) is a promising 
paradigm for solving the above issues. In SSL, deep learning mod-
els are trained via pretext tasks, in which supervision signals are 
automatically extracted from unlabelled data without the need for 
manual annotation. Self-supervised representation learning aims 
to guide models towards generating generalized representations to 
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Fig. 1 | The schematic workflow of MSSL2drug. a, The BioHN is constructed. 
b,c, Six self-supervised tasks are developed (b), which guide GATs to generate 
representations from different views in the BioHN (c). e, Representation vectors 
are generated. d,f, Fifteen kinds of multitask combinations (d) and a graph-
attention-based multitask adversarial learning framework (f) are developed.  
g, The different single- and multitask SSL representations are fed into the MLP. 
h, The two important findings from MSSL2drug results. All circles, quadrangles 
and pentagons denote the drugs, proteins and diseases in a BioHN, respectively. 
The solid lines are the relationships among the biomedical entities in a BioHN. 
The red nodes represent the randomly selected vertices or node pairs in each 

of self-supervised task. The red solid lines in the edge type masked prediction 
(EdgeMask) and bio-path classification (PathClass) modules represent the 
randomly selected edges or paths, respectively. The red dashed curves in 
the pairwise distance classification (PairDistance) module represent the 
measurements of the shortest paths between biomedical entities. The red solid 
curves in the node similarity regression (SimReg) and node similarity contrast 
(SimCon) modules represent the measurements of the similarities between 
biomedical entities. ClusterPre and PairDistance denotes clustering coefficient 
prediction and a pairwise distance classification, respectively.
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involving multiple tasks and do not focus on the differences between 
various multitask combinations. At the same time, the determina-
tion of which combination strategies can generate the most effective 
improvements has rarely been explored. It is therefore important 
to pay attention to the choice of multitask combination strategies 
in SSL approaches. Multitask SSL methods built on BioHNs for drug 
discovery are still in the initial stages, and more systematic studies are  
urgently needed.

We propose multitask joint strategies of SSL on biomedical net-
works for drug discovery (MSSL2drug) to address the aforementioned 
problems. Inspired by three modality features (structures, semantics 
and attributes in BioHNs), six self-supervised tasks are developed to 
explore the impact of various SSL models on drug discovery. Next, fif-
teen multitask joint strategies are evaluated via a graph-attention-based 
multitask adversarial learning model in two drug discovery scenarios. 
We find that combinations of multimodal tasks exhibit superior perfor-
mance to other multitask strategies. Another interesting conclusion is 
that the local–global combination models tend to yield better results 
compared with random task combinations when there are the same 
number of modalities.

Result
Overview of MSSL2drug
We demonstrate the schematic workflow of MSSL2drug in Fig. 1. First 
we construct a BioHN that integrates 3,046 biomedical entities and 
111,776 relationships. Second, we develop six self-supervised tasks 
based on structures, semantics and attributes in the BioHN (Fig. 1b). 
These self-supervised tasks guide graph attention networks (GATs) 
to generate representations from different views in the BioHN. More 
importantly, we develop fifteen kinds of multitask combinations and 
a graph-attention-based multitask adversarial learning framework  
(Fig. 2) to improve representation quality. Finally, the different 
single- and multitask SSL representations are fed into the multilayer 

perceptron (MLP) for predicting DDIs and DTIs. We can draw two impor-
tant findings on the basis of the experiment results: (1) the combina-
tions of multimodal SSL tasks achieve a state-of-the-art drug discovery 
performance; (2) the joint training of local and global SSL tasks is supe-
rior to the random combinations of two SSL tasks when there are the 
same number of modalities.

Performance of a single-task-driven SSL
PairDistance and PathClass achieve relatively high results in a 
single-task-driven SSL for drug warm-start predictions (Fig. 3). Based 
on a Student’s t-test on the DTI and DDI results (Supplementary  
Section 1), we find that they considerably outperform ClusterPre 
and EdgeMask (P-value < 0.05). Another aspect to note is that Sim-
Con peforms better than SimReg. These results suggest that the 
global-information-driven SSL approaches are superior to the 
local-information-based SSL; an earlier study36 also made a similar 
finding. In addition, we find that attribute-weak constraint-based SSL 
tasks outperform strong constraint-based models.

Local–global tasks achieve superior performance
In this experiment, first, eleven two-task combination models are 
divided into two categories: single- and double-modality combina-
tions. It is noted that we design self-supervised tasks inspired by the 
knowledge of various modalites, including structures, semantics and 
attributes in BioHNs; therefore, there are up to three single-modality 
combination models (Fig. 4b). Second, we compare the performance 
of two-task models with the same number of modalities. The results in 
Fig. 4 suggest that joint training of local and global SSL tasks (that is, 
EdgeMask–PairDistance, ClusterPre–PathClass, ClusterPre–PairDis-
tance and EdgeMask–PathClass) tends to lead to higher performance 
than random combinations of two SSL tasks when there are the same 
number of modalities (we further investigate the difference among 
various methods in Supplementary Section 2). We therefore conjecture 
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Fig. 2 | The framework of graph-attention-based adversarial multitask 
learning. For each epoch, we randomly select a SSL task, tn, from multitask 
combinations. The corresponding private and shared GAT models generate the 
task-specific (Rn) and common (Rs) representations, respectively; Rn and Rs are 
concatenated, and then fed into the MLP-based predictor of SSL task tn. The Rs 
values are fed into the MLP-based discriminator to predict which type of task the 
shared representation vectors come from. The parameters of current private and 

