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Regression Transformer enables concurrent 
sequence regression and generation for 
molecular language modelling

Jannis Born    1,2  & Matteo Manica    1 

Despite tremendous progress of generative models in the natural sciences, 
their controllability remains challenging. One fundamentally missing 
aspect of molecular or protein generative models is an inductive bias that 
can reflect continuous properties of interest. To that end, we propose 
the Regression Transformer (RT), a method that abstracts regression 
as a conditional sequence modelling problem. This introduces a new 
direction for multitask language models, seamlessly bridging sequence 
regression and conditional sequence generation. We demonstrate that, 
despite using a nominal-scale training objective, the RT matches or 
surpasses the performance of conventional regression models in property 
prediction of small molecules, proteins and chemical reactions. Critically, 
priming the same model with continuous properties yields a competitive 
conditional generative model that outperforms specialized approaches 
in a substructure-constrained, property-driven molecule generation 
benchmark. Our dichotomous approach is facilitated by an alternating 
training scheme that enables the model to decorate seed sequences on the 
basis of desired property constraints, for example, to optimize reaction 
yield. We expect that the RT’s capability to jointly tackle predictive and 
generative tasks in biochemistry can find applications in property-driven, 
local exploration of the chemical or protein space. Such multitask 
approaches will pave the road towards foundation models in  
materials design.

Transformers1 are now ubiquitous in natural language processing (NLP) 
and have also enjoyed large success in molecular2–4 and protein language 
modelling5,6. The invention of Transformers was in alignment with the 
steady decline of inductive biases in machine learning, a trend that 
started with the rise of deep learning: convolutional neural networks 
outperformed traditional feature descriptors in object recognition7, 
self-attention generalized dense layers to learn sample-dependent 
instead of static affine transformations8 and Transformers exploited 
self-attention to supersede recurrent neural networks as the de facto 

standard in NLP. The success of vision transformers has questioned the 
need for translation equivariance in image processing9, and now, even 
frozen Transformers pre-trained on text achieve state-of-the-art results 
in object detection and protein classification10. Given that Transform-
ers are today’s most generic model (that is, graph neural networks 
with multihead attention as neighbourhood aggregation on complete 
graphs), it is not surprising that attempts have been made to abstract 
entire domains such as reinforcement learning to sequence modelling 
in order to leverage Transformers11.
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However, the ChemFormer tunes task-specific heads and thus does 
not pose a true multitask model that entangles both tasks seamlessly. 
This semantic gap persists across architectural flavours (for example, 
generative adversarial networks (GANs)24, reinforcement learning25, 
variational autoencoders (VAEs)26, graph neural networks (GNNs)19,27, 
flow28,29 and diffusion models30). However, some works performed 
property-driven generation through probabilistic reparameterization 
that directly optimize the input to a property prediction model, for 
example, gradient-based schemes such as PASITHEA31, differentiable 
scaffolding trees32 and activation maximization 33 or multi-objective 
Bayesian optimization34 that has been applied to peptide inhibitor35 
and antibody design36. Still, to our knowledge, existing Transform-
ers either tune task-specific heads (see, for example, refs. 22,23) or 
limit the communication between both modules to a reward/loss and 
thus fail to ‘entangle’ constrained structure generation with property 
prediction. This critically violates the intuitive expectation that a 
property-driven generative model should, in the first place, excel at 
recognizing this property.

In this Article, we aim to close this gap by reformulating regression 
as a sequence modelling task. We propose the Regression Transformer 
(RT), a novel multitask model that can be trained on combinations of 
numerical and textual tokens (Fig. 1). This circumvents the canonical 

A provocative next step towards reducing inductive biases might 
be to refrain from explicitly modelling target variables as functions 
of input variables. Instead of following this discriminative modelling 
approach when tuning task-specific language heads in Transform-
ers, learning the joint distribution over input and target variables 
could effectively further blur the lines between predictive and condi-
tional generative models. The feasibility of such an approach can be 
assessed via permutation language modelling (PLM), an extension of 
masked-language modelling to autoregressive models12. Such dichoto-
mous models (that concurrently excel at regression and conditional 
sequence generation) are beyond applications in NLP of special interest 
for chemical and material design. Molecules are often labelled with 
continuous properties (for example, drug efficacy or protein solubil-
ity), and design tasks are intertwined with bio- or physicochemical 
properties. But despite the rise of deep generative models in molecu-
lar13,14 and protein design15,16, current approaches still develop property 
predictors and generative models independently. Transformer-based 
architectures have been used widely on chemical tasks but focused 
on either property prediction17,18 or conditional molecular design19–21. 
Typically, they employ large-scale self-supervised pre-training and 
then fine-tune on different tasks22,23, but only the Chemformer by ref. 22  
addresses regression as well as targeted molecular generation. 
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Fig. 1 | Overview of RT. The RT is a multitask language model designed to handle 
combinations of text and numbers. a, Traditional approach in generative 
chemistry: property predictors and generative models are trained independently 
from another. b, Our approach: Training the RT yields a dichotomous model 
that seamlessly transitions between property prediction and conditional text 
generation. The model’s task is to fill the content behind the [MASK] tokens. 
Depending on the mask location, the same model either predicts numerical 

tokens given textual tokens, thus performing a regression task (blue stream, 
top), or predicts textual tokens given both numerical and textual tokens, thus 
performing a property-driven conditional generation (yellow stream, bottom). 
c–f, This novel formulation finds application across a wide range of domains. 
We demonstrate the flexibility of the RT in predictive and generative tasks in 
modelling small molecules, proteins and chemical reactions and note that it can 
even be applied to natural text.
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way of addressing regression in Transformers, that is, tuning a des-
ignated regression head37. Despite solely relying on tokenization of 
numbers and cross-entropy loss, the RT can successfully solve regres-
sion tasks. Notably, the same model can conditionally generate text 
sequences given continuous properties. This is achieved simply by 
moving the [MASK] location and does not require fine-tuning specific 
heads, thus constituting a true multitask model. To equip the RT with 
an inductive bias for handling floating-point properties, numbers 
are first tokenized into a sequence of tokens preserving the decimal 
order. We then devise numerical encodings (NEs) to inform the model 
about the semantic proximity of these tokens. To allow for concurrent 
optimization of regression and conditional generation, we derive 
a PLM-inspired, alternating training scheme that includes a novel 
self-consistency (SC) loss for improved text generation based on con-
tinuous primers.

In the remainder of this paper, we describe the capabilities of 
the RT on a diverse set of predictive and generative tasks in chemical 
and protein language modelling. We commence with small-molecule 
modelling, validate the RT on a synthetic dataset of drug likeness38 and  
then test it on three property prediction datasets from the MoleculeNet  
benchmark39. The property predictions results are compared with 
previous approaches relying on a regression loss and demonstrate  
that regression can be cast as conditional sequence generation  
task without losing accuracy. These experiments rely on SELFIES40,  
a chemical language devised for generative tasks that, as we show,  
has comparable predictive power to SMILES. Although we aim to  
concurrently excel at predicting properties and generating 
sequences conditioned on properties, we start training with the PLM  
objective12, which does not explicitly model those tasks. We then refine 
this objective and devise a training scheme that alternates between 
optimizing property prediction and text generation. For the latter,  
we derive a novel SC loss that exploits the dichotomy of the RT by 
querying itself with the generated candidate sequence. To assess  
performance in conditional sequence generation, we systemati-
cally vary the continuous properties of interest and investigate the 
model’s ability to adapt a seed sequence according to the primed  
property value. We show applications on property-driven local chemical 
space exploration by decorating scaffolds with a continuum of proper-
ties and evaluate the novel molecules using the RT itself as well as an 
independent property predictor41. The RT is then challenged against 
specialized molecular generative models on a property-driven molecular 
generation benchmark42, where it substantially outperforms prior art.

Next, the RT is investigated on protein sequence modelling where 
it matches the performance of conventional Transformers on two 
regression datasets from the TAPE (Tasks Assessing Protein Embed-
dings) benchmark43. In experiments on chemical reactions, we notice 
that the RT constitutes a generalization of forward reaction and retro-
synthesis models. We then demonstrate on two reaction datasets that 
the RT can not only predict reaction yields with similar accuracy to 
conventional Transformers44, but that it can also substitute specific 
precursors and thus generate novel reactions with higher predicted 
yield than a seed reaction.

