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Labelling instructions matter in biomedical 
image analysis

Tim Rädsch    1,2 , Annika Reinke    1,2,3, Vivienn Weru4,5, Minu D. Tizabi1,5, 
Nicholas Schreck4, A. Emre Kavur    1,2,6, Bünyamin Pekdemir7, Tobias Roß1,8, 
Annette Kopp-Schneider    4,10 & Lena Maier-Hein    1,2,3,5,9,10 

Biomedical image analysis algorithm validation depends on high-quality 
annotation of reference datasets, for which labelling instructions are key. 
Despite their importance, their optimization remains largely unexplored. 
Here we present a systematic study of labelling instructions and their 
impact on annotation quality in the field. Through comprehensive 
examination of professional practice and international competitions 
registered at the Medical Image Computing and Computer Assisted 
Intervention Society, the largest international society in the biomedical 
imaging field, we uncovered a discrepancy between annotators’ needs 
for labelling instructions and their current quality and availability. On the 
basis of an analysis of 14,040 images annotated by 156 annotators from 
four professional annotation companies and 708 Amazon Mechanical 
Turk crowdworkers using instructions with different information 
density levels, we further found that including exemplary images 
substantially boosts annotation performance compared with text-only 
descriptions, while solely extending text descriptions does not. Finally, 
professional annotators constantly outperform Amazon Mechanical Turk 
crowdworkers. Our study raises awareness for the need of quality standards 
in biomedical image analysis labelling instructions.

Machine learning (ML) is in the process of revolutionizing medicine, 
with deep learning (DL) as a key enabling technology1. High-quality 
annotated datasets are a critical bottleneck for supervised DL, and the 
quality of the annotated data is crucial for algorithm performance2–5. 
Recent work reflects an increasing awareness of widespread problems 
in commonly used image benchmarks, which are subject to errors6,7 
and biases8,9, and calls for a fundamental change in dataset culture10. 
Annotation-related problems may be particularly relevant in the field of 
biomedical image analysis, where data are typically sparse11, inter-rater 

variability is naturally high12,13, labelling ambiguities occur14 and medical 
experts have their individual style of annotations13,15.

In addition to these limitations, domain expert resources are typi-
cally limited and costly13. As a result, an increasingly popular approach 
to generating image annotations involves outsourcing the labelling 
task to crowdsourcing platforms16,17 or professional annotation com-
panies11. Historically, outsourcing was first performed on general 
labour markets such as Amazon Mechanical Turk (MTurk)18, which is 
still the predominant choice in health research 17. With rising demand 
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While the first problem has been addressed in literature20,29–32, the 
notion of training workers has been given almost no attention in the 
context of medical imaging16,17. Regardless of the annotator type (gen-
eral crowdsourcing or professional annotation companies), knowledge 
transfer is typically achieved via so-called labelling instructions, which 
specify how to correctly label the (imaging) data. Such labelling instruc-
tions are not only needed for training non-experts but can also help 
reduce experts’ inter-rater variability by defining a shared standard.

Given the importance of annotation quality for algorithm per-
formance and the fundamental role of labelling instructions in this 
process, it may be surprising that extremely limited effort has been 
invested into the question of how to best generate labelling instructions 
in a way that annotation quality is maximized. While previous work on 
instructions has dealt with instructions for annotation systems with a 
focus on natural language processing tasks33–37 and standardization of 
dataset reporting38,39, we are not aware of any work dedicated to label-
ling instructions in the field of biomedical image analysis and involving 

for annotations, professional annotation companies catering to the 
specific needs of their target domain emerged. An overview of data 
annotation from a surgical data science perspective is provided in ref. 11.

While crowdsourcing has successfully been applied in a number 
of medical imaging applications, the high variation in labelling quality 
is a key issue16,19–22. Poor annotation quality can generally be attributed 
to two main factors:

 (1) Lack of motivation and time pressure: Driven by subpar com-
pensation policies23 and power dynamics24, MTurk suffers from 
workers who perform sloppy annotations with the goal of com-
pleting tasks as fast as possible and thus maximizing the mon-
etary reward. This has led to a notable decline in the annotation 
quality in recent years25.