shared GAT models are updated by back-propagation based on the loss values 
from a SSL task predictor and discriminator, respectively. Finally, the parameters 
of the current shared model are assigned to all of the other shared models. 
We therefore attain n private GAT models and shared GAT models with same 
parameters after multitask SSL training. In other words, MSSL2drug generates 
the private representations by all private GATs and the shared representation by 
an arbitrary shared model.
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that the local–global combination strategies can be regarded as an 
effective guideline for multitask SSL to drug discovery.

Multimodal tasks achieve best performance
The results in Fig. 5 show an interesting scenario: the growth of modali-
ties leads to a substantial performance improvement (P-value < 0.05) 
for drug discovery (further results and Student’s t-test analyses can be 
found in Supplementary Section 3). These results suggest that combina-
tions of multimodal tasks can achieve superior performance for drug 
discovery. We therefore conjecture that the multimodal combination 
strategy can be regarded as a potential guideline for multitask SSL for 
drug discovery.

Performance of MSSL2drug on cold-start predictions
For the cold-start drug prediction scenarios, the results of DDI and DTI 
predictions are generated by six basic SSL tasks and fifteen kinds of 
multitask combinations. These results are straightforward and effec-
tive demonstrations that global-information- and attribute-weak 
constraint-based SSL models can achieve better performance than 
local information and attribute strong constraint-based SSL. More 
importantly, these results verify that multimodal and local–global 
combination strategies can achieve state-of-the-art prediction drug 
discovery performance (detailed analyses can be found in Supple-
mentary Section 4).

Performance validation of MSSL2drug on external dataset
To demonstrate the robustness of MSSL2drug, it is used for Luo’s data-
set6 and evaluated by warm- and cold-start predictions with different 
splitting ratios. The detailed setting and result analysis can be found in 
Supplementary Section 5. The results on warm-start predictions sug-
gest that the multimodal and local–global combination strategies still 
conducive to improving the performance of drug discovery on Luo’s 
dataset. The performance of all SSL models on small training data and 
cold-start predictions is reduced, because the volume of training set is 
reduced. However, we find the same performance distribution, that is, 
the multimodal and local–global combination strategies tend to gener-
ate better prediction performance. The results on different splitting 
ratios further demonstrate that MSSL2drug has the high robustness 
and generalization.

Performance comparisons
To demonstrate superiority of MSSL2drug, PairDistance–Edge-
Mask–SimCon is compared with six state-of-the-art methods, includ-
ing deepDTnet37, MoleculeNet38, KGE_NFM5, DTINet6, DDIMDL39 and 
DeepR2cov31. On the constructed biomedical network data shown 
in Table 1, we find that PairDistance–EdgeMask–SimCon is superior 
to the six baselines. PairDistance–EdgeMask–SimCon still outper-
forms other methods on Luo’s dataset for warm-start predictions, as 
shown in Supplementary Table 12. We also compare MSSL2drug with 
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Fig. 3 | Single-task-driven SSL results for drug warm-start predictions. 
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Laplacian Eigenmaps40, Graph Factorization41, DeepWalk42, MF2A43 and 
MIRACLE44. The results suggest that MSSL2drug can achieve higher 
performance on different datasets and scenarios. (see Supplemen-
tary Sections 6 and 16 for more details). We compare the run-time and 
parameter sizes in Supplementary Section 12.

The MSSL2drug and six baselines were also evaluated under differ-
ent splitting ratios between the training and test sets (Supplementary 
Fig. 6). We observe that the performance of all methods are reduced 
when there are only few training samples. In particular, when the ratio 
of training:test sets is 5:95 or 10:90, all methods achieve poor results for 
DDI and DTI predictions. An interesting finding is that the performance 
of MSSL2drug is without much fluctuation, and superior to baselines 
for different volumes of training sets. These results suggest that most 
existing methods are prone to be influenced when applying to a small 
dataset, whereas MSSL2drug can partly overcome this limitation.

Application in drug repositioning for COVID-19
As coronavirus disease 2019 (COVID-19) has recently posed a global 
health threat, we apply MSSL2drug to drug repositioning for COVID-
19, aiming to discover agents that inhibit IL-6 and therefore block the 
excessive inflammatory response in patients. Based on PubMed pub-
lications, clinical studies, molecular docking and molecular dynam-
ics, we find that most of the predicted drugs may be able to inhibit 
the release of IL-6. More importantly, vandetanib (KD = 28.6 μM) and 
pazopanib (KD = 20.7 μM) can bind to IL-6 with high affinity as measured 
by a surface plasmon resonance assay45 (see Supplementary Section 7 
for detailed descriptions); however, it is necessary to further validate 
via standard and systematic experiments whether there are indirect 
relationships or physical interactions between these drugs and IL-6. All 
of the predicted drugs must also be validated in preclinical experiments 
and randomized clinical trials before being administered to patients.