Results
Chemical language modelling
Initial validations—learning drug likeness. To test the feasibil-
ity of concurrent property prediction and conditional generation, 
we start with optimizing the vanilla permutation language objec-
tive (equation (3)) on a synthetic QED (quantitative estimation 
of drug-likeness) dataset (Extended Data Fig. 1 shows an illustra-
tion of the entire workflow, for example, the different objective 
functions and the autoregressive generation and how the mixed 
alphanumeric sequences are tokenized and embedded). Since this 
objective masks tokens randomly in the sequence, evaluating such 
models on property prediction (that is, masking only numerical 

tokens as shown in Fig. 1b (top)) does not closely mimic their training  
dynamics.

Despite this, as well as the unconventional formulation of a regres-
sion task as sequence modelling, all models generated sequences of 
numerical tokens that allowed decoding floats, and even achieved a 
root mean square error (RMSE) <0.06 (Table 1, top three rows). Instead, 
for the generative task, the same models were queried ten times for 
every validation molecule with property ‘primers’ equidistantly spaced 
in [0, 1] and 40% of masked textual tokens. Throughout this manuscript 
by ‘primers’ we mean that we replace the true property of a sequence 
with a desired property value. The high rank correlation ρ (between 
primers and QED of unique, generated molecules) values show that 
the model learned successfully to complete the corrupted sequences 
to produce full molecules with a desired QED. Notably, the novelty 
score (that is, the percentage of conditionally generated molecules 
not present in training data) was >99% for all models. This demon-
strates that the RT can generate novel chemical matter that adheres 
to a continuous property of interest. Moreover, the NEs, an inductive 
bias to ease learning proximities of numbers (similar to positional 
encodings1), slightly improved performance in all tasks (for details, 
see “Numerical Encodings” subsection in Methods). Next, the SELFIES 
models with and without NEs were refined on the basis of our proposed 
training scheme with alternating objectives. For both models, two 
models were fine-tuned using the alternating objective (equation (7)), 
with (α = 1) and without (α = 0) the SC term in the text loss, respectively 
(Table 1, bottom section). Interestingly the performance in regression 
as well as conditional generation improved notably, demonstrating the 
effectiveness of the refined objectives.

Furthermore, the ablation studies on pre-training or fine-tuning 
on individual objectives (Table 1, middle) revealed that good perfor-
mance can be achieved on singular tasks. But the alternating objective 
enables cross-task benefits that enable the multitask model to out-
perform single-task models in almost all cases. As might be expected, 
evaluation queries with large deltas between seed and primed QED 
lead to lower precision on the generation since they essentially pose 
an out-of-distribution setting (note that the model was only trained 
with seed = primer). This is shown in Extended Data Fig. 2, which also 
reveals that the SC model particularly shines for challenging queries 
whereas for a pure reconstruction task (that is, primer close to seed) 
the single-task ‘generate-only’ model is advantageous. Moreover, as 
we report in Extended Data Table 1, all configurations of the RT outper-
formed a baseline k-nearest neighbour (k-NN) regressor on extended 
connectivity fingerprints (ECFP45) and our best configuration even 
surpassed SMILES-BERT17, which achieved a mean absolute error of 0.02 
with a regular regression loss and after pre-training on ~9 million SMILES.

The SC term further improved the model’s ability to generate tai-
lored ensembles of molecules and led to consistently higher correlation 
scores. This is exemplarily visualized in Fig. 2 (top) where a single seed 
molecule is decorated according to the property primers to cover the 
full range of QED scores.

Generally, the better performance of the SC models (α = 1) in the 
generative tasks comes at the cost of slightly inferior regression per-
formance (Table 1). Presumably, this is because the model weights in 
charge of the regression are confounded with the gradients from the 
self-evaluation (equation (7)). The novelty scores for the molecules 
generated in this setting were even slightly higher than for the PLM 
training (>99.3% for all models). A particularly challenging application 
for property-driven, local exploration of the chemical space is scaffold 
decoration (that is, adapting a seed molecule while preserving its core 
structure). For an example on this, see Supplementary Information 
Section 6.1. Here, the SELFIES models exceeded the SMILES models 
by far, because SMILES, unlike SELFIES, can be syntactically invalid (we 
found 60% validity). However, this number can hardly be compared 
to unseeded generative models because (1) the RT has to remediate  
a corrupted SMILES and cannot simply rely on its own internal states,  
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(2) the concurrently provided property primers capture the entire 
range of low to high QED scores, thus incentivizing the model to 
decorate the sequence adventurously to adhere to the constrained 
property—a task that is often impossible and can easily lead to broken 
SMILES and (3) the RT training did not rely on teacher forcing. Due 
to the comparable results for property prediction (Table 1, top three 
rows), the remaining experiments focus exclusively on SELFIES. But 
even though SELFIES are designed to be always valid, they can also 
break by converting long sequences to short, stub-like molecules. We 
assessed the frequency of this scenario by defining a generation as 
defective if the obtained molecule had <50% of the atoms of the seed 
molecule. This yielded ~1.9% defective generations across ~300,000 
generations. Regarding chemical sensibility, we observed that the 
1,000 most common functional groups46 are reproduced in the gene-
rated molecules (Supplementary Fig. 1). Further ablation studies on 

different types of NE and related work on encoding numbers with 
Transformer are reported in Supplementary Information Section 1.

Learning embeddings of numbers. We sought to understand why 
the ablation studies on the NEs on the QED dataset (Table 1) reveal 
only mild superiority of models with NEs. Interestingly, as visualized in 
Extended Data Fig. 3, in the absence of static NEs, the model learns the 
natural ordering of digits from the data. A large number of embedding 
dimensions (47% and 36% for the decimal places −1 and −2, respec-
tively) directly and significantly encoded the ordering of digits (that 
is, P < 0.05 and ∣PCC∣ >0.62 between the ten embedding values and 
a strictly monotonic vector). For example, in Extended Data Fig. 3 
(left), the digit value is monotonically related to its embedding value. 
In general, attention weights in Transformers can capture complex 
semantics such as protein folding structure47 or atom mapping in 

Table 1 | Learning drug likeness

Configuration Regression task Generation task

Data NE Pre-training Fine-tuning RMSE (↓) PCC (↑) 0-Var (↓) Spearman’s ρ (↑)

SMILES – PLM – 0.055±0.01 0.972±0.01 1.6%±0.2 0.096±0.02

SELFIES – PLM – 0.059±0.00 0.968±0.00 0.9%±0.2 0.427±0.01

SELFIES ✓ PLM – 0.055±0.01 0.971±0.00 0.3%±0.1 0.467±0.01

SELFIES ✓ Predict (ℒP) – 0.062±0.01 0.963±0.00 Task unfeasible Task unfeasible

SELFIES ✓ Generate (ℒG) – Task unfeasible Task unfeasible 0.5%±0.1 0.358±0.00

SELFIES ✓ PLM Predict (ℒP) 0.030±0.01 0.991±0.01 96.4%±0.0 0.062±0.00

SELFIES ✓ PLM Generate (ℒG) 0.525±0.18 0.226±0.24 0.3%±0.0 0.512±0.00

SELFIES – PLM Alternate (ℒP and ℒG) 0.034±0.01 0.988±0.01 0.2%±0.1 0.470±0.02

SELFIES ✓ PLM Alternate (ℒP and ℒG) 0.050±0.00 0.982±0.00 0.3%±0.1 0.468±0.03

SELFIES – PLM Alternate with SC (ℒP and 
ℒSC)

0.048±0.01 0.978±0.03 0.3%±0.1 0.490±0.01

SELFIES ✓ PLM Alternate with SC (ℒP and 
ℒSC)

0.037±0.03 0.987±0.03 0.2%±0.1 0.517±0.02

Different configurations of the RT on concurrent learning of predicting drug likeness and generating drug-like molecules. The first block contains models trained with the task-agnostic PLM 
objective. The second block contains ablation studies on single-task models exclusively trained on either the predictive or the generative objective. The third block contains molecules that 
were pre-trained on the PLM objective and then fine-tuned using the alternating objective. RMSE (↓) and PCC refer to predicting QED, whereas Spearman’s ρ (↑) and 0-Var (↓) to the conditional 
generation task. S.d. values across repeated runs are shown. Numbers computed on 10,000 test samples. Best model shown in bold, second-best underlined.
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Fig. 2 | Property-driven, local optimization of molecular design with the 
RT. For each row, the seed molecule is shown in the middle alongside its true 
property. On the basis of ten property primers, ten molecules were decoded 

but duplicates were discarded. Samples generated with the SC model. Top: QED 
dataset. Bottom: ESOL dataset of aquatic solubility. The solubility of the novel 
molecules was predicted by the RT itself and is externally validated by Grover41.
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chemical reactions4. For a qualitative comparison of the RT’s atten-
tion across the predictive and generative task, see Supplementary 
Information Section 2.