 (2) Lack of knowledge/expertise: A worker depends on the provided 
information to create the desired outcome for a given task26,27.  
A lack of labelling instructions leads to workers filling knowl-
edge gaps with their own interpretations28.
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Fig. 1 | Hypotheses of this work and overview of methodology. a, Annotators’ 
needs for labelling instructions (left) were captured via a survey. The availability 
of labelling instructions (right) was captured via international competitions 
conducted in the scope of the MICCAI conference. b, To assess the impact of 
labelling instructions on annotation quality, three types of labelling instructions 

were created for the same dataset: (1) instructions using minimal text, (2) 
extended text and (3) extended text including pictures were issued to a total of 
864 annotators from five different annotation providers. The resulting dataset 
of 14,040 annotated images was analysed with a two-part beta mixed model. The 
dials qualitatively represent the observed annotation performance.
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professional annotation companies. Closing this gap in the literature, 
our contribution is twofold:

 (1) Analysis of common practice (Fig. 1a): Through comprehensive 
examination of professional annotating practice and major in-
ternational biomedical image analysis competitions, we system-
atically investigated the importance of labelling instructions, 
their quality and their availability.

 (2) Experiments on the impact of biomedical image labelling in-
structions (Fig. 1b): On the basis of the 14,040 images annotated 
by a total of 864 annotators from five different annotation pro-
viders, we experimentally determined the effect of varying in-
formation density in labelling instructions. In this context, we 
also investigated annotation quality of professional annotators 
in comparison with the current status quo in scalable annota-
tions, MTurk crowdworkers.
Of note, varying annotation quality impacts training and valida-

tion/testing of ML models to different extents. In safety-critical appli-
cations, it is particularly the test data that ultimately determine the 
real-world (for example, clinical) applicability of an algorithm, thus 
requiring a higher level of quality compared with training sets. Hence, 
the focus of our study has been placed on test data.

Results
Given the lack of (1) awareness of the importance of labelling instruc-
tions and (2) quantitative research investigating how to best perform 
the labelling, we initiated our study by systematically analysing the 
perspective and work characteristics of professional annotators, 
and common practice of labelling instructions in leading biomedical 
imaging competitions. Subsequently, we investigated the impact of 
labelling instructions with varying levels of information density on 
the annotation quality, and the effect of different annotator types on 
biomedical imaging data.

Professional annotators request better labelling instructions
To motivate our empirical study on annotation quality, we conducted 
an international survey among 363 (298 after filtering noisy answers) 
professional annotators employed by five different internationally 
operating annotation companies. Depicted in Fig. 2a,b, the results 

reveal that the majority of annotators request more time and resources 
to be spent in the generation of labelling instructions. In fact, poor 
labelling instructions were identified as the primary cause of problems 
related to annotation work followed by concentration issues (50%) and 
poor input data (45%).

The importance of labelling instructions may be underrated
Despite their apparent importance, earlier research revealed that label-
ling instructions are typically not provided and/or reported in the field 
of biomedical image analysis40. This even holds true for international 
image analysis competitions, although these can be expected to pro-
vide particularly high quality with respect to validation standards. 
To address this issue, the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI), the largest international soci-
ety in the field, took action and developed a comprehensive reporting 
guideline39 for biomedical image analysis competitions. The guideline 
comprises an entire paragraph on reporting the annotation process, 
including the labelling instructions. Before conducting a competition in 
the scope of a MICCAI conference, researchers must put the report for 
their competition online41 to foster transparency and reproducibility, 
and to prevent cheating42. To capture the state of the art regarding 
labelling instructions in biomedical image analysis, we analysed all 
MICCAI competitions officially registered in the past 2 years (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
statement43; Supplementary Note 1). Although the reporting guideline 
explicitly asks for (a link to) the labelling instructions, 76% of the recent 
MICCAI competitions do not report any labelling instructions (Fig. 2c). 
Given that MICCAI competitions make up around 50% of the biomedi-
cal image analysis competitions in a year40, this can be regarded as a 
widely spread phenomenon.