Impact of key components on performance
Key component analyses in SSL tasks. 

•	 Selection of centrality measurements in ClusterPre: Com-
pared with degree and eigenvector centrality46, the clustering 
coefficient-based SSL model47 achieves higher results (Supple-
mentary Section 8.1). A possible explanation for this result is that 
the clustering coefficients are not only extract the distribution 
of neighbouring nodes, but also the triangle (loops of order 3) 
structures48 in networks.

•	 Division of major class in PairDistance: The results suggest 
that dividing 4-hop and higher-hop node pairs into a major class 
achieves better performance compared with 3-hop and 5-hop 
(Supplementary Section 8.2). This phenomenon is consistent with 
the finds in S2GRL (ref. 49).

•	 Length of meta path in PathClass: We observe that selecting 
meta paths with lengths 4 is contribute to the performance of 
PathClass when compared to other length paths. Previous studies 
have made a similar finding50,51. The details can be found in Sup-
plementary Section 8.3.

•	 Selection of similarity measurement in SimCon: We find that 
different similarity measurements bring the marginal improve-
ments or reductions to SimCon (Supplementary Section 8.4). A 
possible explanation for this result is that SimCon only requires to 
distinguish the similarity distributions between node pairs, thus 
reducing the dependence on similarity measurements.

•	 Ablation analyses of PairDistance–EdgeMask–SimCon: We 
further suggest that integrating multimodal and local–global 
task is beneficial to improve performance of drug discovery. In 
PairDistance–EdgeMask–SimCon, the contribution of SimCon is 
relatively lower than EdgeMask and PairDistance to some extent 
(Supplementary Section 8.5).

Component analyses in multitask learning framework. In this sec-
tion we evaluate the respective contributions of the adversarial train-
ing (ADL) strategy and orthogonality constraint (ORC) mechanism 
to MSSL2drug (a detailed description and the results are provided in 
Supplementary Section 9). We find that MSS2drug achieves superior 
performance when compared with the ADL and ORC models. In other 
words, MSS2drug integrating ADL and ORC is beneficial to improve 
performance of drug discovery. We also find that the contribution 
of ORC is higher than ADL to some extent. Furthermore, each task is 
trained by turn in a stochastic manner. The random task orders tend to 
be more robustness and reliability than the fixed task orders; however, 
we conjecture that using the prior or domain knowledge to set a specific 
order may contribute to the improvement of multitask models.

High-quality representation analyses. In this experiment, the repre-
sentations from MSSL2drug are fed into Random Forest52 and support 
vector machine53 for drug discovery predictions. We find that using 
support vector machine and Random Forest still achieves great per-
formance for DDI and DTI predictions (Supplementary Section 10). 
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These results suggest that MSSL2drug can generate the high-quality 
representations that can keep the inherent nature of BioHNs, thus 
improving the performance of drug discovery.

Dataset contamination analyses. We remove the DTI of test set from 
the SSL stage to understand how much influence the data contamina-
tion in SSL has on DTI predictions. The results suggest that the data 
contamination in SSL does not cause a substantial change in the perfor-
mance of MSSL2drug. In other words, MSSL2drug is relatively insensi-
tive to data contamination (Supplementary Section 11).

Discussion
Self-supervised representation learning on BioHNs has recently 
emerged as a promising paradigm for drug discovery. We therefore aim 
to explore a combination strategy of multitask self-supervised learning 
on BioHNs networks for drug discovery. Based on six self-supervised 
learning tasks, we find that global-knowledge-based SSL models out-
perform local-information-based SSL models for drug discovery. This 
is intuitive and understandable as global view-based SSL tasks can 
capture the complex structures and semantics that cannot be natu-
rally learned by local SSL models. We also find that attribute-weak 
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Fig. 5 | The results obtained multimodal task combinations for drug 
warm-start predictions. a, Results for two-task combinations with different 
modalities. b,c, Results for multitask combinations from attributes (b) and 

structures (c) to multimodality. The total number of tasks and modalities in each 
multitask combination are denoted by T and M, respectively. The mean and s.d. 
values are calculated across ten results.