Regression benchmark (MoleculeNet)
After the successful initial experiments, we evaluated the RT on three 
regression benchmarks from MoleculeNet39. The regression perfor-
mance on ESOL, FreeSolv and Lipophilicity is shown in Extended Data 
Table 2 and compared with prior work. The strongest baseline model 
from MoleculeNet, XGBoost, is outperformed by all our models on all 
tasks. Even the MPNN48, a message-passing GNN, is slightly surpassed 
on FreeSolv and Lipophilicity by some of our models. However, all our 
models are outperformed by BERT49 and BART22. Notably, these models 
leveraged large-scale self-supervised pre-training before fine-tuning 
a regression head, whereas we use a classification loss. Since these 
results might not be directly comparable to the RT with its XLNet back-
bone, we also fine-tuned a XLNet model with a conventional regression 
head. Notably, despite the absence of a regression loss, the RT is on par 
(Lipophilicity) or only mildly inferior (that is, within s.d. range; ESOL, 
FreeSolv) to XLNet.

However, in stark contrast to all those approaches, only the RT can 
also be used to conditionally generate molecules similar to the training 
samples (Extended Data Table 3). Since the properties of the generated 
molecules are intractable to evaluate in silico, we could predict them, 
handily, using the RT. However, as this might be a biased estimator, we 
additionally evaluated them using Grover41, a self-supervised Graph 
Transformer that relies on large-scale pre-training. Extended Data 
Table 3 presents the performance in conditional molecular generation, 
which underlines the benefit of the SC loss (α = 1) and demonstrates 
that the RT can adapt unseen seed molecules even according to com-
plex molecular properties such as water solubility. Corroborative 
for our work is the high correlation of our property predictions (RT) 
with Grover’s for molecules generated by the ESOL, FreeSolv and Lipo 
models (0.86, 0.84 and 0.75, respectively). For a qualitative evaluation, 
we depict the generations for one exemplary seed molecule of the 
solubility dataset in Fig. 2 (bottom). Lastly, we found 1.3% defective 
generations, which is comparable to or lower than in the QED dataset.

Conditional molecular generation benchmark
To assess whether the RT is a powerful conditional generative model, 
we benchmarked it on a property-driven molecular generation task, 
namely penalized logP (plogP; definition in Methods) constrained 

optimization42. Given a seed molecule and a similarity constraint 
to the seed molecule (δ, given in Tanimoto similarity), the goal is to 
generate molecules with higher plogP values. The results in Table 2 
demonstrate that, for both similarity thresholds δ, the RT performs 
competitive to state-of-the-art models; for example, it outperforms a 
Junction-Tree-VAE42 and a graph-convolutional policy network (GCPN)50 
by 614% and 103% in average improvement, respectively.

It falls behind the Back Translation (BT) model51 on average 
improvement; however, care has to be taken on their results since other 
metrics and s.d. values are not reported. The RT performs comparably 
to the MoFlow model52, while our results for δ = 0.4 are inferior, the 
unconstrained generation results (δ = 0.0) are in favour of our method 
(Supplementary Information Section 3). Moreover, these comparisons 
are not truly fair because all competing methods have a training pro-
cedure that rewards generating molecules with high plogP and some 
methods even apply gradient optimization schemes at inference time 
(GCPN and JT-VAE). This is in stark contrast to the RT training, which 
rewards only if the reconstructed molecule has a similar (predicted) 
plogP to the seed molecule (we did not construct directed plogP queries 
for the training; they were used only at inference time). Thus, the RT 
is agnostic in valence and could equally be used to adapt molecules 
towards lower plogP. Overall, this experiment demonstrates that the 
RT is able to compete with specialized conditional generative models 
in goal-directed molecular generation. At the same time, the RT also 
predicted the plogP value with a Pearson’s correlation coefficient (PCC) 
of 0.92, a task that cannot be addressed with normal conditional genera-
tive models. The results in Table 2 were obtained with the RT including a 
SC loss, but for ablation studies on the RT and further results on δ = 0.2 
and δ = 0, see Supplementary Information Section 3.

Protein sequence language modelling
Pre-training on potential protein interaction (Boman index). 
To assess the generality of the RT beyond chemical languages, we 
benchmarked the RT in protein language modelling. On the synthetic 

Table 2 | Constrained property optimization benchmark

Model Generation task Regression

Improvement Similarity δ Success PCC

(a) Similarity threshold δ = 0.4

JT-VAE42 0.84±1.5 0.51±0.1 83.6% Task unfeasible

GCPN50 2.49±1.3 0.47±0.1 100% Task unfeasible

MoFlow52 4.71±4.5 0.61±0.2 85.7% Task unfeasible

BT51 4.21 NA NA Task unfeasible

RT (ours) 3.16±1.5 0.54±0.1 97.1% 0.92±0.0

(b) Similarity threshold δ = 0.6

JT-VAE42 0.21±0.7 0.69±0.0 46.4% Task unfeasible

GCPN50 0.79±0.6 0.68±0.1 100% Task unfeasible

MoFlow52 2.10±2.9 0.79±0.1 58.3% Task unfeasible

BT51 2.77 NA NA Task unfeasible

RT (ours) 2.21±1.3 0.69±0.1 81.8% 0.92±0.0

Best model marked in bold, second-best underlined. Standard deviations are given. Full table 
with different configurations in Supplementary Table 3. NA means “not available”.

Table 3 | Results on protein language modelling

Model Source Boman Fluorescence Stability

(a) Protein regression tasks

k-NN Baseline 0.93 0.59 0.21

One-Hot TAPE NA 0.14 0.19

LSTM TAPE NA 0.67 0.69

Transformer TAPE NA 0.68 0.73

UniRep 54 NA 0.67 0.73

ProteinBERT 55 NA 0.66 0.76

RT (ℒSC) Ours 0.99±0.01 0.72±0.04 0.71±0.02

Model Boman dataset Stability dataset

0-Var (↓) Spearman’s ρ 0-Var (↓) Spearman’s ρ

(b) Protein generation tasks

All TAPE Task unfeasible Task unfeasible

UniRep Task unfeasible  Task unfeasible

RT (PLM) 0.3%±0.0 0.76±0.03 40%±4.2 0.00±0.00

RT (ℒG) 0.2%±0.1 0.82±0.01 31%±5.5 0.30±0.06

RT (ℒSC) 0.2%±0.1 0.84±0.00 19%±4.5 0.44±0.01

(a) Protein property prediction (regression). All values in Spearman’s ρ (↑) on the test set. 
TAPE datasets/performances taken from ref. 43. An ablation study on the three loss functions 
(equations (3), (6) and (7)) confirmed the superiority of the SC objective (Supplementary 
Information Section 4.1 and Supplementary Table 4). Best performance per dataset shown in 
bold. (b) Protein generation. Sixty per cent of the residues were masked. Boman index was 
computed directly, whereas stability was predicted with the RT itself. Best performance per 
dataset shown in bold. S.d. values measured across three runs.
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pre-training data, the RT obtained nearly perfect results in predicting 
Boman’s index (Spearman’s ρ > 0.994; Table 3) and outperformed a 
baseline k-NN using Levenshtein distance53. But the RT also successfully 
generated peptides with a desired Boman index, given a partially cor-
rupted amino acid sequence (Spearman’s ρ of 0.84; Table 3b). Moreo-
ver, a higher fraction of masked tokens lead to better results in protein 
generation tasks (Supplementary Fig. 2).