In current biomedical image analysis practice, labelling instruc-
tions are thus often neither of sufficient quality, nor are they appro-
priately reported and valued in the scientific community. Both issues 
negatively impact scientific quality in the field.

Extended text descriptions do not boost annotation quality
The shortcomings in quality we found in common practice regarding 
labelling instructions called for an investigation on how this quality can 
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Fig. 2 | The field of biomedical image analysis suffers from a notable 
discrepancy between the needs of those annotating the data and the actual 
availability of labelling instructions (if any). a, Professional annotators agree 
that unclear instructions consistently cause delay and rework. Comprehensive 
text descriptions and images are perceived to improve annotation quality.  
b, Professional annotators attribute labelling instructions as the primary cause 

for problems related to their daily annotation work, followed by concentration 
issues and poor input data. Answers for a and b were processed from 298 
annotators from five annotation companies. c, Seventy-six per cent of the recent 
MICCAI conference competition tasks, matching the inclusion criteria, do not 
report any labelling instructions. The analysis includes all 96 registered MICCAI 
competition tasks between 2020 and 2021.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | March 2023 | 273–283 276

Article https://doi.org/10.1038/s42256-023-00625-5

be improved. As a first step in this direction, we sought to determine 
the impact of different types of labelling instructions on the quality 
of annotation of a particular dataset. The selected dataset44,45, which 
can be handled by crowdworkers, combines highest-quality reference 
annotations and 21 meta annotations per annotated image that reflect 
the annotation difficulty. We created three distinct types of labelling 
instructions with varying levels of information density, namely, (1) 
minimal text, (2) extended text and (3) extended text including pic-
tures, as detailed in Methods and displayed in Supplementary Notes 
6–8. Example instructions are provided in Fig. 3. The obtained 23,443 
annotations on 14,040 images from the 864 annotators were analysed 
with a two-part zero-inflated beta mixed model (ZIBMM).

In contrast to the limited text labelling instructions, the extended 
text labelling instructions included more detailed descriptions, 
counter-examples and information on uncommon annotation cases 
that might appear. We define an annotation with a metric score equal 
to zero as a severe annotation error. For the 4,680 images annotated 
with the extended text labelling instructions, we observed a minor 
increase in the number of severe annotation errors compared with the 
limited text labelling instructions (median +0.4%, maximum +14.8%, 
minimum −31.7%). Furthermore, we observed no impact on the median 
Dice similarity coefficient (DSC)46, and only a minor increase in the 
interquartile range (IQR) (median +1.8%, maximum +33.3%, minimum 
−75.8%). These results contradict the initial assessment of the profes-
sional annotators. The absent effect of the extended text labelling 
instructions is reinforced by the results of the two-part ZIBMM, where 
we obtained no statistically significant difference for the extended text 
labelling instructions compared with minimal text from both the first 
and second part of the model, revealing that extended text descriptions 
do not boost annotation performance.

Exemplary images are crucial for high-quality annotations
Professional annotators claim that pictures help them understand 
labelling instructions (Fig. 2a). Therefore, the extended text includ-
ing pictures labelling instructions were enriched by pictures includ-
ing rare occurrences. In comparison with the extended text labelling 
instructions, the number of severe annotation errors was reduced 
for all five annotation providers (median −33.9%, maximum −13.6%, 
minimum −52.3%). Furthermore, their median DSC score increased 
(median +2.2%, maximum 20.0%, minimum +1.1%), and their IQR 
was reduced (median −58.3%, maximum −9.1%, minimum −84.2%)  
(Fig. 4a). This reinforces professional annotators’ initial assessment 
that pictures improve their understanding (Fig. 2a). The improvements 
occurred mainly on the difficult annotation cases (Supplementary  
Note 2). Based on the two-part ZIBMM, the odds of obtaining a severe 
annotation error with these labelling instructions are 0.37 times (cred-
ible interval (CI) 0.28–0.50) that with minimal text labelling instruc-
tions. From the second part of the two-part ZIBMM, we obtained no 
significant difference in the DSC score, once an object was identified. 
Thus, the improvements primarily stemmed from the additional reduc-
tion of severe annotation errors (Fig. 4b).