Table 1 | Results of MSSL2drug and baselines for drug discovery predictions

Scenarios Methods DDI DTI

AUROC ± s.d.a AUPR ± s.d.a AUROC ± s.d.a AUPR ± s.d.a

Warm start DeepR2cov 0.883 ± 0.003 0.876 ± 0.003 0.936 ± 0.008 0.924 ± 0.011

DDIMDL 0.907 ± 0.003 0.905 ± 0.004 0.910 ± 0.009 0.916 ± 0.008

DTINet 0.906 ± 0.005 0.908 ± 0.006 0.924 ± 0.012 0.936 ± 0.011

KGE_NFM 0.914 ± 0.004 0.915 ± 0.004 0.923 ± 0.002 0.935 ± 0.002

MoleculeNet 0.871 ± 0.001 0.858 ± 0.001 0.925 ± 0.008 0.931 ± 0.008

deepDTnet 0.914 ± 0.004 0.918 ± 0.004 0.935 ± 0.008 0.932 ± 0.011

PairDistance–EdgeMask–
SimCon

0.939 ± 0.002 0.937 ± 0.002 0.969 ± 0.006 0.968 ± 0.007

Cold start DeepR2cov 0.847 ± 0.015 0.830 ± 0.020 0.918 ± 0.038 0.920 ± 0.024

DDIMDL 0.790 ± 0.014 0.793 ± 0.028 0.883 ± 0.059 0.887 ± 0.038

DTINet 0.880 ± 0.022 0.884 ± 0.023 0.902 ± 0.042 0.907 ± 0.080

KGE_NFM 0.734 ± 0.018 0.722 ± 0.034 0.906 ± 0.005 0.886 ± 0.006

MoleculeNet 0.845 ± 0.013 0.843 ± 0.017 0.910 ± 0.032 0.909 ± 0.047

deepDTnet 0.881 ± 0.011 0.884 ± 0.020 0.890 ± 0.063 0.863 ± 0.065

PairDistance–EdgeMask–
SimCon

0.909 ± 0.008 0.895 ± 0.011 0.940 ± 0.020 0.915 ± 0.048

aDenotes the s.d. calculated across ten results. The best-performing results are marked in bold.
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constraint-based SSL tasks are superior to strong constraint-based 
models. This may be attributed to the fact that the similarity scoring 
functions are handcrafted and unable to accurately reflect the similari-
ties among nodes in the original feature space. Unfortunately, the node 
similarity regression tasks arbitrarily fit node similarity values of node 
pairs. By contrast, similarity contrast tasks reduce the dependence on 
the original feature similarity values.

More importantly, fifteen kinds of multiple task combinations are 
evaluated by a graph-attention-based multitask adversarial learning 
model for drug discovery. These results suggest that the joint training 
the global and local tasks can achieve the relatively high prediction 
performance when there are the same number of modalities. By con-
trast, combining the tasks with great performance does not necessarily 
lead to better performance than other multitask combinations for 
drug discovery. This is intuitive as there may be some conflicts and 
redundancies in the random combinations of SSL tasks; however, the 
combinations of global and local SSL models enable GNNs to leverage 
complementary information in BioHNs. To be specific, the local graph 
SSL models can capture the features within node itself or its first-order 
neighbours, but ignore the bird’s-eye view of the node position in 
BioHNs. Fortunately, global SSL models can learn the dependencies 
among long-range neighbourhoods, thus compensating the short-
comings of local SSL tasks. Simultaneously, an interesting finding is 
that combination models with multimodal tasks tend to generate best 
performance. This is because the combinations of multimodal tasks 
can capture multi-view information including structure, semantic 
and attribute features in BioHNs. The multimodal SSL models allow 
for knowledge transfer across multiple views and attain a deep under-
standing of natural phenomena in BioHNs. For a given SSL task, there 
are different levels of contributions in different multitask combina-
tions. Generally, if a SSL task can bring new modality information to 
multitask models, it will generate the relatively greater contributions. 
Furthermore, if a local (global) information-driven SSL task is added 
to global (local) information-driven SSL tasks, it tends to bring a high 
performance improvement. The multimodal and local–global combi-
nation strategies may be prioritized when developing multitask SSL for 
drug discovery. In other words, you can yourself design multitask SSL 
models according to the multimodal and local–global combination 
strategies when you want to use MSSL2drug for drug discovery. On 
the other hand, you can also directly use PairDistance–EdgeMask–
SimCon for drug discovery, because it integrates the multimodal and 
local–global SSL tasks, and achieves best performance.

In the application of deep learning, when there is a relative scarcity 
of labelled data, it is easy to cause the overfitting problems, which 
exhibit a low testing performance even though its training perfor-
mance is larger54. Fortunately, a great number of studies have sug-
gested that multitask learning techniques can greatly reduce the risk 
of overfitting55–59. In particular, multitask self-supervised learning can 
further overcome overfitting issues and has emerged as a promising 
paradigm54,60–63. The main reasons behind this are from two aspects: 
(1) SSL tasks drive deep learning models to learning the generalized 
representations from unlabelled data, thus reducing dependence on 
label data of downstream tasks (for example, DDI predictions and DTI 
predictions); (2) multitask learning models can transfer and share 
knowledge among multiple SSL tasks to generate more general and 
informative representations. Multitask SSL models like PairDistance–
EdgeMask–SimCon can therefore reduce the risk of overfitting.

Conclusion
In conclusion, SSL based on BioHNs provides new opportunities for 
drug discovery. To facilitate this line of research, we carefully explore 
the influence of various basic SSL tasks and propose unified combina-
tion strategies involving multitask SSL to improve drug discovery. We 
simultaneously present a detailed empirical study to understand which 
combination strategies of multiple SSL tasks are most effective for 

drug discovery. In the future we will pay attention to designing more 
SSL tasks and combination strategies to further improve performance 
of drug discovery. Furthermore, multiclass DDI predictions are closer 
to real-world drug discovery. Nevertheless, it is more challenging and 
difficult to manually annotate multiclass DDI data. We will thus further 
verify the proposed global–local and multimodal combination strate-
gies on multiclass DDI predictions.