TAPE datasets (protein fluorescence and protein stability). Next, 
the RT performed competitively on two realistic protein regression 
datasets from TAPE (Table 3). This is remarkable given that the TAPE 
models were pre-trained large scale on unlabelled protein sequences 
and fine-tuned with a regression loss. For example, the RT outperforms 
all reported methods in Spearman’s correlation on the fluorescence 
task, which has a distribution with two modes, for bright and dark pro-
teins, respectively. Inspecting the predictions in more depth showed 
that the RT, compared with other methods, excels at recognizing the 
mode of a protein but struggles with intra-mode precision (Supplemen-
tary Information Section 7.2). Across both datasets, the RT performs on  
par or superior to the TAPE Transformer43, UniRep54 and the contem-
porary ProteinBERT55 model, pre-trained on 31 million, 24 million 
and 106 million protein sequences, respectively (2.6 million in our 
case). However, scaling this pre-training to evolutionary-scale pro-
tein language models would probably displace UniRep as well as the  
RT as evolutionary-scale protein language models was recently  
demonstrated to have strong zero-shot generalization performance56.

Overall, the competitive predictive performance of the RT demon-
strates that the benefits of self-supervised pre-training can extend to 

numerically labelled datasets. This yields, en passant, a conditional 
generative model for property-driven local exploration of the protein 
sequence space. Evidence on this can be found in Table 3b: Whereas all 
TAPE models as well as the UniRep method are incapable of addressing 
this generation task, the RT was able to modify the test proteins such 
that their (predicted) stability correlated strongly with the primed 
property (ρ = 0.44).

Modelling chemical reactions
Language models advanced reaction chemistry dramatically4,57 and, 
among others, showed superior performance on yield prediction44, 
yet models incorporating yield into (partial) reaction generation are 
lacking entirely. Such models could be used to (1) identify entirely 
novel reactions by substituting a specific precursor type with a higher 
yield, (2) cure erroneous reactions by identifying missing precursors 
in databases of specific reaction types or (3) infer reagents or solvents 
in reactions that only specify main compounds.

We therefore optimized the RT for concurrent yield prediction and 
precursor generation on two reaction-yield datasets: Buchwald–Hartig 
aminations58 and Suzuki–Miyaura cross-couplings59. All experiments 
relied on the alternated training scheme with SC loss. On yield predic-
tion, the RT (trained on SELFIES) outperforms fingerprint-based or 
quantum mechanics methods, and matches (Suzuki dataset) or almost 
matches (Buchwald dataset) the performance of language models 
such as Yield-BERT, trained with regression loss on SMILES (Table 4).

The same model learned to reconstruct missing precursors 
in Buchwald–Hartwig animations, which can be useful to infer  
missing solvents or reagents in automatically extracted reactions 

Table 4 | Chemical reaction modelling

Model Buchwald– Suzuki

Hartwig coupling

(a) Reaction yield prediction

One-Hot 80 0.89 NA

DFT 58 0.92 NA

MFF 80 0.927±0.01 NA

Yield-BERT 44 0.951±0.01 0.79±0.02

Yield-BERT fine-tuned 0.951±0.01 0.81±0.01

RT (ours) 0.939±0.01 0.81±0.02

Reconstruction Decoration

Dataset Precursor Top-three Similarity Success Mean

accuracy δ rate improvement

(b) Generating novel precursors for unseen reactions

Buchwald
Hartwig

Halide 98.23%±0.5 0.991±0.00 42.3%±2.4 6. 1%±1.3

Ligand 50.38%±1.6 0.677±0.01 74.4%±4.2 14. 4%±1.7

Base 100%±0.0 1.000±0.00 82.2%±2.3 8. 1%±0.6

Additive 1.36%±0.5 0.158±0.02 71.2%±1.8 11. 7%±1.3

Suzuki
cross-
couplings

Electrophile 44.2%±17.6 0.732±0.02 63.5%±7.1 12. 5%±3.4

Nucleophile 100.0%±0.0 1.000±0.00 54.0%±6.2 5. 4%±0.8

Ligand 67.4%±20.0 0.689±0.15 56.7%±3.5 5. 5%±0.6

Base 90.5%±1.2 0.811±0.01 47.8%±2.7 4. 6%±0.3

Solvent 56.4%±1.1 0.661±0.01 57.8%±1.8 7. 5%±0.3

For the yield prediction, performance for ten 70/30 splits, measured in coefficient of determination (R2) with s.d. is shown. For the generative task, we explore reconstruction and decoration 
of the reactions. For reconstruction, we show the percentage of cases where the exact right precursor was among the top-three predicted sequences and the Tanimoto similarity of the most 
similar of those molecules. For decoration, we show the percentage of cases where the top-five predicted reactions contained a reactions with higher (predicted) yield than the seed reaction 
(success rate), alongside the associated average yield improvement. Full precursors were generated (pmask = 1). S.d. values across ten runs are shown. For the BH aminations, each reaction 
included the same palladium catalyst, which is thus excluded from this analysis. For the Suzuki couplings, each reaction also contained 4-methylaniline and the same palladium catalyst, which 
are also excluded from the analysis.
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(Table 4b). This is partly achieved with great accuracy (for example, 
98.2% for aryl-halides). Interestingly, inferring additives proved chal-
lenging, possibly because they are the dominant precursor type for 
the reaction yield58. However, upon masking the additive only partially 
(rather than completely), the reconstruction performance increases 
significantly (ablation study with pmask ∈ [0.25, 0.5, 1] in Supplementary 
Table 5). On the Suzuki couplings, the reconstruction results are more 
balanced among the five precursor types; the average Tanimoto simi-
larity to the true precursor was >0.65 in all cases (Table 4b). Moreover, 
across both datasets we observed mild benefits in reconstruction 
performance when providing the true yield rather than masking it 
(Supplementary Tables 6 and 7). In addition to yield prediction and 
precursor reconstruction, the RT can also decorate existing reactions 
by adapting specific precursors towards a higher yield (Table 4b). 
Consistently among both datasets and all precursor types, 40–80% 
of the top-five predicted sequences contained reactions with entirely 
novel precursors and higher predicted yield.

Extended Data Fig. 4 visualizes exemplary adaptations of each 
precursor type of a BH amination with very low yield (<5%). Notably, 
for this unseen reaction, the RT found novel adaptations of each of the 
four precursor types that resulted in an increase of predicted yield by 
11–85%. With the forward reaction prediction model in IBM RXN2, we 
confirmed that all reactions indeed result in the desired product. Nota-
bly, the confidence from the forward model rank-correlated almost 
perfectly with the yield predicted by the RT (ρ = 0.90, P < 0.05).

Discussion
The herein presented RT demonstrated that regression can be cast as 
conditional sequence learning task. We introduced a flexible multitask 
language model with wide application in scientific discovery. Our main 
contribution is a multitask transformer that bridges previously consid-
ered disjoint tasks (property prediction and conditional generation) 
without the need of tuning task-specific heads. This model shines at 
both tasks and facilitates highly customizable molecular generation (for 
details, see ‘Usage of trained models’ in the Code availability section). 
This could pave the road towards foundation models in material design.

Regarding molecular property prediction, we find that the RT 
learns continuous properties even from small datasets, surpasses 
conventional regression models on several benchmarks and sometimes 
competes with Transformers trained on regression loss. Remarkably, 
this is achieved without providing ratio-scale information about the 
property, potentially even challenging the necessity of using regression 
rather than classification objectives.