Methods
BioHNs
In this work we construct a BioHN according to deepDTnet37. The con-
structed BioHN assembles three types of nodes (drugs, proteins and 
diseases) and five types of edges (DDIs, drug–protein interactions, 
drug–disease associations, PPIs and protein–disease associations). 
More specifically, the DDIs are extracted from the DrugBank data-
base (v.4.3)64, where we only select drugs that have experimentally 
validated target information. The chemical name of each drug is trans-
ferred to a DrugBank ID. The drug–protein interaction networks are 
collected from the DrugBank database (v.4.3), PharmGKB65 and the 
Therapeutic Target database66. We extract human PPIs with multiple 
pieces of evidences from the HPRD database (Release 9)67, HuRI68 and 
BioGRID69. Each protein name is transferred into an Entrez ID (https://
www.ncbi.nlm.nih.gov/gene) via the NCBI (https://www.ncbi.nlm.
nih.gov/). Drug–disease associations are attained via the fusion of 
the drug indications in the repoDB70, DrugBank (v.4.3) and DrugCen-
tral databases71. Disease–protein associations are collected from two 
databases, including the Online Mendelian Inheritance in Man data-
base72 and the Comparative Toxicogenomics database73. The disease 
names are standardized according to Unified Medical Language System 
vocabularies74, and mapped to the MedGen ID (https://www.ncbi.nlm.
nih.gov/medgen/) based NCBI database. BioHN in this work includes 
less information profiles than the dataset deepDTnet. Finally, the 
BioHN contains 3,046 nodes and 111,776 relationships (Supplementary 
Table 26). There are 1,894 proteins, 721 drugs, and 4,978 drug–protein 
interactions in the BioHN. The ratio of DTI labels is 0.003 ≈ 4,978/
(721 × 1,894). Similarly, there are 66,384 DDIs in the BioHN; the ratio 
of DDI label is thus 0.256 ≈ 66,384/(721 × 720 × 0.5). In other words, 
there are sparse labels for DDI and DTI predictions. We therefore pro-
pose MSSL2drug, which explores multitask joint strategies of SSL on 
biomedical networks for drug discovery.

Basic self-supervised learning tasks
Multimodal information such as structures, semantics and attributes in 
BioHNs provides unprecedented opportunities for designing advanced 
self-supervised pretext tasks. Hence we develop six self-supervised 
tasks on the basis of the multimodal information contained in BioHNs 
for drug discovery.

Structure-based SSL tasks. The first direct choice for constructing 
SSL tasks is the inherent structure information contained in BioHNs. 
For a given node, self-supervision information is not only limited to 
itself or local neighbours, but also includes a bird’s-eye view of the 
node positions in a BioHN. We therefore design a clustering coefficient 
prediction (ClusterPre) task that captures local structures and a pair-
wise distance classification (PairDistance) task that reflects the global 
structure information in BioHNs.

ClusterPre. In this pretext task, we use GATs to predict the cluster-
ing coefficient47 of each node in the BioHNs. The ClusterPre SSL task 
aims to guide GATs to generate low-dimensional representations that 
preserve the local structure information in BioHNs. In ClusterPre, 
the loss function adopts the mean squared error (Supplementary  
Section 14.1).

PairDistance. We develop PairDistance, which is not limited to a 
node itself and its local neighbourhoods; it also takes global views of a 
BioHN. Similar to S2GRL (ref. 49), we randomly select a certain number 
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of node pairs and calculate the shortest path length between each node 
pair (i,j) as its distance value di,j. These node pairs and distance values 
are then used to train GATs for drug discovery. In practice, the distances 
between node pairs are divided into four categories: di,j = 1, di,j = 2, di,j = 3 
and di,j ≥ 4. In other words, the PairDistance SSL task can be treated as a 
multiclass classification problem in which we adopt the cross entropy 
loss function (Supplementary Section 14.2). This is mainly attributed 
to two reasons: (1) the distinctions between the node pairs interact-
ing via longer paths (that is, di,j ≥ 4) are relatively vague and therefore 
it is more reasonable to divide the longer pairwise distances into one 
major class49; (2) based on the small-world phenomenon75, we suppose 
that the shortest path lengths between most node pairs are within a 
certain range (Supplementary Section 14.2). If we fit longer pairwise 
distances, some noisy values will be generated. Here, di,j ≥ 4 indicates 
that PairDistance is not limited to the local connections in BioHNs. 
PairDistance is therefore beneficial for guiding GATs to generate node 
representation vectors that encode the global topology information 
of BioHNs. Furtermore, node pairs via random selection may lead to 
unstable results in PairDistance. We thus repeat this process numerous 
times, and then the average performance is computed.