The experiments on conditional text generation underline the 
versatility of the RT. Across a wide range of tasks, we conditionally 
generated novel sequences (molecules, proteins and reactions) that 
seemingly adhere to primed, continuous properties. Our experiments 
on constrained molecular generation benchmark further demonstrate 
that the RT can surpass specialized conditional generative models. We 
foresee this to impact property-driven and substructure-constrained 
molecular or protein design tasks. In the recent work by ref. 60, the 
RT has been applied in polymer chemistry for the generation of novel 
ring-opening polymerization catalysts as well as block and statisti-
cal co-polymers. In both cases, successful experimental validation 
confirmed the ability of the RT to accelerate real discovery workflows.

Moreover, even though all experiments reported herein examined 
singular properties, the RT naturally scales to multi-property predic-
tion (see ‘GUI Demo’ in the Code availability section on how to access 
pre-trained multi-property models).

While we build the RT upon XLNet, any decoder that combines the 
benefits of masked language modelling (MLM) and causal, autoregres-
sive language modelling could serve as a backbone (for example, T5 
with its sentinel tokens61, MPNet62, InCoder63 or FIM64). Future work 
could evaluate the RT on such backbones, intensify the work on reac-
tion modelling (the RT effectively generalizes forward reaction and 

retrosynthesis models) or improve the ability of the RT to perform 
fine-grained regression (for an interesting failure mode, see Supple-
mentary Information Section 7.1). Another prospect is to investigate 
property-constrained but unseeded molecular generation for more 
global chemical space exploration. Finally, our work resonates with 
the recent trend towards multitask Transformers65–67, and we envision 
it as a means to accelerate the development of foundation models for 
scientific discovery applications.

Methods
In this section we first describe the different components of our meth-
odology (architectural choices, tokenization scheme, NEs and training 
objectives). We then describe the implementation details for both 
training and evaluation.

XLNet backbone
Language models utilize either a causal (that is, left-to-right), autore-
gressive training objective such as recurrent neural networks and 
GPT-3 (ref. 67) or use MLM such as BERT37. Autoregressive approaches 
are preferable for generating long sequences (for example, entire 
documents), but since such causal models only condition on previous 
tokens, they cannot be applied to text infilling tasks and cannot profit 
from MLM pre-training. Instead, MLMs such as BERT condition on the 
entire sequence to fill masked tokens, making them appear a good 
choice for infilling tasks; however, MLM approaches fail to generate 
longer sequences due to their independence assumption. To unify 
both worlds and retain the benefits of autoregressive modelling in 
combination with a bidirectional context, several methods have been 
proposed, with XLNet12 being the first prominent one. The RT is built 
upon an XLNet backbone that is an autoregressive language model, 
but due to its novel training objective, it, in expectation, obtains full 
bidirectional attention. This bidirectionality is critical because the RT is 
required to fill multiple tokens at arbitrary positions in a sequence while 
attending the full remaining sequence (for example, SMILES/SELFIES 
are non-local sequences such that masking functional groups usually 
implies masking disconnected tokens). Moreover, the independence 
assumption in bidirectional but non-autoregressive models (such as 
BERT) becomes increasingly disruptive as more masked tokens are 
filled, making XLNet a great choice. This limits BERT’s applicability 
for generative tasks in biochemistry such as scaffold decoration where 
large portions of a molecule might be masked and generation of indi-
vidual atoms can critically alter the molecule’s functional properties. 
In general, it is important to notice that the proposed framework can 
be applied to all transformer flavours, but it certainly benefits from 
an autoregressive generation with full sequence attention even for 
discontiguous mask locations. Such approaches rely on either a PLM 
like XLNet or MPNet62 or on sentinel tokens replacing code spans that 
are then predicted at the end of a sequence with an autoregressive 
approach like in T5 (ref. 61), InCoder63 or fill-in-the-middle64. Further 
information on the implementation and the model hyperparameters 
can be found below in the “Model training and evaluation procedure” 
section.

Tokenization
This section describes the processing of alphanumeric sequences, 
that is, strings consisting of a mixture of numerical and textual sym-
bols (for a visualization of the tokenization, see Extended Data Fig. 1, 
top). Unlike previous approaches that modelled 8-bit integers with a 
classifier68, we strive to represent real numbers with arbitrary floating 
point precision. Since representing every number as a single token is 
suboptimal due to a lack of generalization to new numbers and sparsity 
of the provided tokens, we formulated regression as sequential clas-
sification task. In turn, this necessitates a scheme for converting text 
representing numbers into a sequences of tokens. First, the following 
regular expression splits a string denoting a numerical:
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\s ∗ \s ∗ ?(\ + |−)?(\d+)(\.)?(\d+)?\s∗ (1)

Each of the resulting matches containing a number is converted 
to a token tv,p where v ∈ ℕ ∩ [0..9]  is the value/digit and p ∈ ℤ  is the  
decimal place (for example, 12.3 is split into [1_1, 2_0., 3_-1]). We call 
these numerical tokens. This representation has the advantage that it 
allows easy decoding of the digit sequence but also distinguishes their 
decimal order by adhering to classic positional notation. Negative 
numbers are preceded with a special token. Regarding alphabetic 
tokens, we represent molecules as SELFIES40 strings and tokenized 
them with their internal tokenizer. In one ablation study, we instead 
use SMILES69 and tokenize with the regular expression from ref. 57. 
Protein sequences are tokenized per amino acid.

Numerical Encodings (NE)
Due to the inherent structure of numbers, learning the embeddings 
of numerical tokens in a purely data-driven way might be ineffective. 
Moreover, since the RT is trained with cross-entropy loss, no notion 
of similarity between numerical tokens is conveyed. As a remedy, we 
propose NEs, a simple inductive bias about the semantic proximity 
of numerical tokens, similar to positional encodings1. Our proposed 
NEs are zero vectors for all but numerical tokens of the dictionary. 
We follow positional notation as above. Given a token tv,p (with digit 
value v and decimal place p), the NE at embedding dimension j is  
defined as

NEFloat(v,p, j) = (−1)j ⋅ v ⋅ 10
p

j + 1
. (2)

Thus, the amplitude of the NE scales with the numerical value of 
the token. This scheme can be applied to any floating point value x ∈ ℝ. 
The encodings are also independent of the sign of the number. Hence, 
they equally convey proximity between positive and negative numbers. 
The NEs are perfectly correlated among embedding dimensions but 
alternate between positive and negative values for even and odd dimen-
sions and vanish for higher dimensions (see example in Extended Data 
Fig. 5a). Critically, the pairwise distances of the NEs are symmetric and 
decay monotonically with the float value (Extended Data Fig. 5b). In 
practice, we sum the NEs with regular word embeddings and relative 
positional encodings from XLNet (for workflow, see Extended Data  
Fig. 1). Note that we also experimented with integer-based NEs (for 
additional experiments, see Supplementary Material Section 1).

Training objectives
The input x for an RT is defined by a concatenation of k property tokens 
[xp]k  and l textual tokens [xt]l, such that x = [xp,xt]T = [xp

1 , ..., x
p

k
, xt1, ..., x

t
l
]
T

. 
The full sequence length is T = k + l, and xp and xt are property and 
textual tokens, respectively. For a high-level overview of the training 
objectives, see Extended Data Fig. 1 (bottom).

PLM objective. The idea of PLM12 is to fill masked tokens autoregres-
sively by sampling a factorization order z for a sequence x at runtime. 
Decomposing the likelihood pθ(x) according to the facorization order 
yields, in expectation, a bidirectional autoregressive model. Let z ∈ 𝒵𝒵T 
denote one of the T! permutations of our sequence x. If zi and z<i are the 
i-th and first i − 1 elements of z, the PLM objective is

max
θ

𝔼𝔼z∼𝒵𝒵T
[

T

∑
i=1

logpθ(xzi |xz<i
)] (3)

In practice, partial prediction is performed. That is, only the last c 
tokens of the factorization order z are predicted. Following XLNet, z 
is split into a (masked) target subsequence z>c and an unmasked input 
sequence z≤c such that the objective becomes

ℒPLM = max
θ

𝔼𝔼z∼𝒵𝒵T
[logpθ(xz > c|xz≤c

)]

= 𝔼𝔼z∼𝒵𝒵T
[

T

∑
i=c+1

logpθ(xzi |xz<i
)] ,

(4)

where c is a hyperparameter, usually sampled per batch such that the 
fraction of masked tokens is roughly 1/c. We notice that equation (4) 
does not make any specific choices on xp and xt. It thus constitutes 
our baseline objective. While equation (4) is a generic objective, it is 
computationally exhaustive to optimize due to the permutations. 
Moreover, it is not ideal for our needs because it does not distinguish 
between textual and property tokens. Instead, we are aiming to develop 
a single model that can predict either numerical tokens (when given 
text sequences) or text tokens (when given a combination of numerical 
and text tokens). To that end, we propose to train on two alternating 
objectives, one designed for property prediction and one for text 
generation.

Property prediction objective. Instead of randomizing which tokens 
are masked, this objective exclusively masks all the property tokens. 
Specifically, we constrain the factorization order z by setting the first 
l elements to xt and fixing c = l. This guarantees that only property 
tokens are masked. Let 𝒵𝒵p

T denote the set of possible permutations. 
Under this constraint, the objective then becomes

ℒP = max
θ

𝔼𝔼z∼𝒵𝒵p
T
[logpθ(xp|xt)]

= 𝔼𝔼z∼𝒵𝒵p
T
[

T

∑
i=c+1

logpθ(xpzi |x
t
z≤c
,xp

z > c<i
)] ,

(5)

where xp
z > c<i

 denotes the c-th to the (i − 1)th element of the factorization 
order z. We emphasize that this ‘tailored’ property objective ℒp  is still 
optimized with a cross-entropy loss in practice. Note that this loss 
cannot convey any notion on the qualitative proximity of the prediction 
to the labels because the level of measurement of tokens in a language 
model are on a nominal level. Thus, predicting a sequence of numerical 
tokens corresponding to a property score of 0.91 for a sample with a 
true property of 0.11 will not generally result in a higher loss than  
predicting 0.21. Instead, a traditional regression loss operates on a  
ratio scale.

Conditional text generation objective. This objective facilitates the 
generation of textual tokens given a property primer and textual 
tokens. We constrain the factorization order z by setting the first k 
elements to xp to and sampling the cut-off c, such that c ≥ k. This ensures 
that masking occurs only on textual tokens. With this constraint, we 
denote the set of permutations by 𝒵𝒵t

T and the objective becomes

ℒG = max
θ

𝔼𝔼z∼𝒵𝒵t
T
[logpθ(xt

z > c
|xp

z≤k
,xt

z > k<c
)]

= 𝔼𝔼z∼𝒵𝒵t
T
[

T

∑
i=c+1

logpθ(xtzi |x
p
z≤k
,xt

z > k<i
)] .

(6)

Intuitively, this objective applies regular PLM while sparing the 
numerical tokens. It then aims to reconstruct the full text sequence 
(that is, molecule) given the uncorrupted property tokens and partially 
corrupted textual tokens.

Self-consistency (SC) objective. Standalone, the above conditional 
text generation objective (6) does not reward if the generated 
sequences adhere to the primed property. This is critical because in 
chemical as well as natural languages changes in single tokens (that is, 
atoms, amino acids or (sub)words) can drastically change the property 
(meaning) of a sequence (sentence). As a remedy, we extended the text 
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generation objective ℒG by an SC term that exploits the dichotomy of 
the RT. The full objective is given by

ℒSC = ℒG(x) + α ⋅ ℒP(x̂), (7)

where the second addend is the SC term, weighted by a factor α. Intui-
tively, it is given by the difference between the property of the sample 
and the predicted property of the generated sample x̂. Here, x̂ is 
obtained by greedy decoding of the masked tokens and combining it 
with the non-corrupted tokens of x. To be precise, x̂ = [xp, x̂t]  
where x̂t = [m1 ̄x1 + (1 −mi)x1, ...,ml ̄xl + (1 −ml)xl]. Here, m is an indicator  
vector for whether masking occurred at a given position and 
x̄ = argmax∑T

i=c+1 logpθ(xtzi |x
p
z<k
,xt

z > k<i
)  is the result of greedy decoding. 

In such a formulation, the RT acts as an oracle during its own optimiza-
tion, resembling an additional layer of self-supervision. While this 
scheme risks undesired side effects when the model performs poorly 
at property prediction, it introduces a notion of SC and rewards the 
generation of molecules that are different from training samples as 
long as they adhere to the property.

Model training and evaluation procedure
Implementation. All experiments build upon the XLNet12 implementa-
tion from the HuggingFace library70. We expanded the XLNet back-
bone with our proposed tokenization scheme, an additional encoding 
layer for the numerical embeddings (Ndim = 16) and the custom training 
objectives (Extended Data Fig. 1). Regarding architectural hyperpa-
rameters, we used 32 hidden layers in the Transformer encoder, with 
a dimensionality of 256 and 1,024 in the feed-forward layer and 16 
attention heads (20% dropout). Altogether, this model has ~27 million 
trainable parameters (exact numbers vary dependent on vocabulary 
size). During evaluation, greedy decoding was used for property predic-
tion and beam search decoding for conditional sequence generation.  
We used PyTorch  1.3.1 (ref. 71) and the XLNet backbone from  
Transformers 3.1.0 (ref. 70). Models were trained from scratch unless 
indicated otherwise. All models were trained on single graphics pro-
cessing units (GPUs) (NVIDIA Tesla A100 or V100). In the following 
sections, we elaborate on the training procedures for each dataset.

Chemical language modelling. Drug likeness (QED). Dataset. Starting 
from ~1.6 million bioactive molecules from ChEMBL72, we created a syn-
thetic dataset by computing the QED38 score (q ∈ [0, 1]) for all molecules 
with RDKit and rounded to three decimal places. We used ~1.4 million 
molecules for training, 1,000 for validation and 10,000 for testing.

Procedure. We started training the models with the vanilla PLM 
objective (equation (4)) on the QED dataset until validation perplexity 
saturated (~4 days, single GPU). Thereafter, the models were further 
refined on the same dataset by alternating every 50 steps between 
objectives (equation (5) and equation (7)). We perform ablation studies  
on the SC loss, setting α in equation (7) to 0 and 1, respectively.  
The SELFIES/SMILES vocabulary had 509 and 724 tokens, respectively. 
During evaluation, greedy decoding was used for property prediction 
and beam search decoding for molecular generation. During evalua-
tion, we set c = 2.5, which implies that roughly ~40% of the tokens were 
masked (maximum span: seven tokens).

MoleculeNet benchmark. Dataset. We focused on three regression 
datasets from the MoleculeNet benchmark39: ESOL, FreeSolv and  
Lipophilicity, where the task is to predict water solubility, hydration 
free energy and lipophilicity of a molecule, respectively. For each 
dataset, we performed three random splits (as recommended by  
ref. 39) with 15% validation data. Because the datasets are small (<5,000 
samples), we used offline SMILES augmentation73 to augment the  
training dataset by a factor of 16.

Procedure. For the MoleculeNet datasets, the models were 
warm-started using the QED initialization and trained for only 50,000 

steps (batch size 4) with early stopping. Since the QED pre-training  
utilized numerical values in [0, 1], we normalized the regression values 
of the entire MoleculeNet datasets to the same range (using train-
ing data only) and rounded them also to three decimal places. For all 
objectives, unless otherwise constrained, we set the masking hyper-
parameter c = 5 and restrict the span of consecutively masked tokens 
to a maximum of five tokens.

Property optimization benchmark. Dataset. This is a benchmark for 
property-driven, conditional molecular generation. The goal is to adapt 
a seed molecule such that a property is maximized while adhering to 
a fixed similarity constraint. We obtained the data from 42 which ships 
with a fixed split of 215,381 training and 799 test molecules and their 
penalized logP (pLogP) value 74. pLogP is the octanol-water partition 
coefficient (logP) penalized by the synthetic accessibility score and 
the number of cycles with > 6 atoms. Hence, pLogP just like QED can 
be computed deterministically from the molecule42.