Semantic-based SSL tasks. BioHNs integrate multiple types of 
nodes or edges. The different relationships among these nodes con-
tain distinct semantic information. Recent studies have suggested 
that semantic information can contribute to learning high-quality 
representations28,31. We therefore develop edge type masked predic-
tion (EdgeMask) task and bio-path classification (PathClass) task for 
encouraging GATs to capture certain aspects of semantic knowledge. 
Similar to the structure-based SSL tasks, EdgeMask and PathClass can 
capture the local and global semantics of BioHNs, respectively.

EdgeMask. This task is inspired by the BERT model27, in which 
the core is a masked language model76. More specifically, we ran-
domly mask edge types among some node pairs and then use GATs to 
predict these edge types, where the edge representation vectors are 
obtained by concatenating the representations of their two end-nodes. 
A detailed description of EdgeMask is found in Supplementary Section 
14.3. The types of edges indicate the different action mechanisms 
between biomedical entities. EdgeMask can thus enable GATs to learn 
the semantic features among local neighbourhoods.

PathClass. Compared with the types of edges among nodes, meta 
paths are a sequences for incorporating the complex semantic relation-
ships in BioHNs (Supplementary Section 14.4). Different types of meta 
paths indicate distinct semantics. In PathClass, we design 16 types of 
meta paths as shown in the Supplementary Table 27, where the first or 
last objects are drugs or proteins, respectively. This is mainly because 
drugs and proteins are interconnected with other entities by more 
edges (Supplementary Table 28). These meta paths guide random 
walks to extract path samples from BioHNs. We also generate an equal 
number of false path instances by randomly replacing some nodes in 
true path instances. To be specific, for a given true path instance, it 
has 6.25% (that is, 1/16) chance being replaced to generate a false path 
instance (Supplementary Section 14.4). All path samples are therefore 
divided into 17 categories, including 16 kinds of true meta paths and 
one kind of false meta paths. Finally, we use GATs to predict the type of 
each path sample for learning node representations that contain rich 
semantics and complex relationships. Similarly, we adopt the cross 
entropy as a loss function in PathClass.

Attribute-based SSL tasks. In addition to structures and semantics, 
attribute features play key roles in SSL. More generally, nodes with 
similar properties, such as the simplified molecular-input line-entry 
system (SMILES) strings77 of drugs, should be distributed closely in 
the representation space; however, GATs only aggregate the features 
of node itself and its local neighbourhoods, thus losing the similar-
ity features among nodes. Based on this intuition, we develop two 

attribute-based SSL tasks: node similarity regression (SimReg) and 
node similarity contrast (SimCon), to enable GATs to maintain the simi-
larity attributes in the original feature space. According to the degree 
of dependence on the original feature similarities, SimReg and SimCon 
can be categorized as strong constraint- and weak constraint-based 
SSL paradigms, respectively.

SimReg. The proposed SimReg task requires GATs to fit similarity 
values of node pairs. More specifically, we randomly select a certain 
number of node pairs (i,j) (where i and j are the same types of nodes); 
and then calculate their similarity value simi, j in the original feature 
space, such as the similarity between drug SMILES sequences. We 
require GATs to fit the similarity values (simi,j) of node pairs in the origi-
nal feature space as possible. In other words, SimReg encourages GATs 
to learn representations via a strong constraint-based SSL paradigm. 
In this work we use different property similarity measurements in the 
various types of nodes. The Tanimoto coefficient78 among the SMILES 
sequences of drugs are treated as drug–drug similarity scores. We lever-
age the Smith–Waterman algorithm79 to calculate the sequence similar-
ity scores of protein pairs. The disease similarity scores are obtained 
by using PPI-based ModuleSim algorithm80. The detailed similarity 
measurement approaches and objective functions are described in 
Supplementary Section 14.5.

SimCon. In SimReg, the similarity scoring mechanisms have an 
important impact on the representation learning process. SimReg 
cannot guarantee to generate the high-quality representations when 
similarity scores may not accurately reflect the true similarity values 
among nodes in original feature space. We therefore propose SimCon 
to reduce the influence of similarity scoring mechanisms. In SimCon, it 
assumes that the similar nodes in the original feature space should be 
closer in the embedding space than dissimilar nodes. More specifically, 
we randomly select a certain number of three tuples (i,j,k) for nodes, 
where i, j and k belong to the same types of nodes and simi,j ≥ simi,k. For 
a given tuple (i,j,k), we use GATs to conduct a node similarity contrast; 
that is, the cosine values (cosi,j and cosi,k) between the node represen-
tations generated by GATs should satisfy cosi,j ≥ cosi,k. We formally 
propose a novel objective function:

ℓsimCon (θ) =
1
|M| ∑

(i, j, k)∈M
L (i, j, k)

where M is the selected set of three tuples (i,j,k), |M| is the number of 
three tuples, and L(i,j,k) is calculated as follows:

L (i, j, k) = {
0, cos ( fθ (i) , fθ ( j)) − cos (fθ (i) , fθ (k)) ≥ 0

g (i, j, k) , otherwise

where g(i,j,k) is calculated as follows:

g (i, j, k) = simi,j − simi,k − (cos ( fθ (i) , fθ ( j)) − cos (fθ (i) , fθ (k)))

where θ represents the parameters of a graph neural network fθ(·) and 
fθ(i) denotes the embedding vectors of node i. Furthermore, cos(·,·) is 
the cosine similarity value between two embedding vectors.