Procedure. For this task, the models were also warm-started using 
the QED initialization and trained for 50,000 steps with early stopping 
on perplexity. To assemble the candidates for the optimization of one 
seed molecule, we tried to follow the process of ref. 42 as closely as pos-
sible. Reference 42 applied 80 gradient steps, then decoded 80 molecules 
and reported the molecule with the highest pLogP score that satisfies 
the similarity constraint δ. Instead, we form a pool of molecules by 
prompting 80 times with the same seed molecule but varying the frac-
tion and the maximum span of masked tokens. From the pool of decod-
ings we report the molecule with the highest pLogP, just like refs. 42,50.

Protein sequence language modelling. Protein interaction index 
(Boman). Dataset. As a large-scale, labelled dataset for proteins we 
focused on the Boman index, a measure of potential protein interac-
tion for peptides. It is the average of the solubility values of the resi-
dues75. We collected all 2,648,205 peptides with 15–45 amino acids from  
UniProt76, computed their Boman index and used 10,000 and 1,000 
for testing and validation, respectively.

Procedure. To model protein sequences, we started with training 
on the Boman dataset. We trained three groups of models, one for the 
vanilla PLM objective (equation (4)) and two for the alternating objec-
tives. We again alternated every 50 steps between optimizing (equation 
(5) and equation (7)) and trained one set of models with and one set 
without the SC loss, such that α = 1 and α = 0, respectively, in equation 
(7). Models were trained until validation perplexity saturated (~4 days, 
single GPU). The numerical values of the Boman index, originally in 
the range [−3.1, 6.1] were normalized to [0, 1] (using training data only)  
and rounded to three decimal places.

TAPE benchmark. Dataset. We focused on two datasets from the TAPE 
benchmark43: Fluorescence77 and Stability78. The goal is to predict, 
respectively, the fluorescence and intrinsic folding stability of a protein 
that is one to four mutations away from a training protein. Both datasets 
ship with fixed splits. The fluorescence (stability) dataset has 21,446 
(53,416) training, 5,362 (2,512) validation and 27,217 (12,851) test samples.

Procedure. For both datasets, three models were warm-started 
using the Boman initialization (PLM objective) and trained until valida-
tion performance saturated (~100,000 steps). Experiments were con-
ducted using three configurations; PLM objective, and alternated 
training with (ℒSC) and without (ℒG) the SC objective. The numerical 
values were again scaled to [0, 1]. On the Fluorescence data, a small value 
of Gaussian noise was added to some training samples due to an inter-
esting failure mode (Supplementary Information Section 7.1). For the 
evaluation of the conditional generation task, the models were given 
more flexibility: 60% of the tokens were masked (that is, c = 1.7 in equa-
tion (3)) and the maximum span was seven amino acid residues. We did 
not evaluate the RT on conditional generation for the Fluorescence 
dataset because of a massive pre-training–fine-tuning mismatch: While 
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the Boman dataset used for pre-training consisted of 15–45 residues 
(mean ± s.d., 36 ± 7), the fluorescence proteins were significantly larger 
(246 ± 0.2 residues, P < 0.001). Instead, the proteins in the stability 
dataset were similar in size to the pre-training data (45 ± 3 residues).

Chemical reaction modelling. Pre-training on USPTO. Dataset. 
We used reactions from the US Patent Office (USPTO), the largest 
open-source dataset about chemical reactions79 to learn generic reac-
tion chemistry. Since no yield information was available, the utilized 
numerical property was the total molecular weight of all precursors. The 
dataset contained n = 2,830,616 reactions and was obtained from ref. 4.

Procedure. Since the two reaction yield datasets cover only  
narrow regions of the chemical space (one template applied to many 
precursor combinations), we warm up the model on broader reaction 
chemistry extracted from patents (USPTO). A total of 5,000 reactions 
were held out for validation, and the model was trained until valida-
tion performance on the two alternating objectives (equation (5) and 
equation (7) with α = 1) saturated. The masking hyperparameter c  
was set to 2.5, and the model were trained for ~2 days (single GPU). The 
vocabulary for reaction SELFIES contained 861 tokens.

Reaction yield datasets. Dataset. We investigated two high- 
throughput experimentation (HTE) yield datasets that examine specific 
reaction types: Buchwald–Hartig aminations 58 and Suzuki–Miyaura 
cross-coupling reactions59. Both datasets were investigated in the 
same ten random splits as examined in ref. 44 with a 70%/30% train/
validation ratio.

The Buchwald–Hartwig dataset was produced by ref. 58 and 
investigates HTE of palladium-catalysed Buchwald–Hartwig C–N 
cross-coupling reactions. The reaction space comprises 3,955 reac-
tions, spanned by 15 unique aryl and heteroaryl halides, 4 Buchwald 
ligands, 3 bases and 22 isoxazole additives. A palladium catalyst and a 
methylaniline are the fifth and sixth precursor, respectively; however, 
they are identical for all reactions. Each reaction is associated with a 
yield y ∈ [0, 100], and the ten random splits were identical to the ones 
released by ref. 80 that are also used by all competing methods in  
Supplementary Table 6. Yield is given in a range of [0, 100].

The Suzuki cross-coupling dataset was provided by ref. 59 and 
investigates HTE of Suzuki–Miyaura reactions across 15 pairs of elec-
trophiles and nucleophiles, leading to different products, respec-
tively. For each pair, a combination of 4 solvents, 12 ligands and 8 bases  
(reagents) was measured, resulting in a total of 5,760 reaction yields 
that we scale to the range [0, 100]. The catalyst is identical for all reac-
tions; some reactions omitted the ligand or the base, while others 
contained electrophiles, nucleophiles, ligands, bases or solvents that 
were composed of different fragments (for example, salts).

Procedure. For both datasets, ten models were fine-tuned respec-
tively on repeated random splits. The training objectives again alternated 
every 50 steps between property prediction (equation (5)) and condi-
tional generation (equation (7) with α = 1) for a maximum of 50,000 steps 
(~1 day). Notably, during the conditional generation task we sampled 
one precursor per batch and then entirely but exclusively masked this 
precursor. Thus the objective for the model became to reconstruct a 
missing precursor from the remaining precursors and the reaction yield 
(or to produce an alternative precursor with a similar predicted yield).

Evaluation and performance metrics
Regression. For the regression (or property prediction) task, we convert 
the sequence of predicted (numerical) tokens into a floating-point predic-
tion (the model never failed to predict a token sequence not correspond-
ing to a valid numerical). We then report the RMSE, PCC or coefficient of 
determination (R2), dependent on the dataset and previous methods.

Conditional sequence generation. Dependent on the application 
domain, different metrics are utilized (see above).

Small molecule and protein modelling. We strive to assess the 
model’s ability to decorate an arbitrary, possibly discontiguous frac-
tional input sequence (for example, a molecular scaffold) according 
to a property of interest. Therefore, we randomly mask a fraction of 
tokens of the text sequence and then query the model with ten equi-
distant property primers spanning the full range of property values. 
The metric is the average Spearman’s ρ between the ten primers and 
the actual properties. Spearman is favourable over Pearson because 
it is only rank sensitive. Note that, due to constraints induced by the 
fragmented sequence, covering the entire property spectrum is usu-
ally impossible such that, for example, RMSE is inappropriate for this 
task (for example, priming a highly toxic scaffold with low toxicity 
cannot yield a non-toxic molecule). As a sanity check, we also report 
0-Var, that is, the percentage of test molecules/proteins for which the 
generation was unaffected by the primer, that is, upon priming with 
the ten equidistant property primers and the fractional sequences, 
the decoded molecules/proteins were all identical (the lower  
the better).

On the property optimization benchmark from ref. 42, we report 
the same metrics as in their work: the success rate in generating  
molecules with higher logP (while adhering to the similarity  
constraint δ), the Tanimoto similarity δ to the seed molecule and the 
average improvement in plogP.

Chemical reaction modelling. For the reaction yield datasets, we 
challenge the model by two sequence generation tasks. First, we fully 
reconstructed a precursor solely based on the remaining precursors 
and the reaction yield. The top-three predicted sequences (decoded 
via beam search) are considered, s.t. top-three accuracy is reported. 
Additionally we report the average Tanimoto similarity of the most 
similar of the top-three molecules to the seed molecule. We used 
RDKit Morgan fingerprints with radius 2 (roughly equivalent to ECFP4  
(ref. 45)). Secondly, we measure the capability of decorating existing 
reactions to obtain a (potentially) higher yield. To that end, the model 
is prompted with incomplete reactions consisting of an increased yield, 
an entirely masked precursor and complete remaining precursors. 
We consider the top-three predicted sequences (decoded via beam 
search) and report the fraction of samples where one of the reactions 
had a higher (predicted) yield (success rate). The second response 
metric is the mean improvement in (predicted) reaction yield (yield 
y ∈ [0, 100]; the distributions are right-skewed). Note that we exclude 
trivial solutions by removing all predicted precursors that exist in the 
training dataset.

Baseline models
k-NN. For small-molecule and protein modelling we reported results in 
property prediction with the k-NN baseline model. For small molecules, 
the distance measure was (inverted) Tanimoto similarity81 of ECFP4 
fingerprints45. For the protein language models, the Levenshtein dis-
tance between the protein sequences was used53. For the k-NN baseline 
models, k was determined on the basis of the best performance on the 
validation data. This led to k = 25 for the drug-likeness/QED task, k = 21 
for the protein interaction (Boman index) task, k = 50 for the fluores-
cence and k = 15 for the stability task.

XLNet with regression head. For the molecular property prediction 
on the MoleculeNet datasets, we trained an XLNet12 model with a con-
ventional regression loss. This maximizes comparability to the RT since 
it, unlike the other models in Extended Data Table 2, also uses an XLNet 
backbone. This model was initialized using the XLNet-base-cased 
weights from HuggingFace and subsequently the SequenceClas-
sification head was fine-tuned with an L2 loss. The model contained 
~93 million parameters and was fine-tuned for 200 epochs without any 
hyperparameter optimization. Early stopping was used to determine 
the best epoch.
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Data availability
The data for the MoleculeNet experiments can be obtained from 
https://moleculenet.org/datasets-1. The data for the molecular  
optimization experiments can be obtained from https://github.com/ 
wengong-jin/icml18-jtnn/tree/master/data/zinc. The data for the pro-
tein language modelling experiments can be obtained from https://
github.com/songlab-cal/tape. The data for the reaction yield experi-
ments can be obtained from https://github.com/rxn4chemistry/ 
rxn_yields/tree/master/data.

Code availability
Usage of trained models
The RT is implemented in the Generative Toolkit for Scientific Discov-
ery (GT4SD)82, which provides ready-to-use pipelines for inference on 
pre-trained models as well as training or fine-tuning on custom data. 
The GT4SD endpoint of the RT facilitates highly customizable local 
chemical space exploration. The user can decide to (1) make no assump-
tions about which tokens are being masked, (2) mask only specific types 
of atoms, (3) preserve certain structures while randomly masking on 
the rest, (4) mask certain moieties or (5) decide on a token-by-token 
basis on which atoms are masked. Via GT4SD, versions of the RT trained 
on the QED and ESOL datasets (small molecules), the stability dataset 
(proteins) and the USPTO-pre-trained reaction model are available. 
Moreover, GT4SD also distributes additional versions of the RT trained 
on multi-property prediction tasks not described herein, including but 
not limited to ring-opening polymerization catalysis and block copoly-
mers (CITE REF 59) a logP as well as a combined logp-synthesizability 
model. A guide to use the RT be found on https://github.com/GT4SD/ 
gt4sd-core/tree/main/examples/regression_transformer. A notebook 
with a short demo can be found under https://github.com/GT4SD/ 
gt4sd-core/blob/main/notebooks/regression-transformer-demo.
ipynb. The datasets used for benchmarking are available from the 
respectively referenced papers.
GUI Demo
A simple webapp of the RT for inference of pre-trained models has been 
made publicly available via HuggingFace spaces at https://huggingface. 
co/spaces/GT4SD/regression_transformer. The app was build with 
Gradio83 upon the GT4SD82 implementation.
Reproduction
The code base to facilitate reproduction of all experiments is pub-
licly available at https://github.com/IBM/regression-transformer  
refs. 84–91.
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Extended Data Fig. 1 | Workflow of the Regression Transformer (RT) model. 
Based on the XLNet backbone, the RT is a dichotomous model designed to handle 
combinations of text and numbers. Top: An input sequence consisting of a 
molecular string (red) and two property tags (blue), each associated to a floating 
value (green). Numbers are tokenized into a sequence of tokens that preserve the 
decimal order of each character. The pipe (∣) is a separator token distinguishing 
numerical and text tokens. Middle: We propose numerical encodings that inform 
the model about the semantic proximity of these tokens and naturally integrate 
with relative positional encodings and classical learned embeddings. The RT 
relies on a XLNet backbone and follows permutation language modeling (PLM). 
Bottom: Multiple training objectives are proposed and combined (predicted 

tokens are emphasized in the figure). Following the vanilla PLM objective 12, 
masking occurs randomly throughout the sequence. In the property objective, 
masking occurs exclusively on the property tokens. In the generation  
objective, masking occurs exclusively on the textual tokens (here: SMILES). 
This objective can be augmented with a self-consistency term LSC that exploits 
the dichotomoy of the model. In practice, we use an alternating training 
scheme designed to concurrently excel at property prediction and conditional 
generation tasks. Note that the RT builds upon an XLNet-backbone which 
samples a token factorization order (following PML as proposed by  
Yang et al. 12; not shown). The dots indicate that the RT naturally scales to  
multiple property tags.
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Extended Data Fig. 2 | More distant queries are harder to decorate. When 
gradually increasing task difficulty (that is, the distance between the QED of the 
seed molecule and the primed property), the distance between the QED of the 
generated molecule and the primed property increases linearly. Data presented 

as means, error bars denote 95% confidence intervals. For the blue, orange and 
green bars, a total of 880k, 239k and 207k generated molecules are evaluated 
respectively.
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Extended Data Fig. 3 | Learned embeddings of numerical tokens. Left: For an 
exemplary dimension, embeddings for 20 tokens, corresponding to 10 digits and 
2 decimal places are shown. Right: Embeddings for 20 exemplary dimensions 

across all ten digits. The stars indicate the significance level of the Pearson 
correlation. The analysis is based on a SELFIES model without any NEs (PLM 
objective).
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Extended Data Fig. 4 | Discovering novel, more effective reactions by 
adapting an unseen Buchwald-Hartwig amination. Below an unseen BH 
amination (top) and its experimentally reported yield, we show four  
RT-generated reactions that selectively replace individual precursors. Upon 
priming the RT with a higher yield and a given precursor type, the RT generated 

reactions with higher yield, as predicted by the RT. The RXN confidence stems 
from the forward reaction prediction model by Schwaller et al. 2 which confirmed 
that the reaction would result in the shown product in all cases. Note that no 
adaptations of 4-Methylaniline and the Palladium-catalyst are generated since 
they are constanta cross the dataset.
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Extended Data Fig. 5 | Float-based numerical encodings. a) Numerical encodings for an molecule with a QED of 0.179. b) Pairwise distances of numerical encodings 
for floats between 0 and 100 (the NEs of all tokens associated to a float are summed up).
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Extended Data Table 1 | Performance comparison in predicting QED

MAE stands for mean absolute error. The RT with alternating objectives used α = 0 in Equation (7). Our model names are shown in bold; best performance shown in bold.
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Extended Data Table 2 | RMSE (↓) in predicting MoleculeNet dataset properties

Performance on three different datasets across predictive models. By L Reg we denote whether a given model used a loss (or objective function) that relied on regression. All models used 
repeated random splits. NE means numerical encodings and α refers to the loss function in Equation (7). Standard deviations shown, best model shown in bold.
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Extended Data Table 3 | Conditional generation for MoleculeNet datasets

Average performances across three splits for training with alternating objectives. Different combinations of the numerical encodings (NE) and the alternating training objective (with and 
without the self-consistency term α) are shown. Spearman refers to Spearman’s ρ rank correlation and was evaluated either with the RT itself or with an external model (Grover 41). 
 Best configuration shown in bold.
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