Obviously, SimCon only requires that GATs can distinguish the 
similarity distributions between node pairs (i,j) and node pairs (i,k); 
however, SimReg requires that GATs fit similarity values for node 
pairs. SimCon therefore reduces the dependence on the original fea-
ture similarity values compared to SimReg; thus, SimCon is a weak 
constraint-based SSL paradigm.

Graph-attention-based multitask adversarial learning
In this work, the integration of the multitask learning and GATs is a 
challenging and critical problem. Inspired by ref. 81, we propose a 
graph-attention-based adversarial multitask learning framework 
for drug discovery (Fig. 2). The graph-attention-based multitask 
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adversarial learning framework can be divided into the private and 
share parts that employ GATs19 with different parameters.

GATs. The GAT is a popular graph neural network; it assumes that the 
contributions of neighbouring nodes to the central nodes are differ-
ent. To calculate the representations of one node, GAT aggregates its 
neighbour features by a multihead attention mechanism. For a given 
node, the features from multiple attention mechanism models are 
concatenated to generate the final representation vectors. The final 
output features of each node can be calculated by:

h⃗ ′
i
=

K
||
k=1
σ ( ∑

j∈Ni
αkijW

k ⃗hj )

where σ is a nonlinearity activation function, K is the number independ-
ent attention mechanisms, Wk is the weight matrix of linear transforma-
tion in the kth attention mechanism, Ni is the number of neighbours of 
node i, || represents concatenation operation, h⃗j  is the current repre-
sentations of neighbour j. More importantly, αkij  is the attention coeffi-
cients computed by the kth attention mechanism. Intuitively, there are 
K attention coefficients between node i and j; αkij  can be calculated by:

αkij =
exp(LeakyReLU(( a⃗

k
)
T
[Wk h⃗ i‖‖‖W

k h⃗ j ]))

∑
j∈Ni

exp(LeakyReLU(( a⃗
k
)
T
[Wk h⃗ i‖‖‖Wk h⃗ j ]))

where a⃗k  is a weight vector in kth attention mechanism and (·)T repre-
sents transposition.

Task discriminator. For any node i in task t, the shared GAT generates 
task-invariant representations xit = fθs (i) where θs is the parameter of 
the shared GAT fθs(·). These representation vectors xit  are then fed  
into a multilayer perceptron that is treated as a task discriminator. This 
multilayer perceptron aims to predict what kind of task the shared 
representation vectors come from.

D (xit,θtd) = softmax (MLPθtd (xit))

where MLP(·) is a multilayer perceptron in which the trainable param-
eter is θtd.

The loss values from the task discriminator can be calculated as 
follows:

ℓadv = min
θs

(max
θtd

T
∑
t=1

Nt
∑
i=1
yit log [D ( fθs (i) ,θtd)])

where Nt is the number of training nodes in task t, and yit  denotes the 
ground-truth labels indicating the type of current task.

Orthogonality constraints. The above shared model generates some 
features that may appear in both the shared space and the private space. 
We thus adopt an orthogonality constraint81,82 to eliminate redundant 
features from the private and shared spaces. Formally, the objective 
function of the orthogonality constraint is calculated as follows:

ℓoc =
T
∑
t=1

Nt
∑
i=1

‖
‖ fθt (i)

T ⋅ fθs (i)
‖
‖
2

F

where || ⋅ ||2F  is the squared Frobenius norm, and fθt (⋅)  is the private  
GAT of the current task t.

Multitask adversarial training. The final loss function of multitask 
SSL can be written as follows:

ℓtotal = ℓt + λℓadv + γℓoc

where λ and γ are hyperparameters; ℓt  denotes the loss value of task t.

During multitask learning phase, inspired by ref. 83, the models 
are trained in a stochastic manner by looping over the tasks.

Step 1: Randomly select a task.
Step 2: Sample an epoch of instances from the task and train the 

corresponding private model and shared model.
Step 3: Update the corresponding parameters by back- 

propagation. Subsequently, the parameters of the current shared 
model are assigned to all the other shared models.

Step 4: Go to Step 1.
In this way, multiple private and shared GAT models are updated 

by the corresponding specific task; however, in practice these shared 
GAT models are equivalent to a GAT model because they have the same 
parameters. In other words, we attain multiple private GAT models and 
a shared GAT model; thus, in two-task learning cases, Supplementary 
Fig. 17a is equivalent to Supplementary Fig. 17b.

For a given node, different SSL tasks in different epochs guide 
the shared GAT to capture the features with itself task property. 
Self-supervised training in different epochs can thereofre be treated 
as the adversarial learning process, that is, each SSL task encour-
ages shared GAT to generate task-specific representations. After 
sufficient training, the shared GATs reach a point, at which it inte-
grates the property of different tasks; the shared feature space thus 
simply contains common information. By contrast, the private GAT 
model generates task-specific representations to make accurate  
SSL predictions.

Initialization features
In MSSL2drug, the initialization features of each node and adjacency 
matrixes of BioHNs are fed into GATs to perform training and test. Here 
we take an example to describe the process of feature initialization, as 
shown in Supplementary Fig. 18. There are three key steps to generate 
the initialization features. For each given node, its neighbours are 
divided into three categories (drugs, proteins and diseases).

Step 1: Counting the number of neighbours in each class, 
X = {x1, x2,⋯ , xN} , Y = {y1, y2,⋯ , yN}  and Z = {z1, z2,⋯ , zN} , where N is the 
total number of nodes. For instance, for given node 1, x1 = 1, y1 = 2, z1 = 1, 
the sum of x1, y1, z1 is its degree (that is, the number of its neighbours), 
as shown in the first row in Supplementary Fig. 18b;

Step 2: Converting X, Y and Z to matrixes X = { ⃗u 1, ⃗u 2,⋯ , ⃗uN} , 
Y = { ⃗v 1, ⃗v 2,⋯ , ⃗vN} and Z = { ⃗g 1, ⃗g 2,⋯ , ⃗gN} by one-hot encoding technolo-
gies (https://www.educative.io/blog/one-hot-encoding);

Step 3: Generating initialization feature matrix F = { ⃗u 1|| ⃗v 1|| ⃗g 1,  
⃗u 2|| ⃗v 2|| ⃗g 2,⋯ ,u⃗v N|| ⃗vN|| ⃗gN}  by concatenating X, Y and Z, where || is a  

concatenation operation.

Experiment settings
Multitask combination settings. We design various multitask combi-
nations to answer two key questions.

•	 Can joint training of two tasks with great performance (like ‘Alli-
ance between Giants’) achieve higher performance than random 
combination of two tasks? 
The results of single-task-driven SSL suggest that PairDistance, 
PathClass, and SimCon achieve the relatively higher perfor-
mance. We thus first chose all combinations of ‘Alliance between 
Giants’ (that is, PairDistance–PathClass, PathClass–SimCon and 
PairDistance–SimCon). We next randomly select eight other 
two-task combinations, that is, EdgeMask–PairDistance, Cluster-
Pre–PathClass, ClusterPre–PairDistance, EdgeMask–PathClass, 
EdgeMask–SimReg, PairDistance–SimReg, ClusterPre–Edge-
Mask, SimReg–SimCon.

•	 Can the combinations integrating multimodal information 
further improve the prediction performance?

Based on eleven two-task combinations, we select four multi-
task combinations to evaluate the influence of different modalities.  
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As shown in Supplementary Table 29, there is only one different task in 
context compositions. For example, PairDistance–SimCon is turned 
into PairDistance–EdgeMask–SimCon by adding SimReg. In addition, 
the pool of combination strategies keep diversity criterions, that is, 
each task is combined at least five times. We therefore select fifteen 
kinds of task combinations to guaranteed reliability.

Drug discovery predictions under different scenarios. In this study 
we focus on the performance of various SSL tasks on DDI and DTI 
predictions, as they are key stages and play important roles in various 
applications of drug discovery. Simultaneously, DDI and DTI predic-
tions are treated as link predictions in homogeneous and heteroge-
neous networks, respectively. Therefore, DDI and DTI predictions 
can systematically demonstrate the performance of various kinds 
of SSL tasks and combination strategies. According to the guidance 
of KGE_NFM5, we design the following two experimental scenarios. 
Warm-start predictions: given a set of drugs and their known DTIs, we 
aim to predict other potential interactions between these drugs. All the 
known interactions are positive samples, and an equal number of nega-
tive samples are randomly selected from the unknown interactions. The 
positive and negative samples are split into a training set (90%) and a 
testing set (10%). In this situation, the training set may include drugs 
and targets contained in the test set. The same experimental setting 
as DTI predictions are used for DDI predictions. In this experimental 
scenarios, we compare the differences among various SSL tasks for 
DDI and DTI predictions, and draw a conclusion on which combination 
strategies can generate the best performance. Cold start for drugs: in 
real drug discovery, it is more important and challenging to predict 
potential targets and drugs that may interact with newly discovered 
chemical compounds. In other words, the test set contains drugs that 
are unseen in the training set. To be specific, we randomly select 5% 
drugs, and then all DTI and DDI pairs associated with these drugs are 
treated as test set. This scenario aims to validate the conclusions that 
are found in the warm-start predictions. We use the AUPR and AUROC 
curves as the evaluation metrics for drug discovery. To reduce the data 
bias and uncertain disturbance, each model is executed ten times, and 
the average performance is computed. The hyperparameter selections 
can be found in Supplementary Section 15.

Data availability
All relevant data including the original network and initialization fea-
tures can be downloaded from https://github.com/pengsl-lab/MSSL.
git. Source data are provided with this paper.

Code availability
The source code can be found at https://github.com/pengsl-lab/MSSL.
git. In the GitHub repository, we have provided source code that include 
the data processing of six SSL pretext tasks, GAT-based multitask rep-
resentation models, and MLP-based DDI or DTI predictors. We also 
added a description of how to use program, as well as the license and 
DOI to the code. The license is GNU General Public License v.3.0 and 
the doi is https://doi.org/10.5281/zenodo.7650518.
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