Professional annotation companies outperform 
crowdsourcing
In comparison with MTurk crowdworkers, professional annotators 
conduct labelling as their main source of income, label more often in 
a week and label for a higher number of weekly hours (Fig. 5a–c). In 
contrast, MTurk workers have a longer employment history in label-
ling than professional annotators, as displayed in detail in Fig. 5d. This 
observation is consistent with the historical development of the data 
annotation market, where general labour markets, including MTurk, 
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The red cross marks a clamp
→ no medical instrument.

Fig. 3 | Example of labelling instructions. a, Medical instruments are initially defined in the minimal text labelling instructions. b,c, The definition is deepened in the 
extended text labelling instructions (b) and enriched with images in the extended text including pictures labelling instructions (c).
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Fig. 4 | Key findings of our study. (1) Extended text descriptions (orange) do 
not necessarily boost annotation performance compared with minimal text 
descriptions (blue), while (2) including images (green) gives a clear benefit for 
all annotation providers. (3) Professional annotation companies (companies 
1–4) provide substantially higher-quality annotations compared with the most 
popular crowdsourcing platform MTurk. a, The DSC score has been aggregated 
for each annotated image and is displayed aggregated for each pair of company 
and labelling instruction as dots and box plot (the band indicates the median, the 

box indicates the first (25th percentile) and third (75th percentile) quartiles and 
the whiskers indicate ±1.5 × IQR, the DSC score maximum is 1 and the minimum is 
0 for each image). b, The absolute number of severe annotation errors, defined 
as annotations with a metric score equal to zero, is also shown. Metric scores 
for a and b were each processed from a total of 14,040 images annotated by 
156 annotators from four professional annotation companies and 708 MTurk 
crowdworkers.
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Fig. 5 | Work characteristics of professional annotators and MTurk 
crowdworkers. a–c, In comparison with the MTurk crowdworkers, professional 
annotators conduct labelling as their main source of income (a), label more often 
in a week (b) and spend a higher number of hours per week on labelling images 

(c). d, In contrast, MTurk crowdworkers have a longer employment history 
with labelling than professional annotators. Answers were processed from 
298 professional annotators from five annotation companies and 518 MTurk 
crowdworkers.
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preceded professional annotation companies. Given minimal text 
labelling instructions, professional annotators produced less severe 
annotation errors (companies median 307, MTurk median 549). Fur-
thermore, the professional annotators’ annotations generated a higher 
median DSC score (companies median 0.93, MTurk median 0.67), and 
a smaller IQR of the DSC score (companies median 0.36, MTurk median 
0.67). Both annotator types showed only minor or no improvement with 
the extended text labelling instructions. While both annotator types 
benefitted from added pictures, professional annotators displayed a 
stronger reduction of severe annotation errors (companies median 
−34.4%, MTurk median −13.6%) and of the IQR (companies median 
−63.00%, MTurk median −9.1%). In contrast, MTurk crowdworkers dis-
played a stronger improvement of the median DSC score (companies 
median +1.7%, MTurk median +20.0%). Under the same conditions, the 
odds of severe annotation errors for a professional annotator were 0.09 
times (CI 0.06–0.12) that of a MTurk crowdworker, keeping all other 
factors constant. Similarly, once an object was identified, the odds for 
a professional annotator of achieving a perfect DSC score were 94.7% 
(1.947, CI 1.69–2.24) higher than those of a MTurk crowdworker.

Discussion
To our knowledge, this study is the first to quantitatively and criti-
cally examine the role of labelling instructions in professional and 
crowdsourced annotation work. We were able to uncover a major 
discrepancy between their importance and quality/availability, and 
determine which type of labelling instructions is the most effective. 
While labelling instructions play a crucial role in the creation of bio-
medical image analysis datasets, current common practice is insuf-
ficient and neither meets the requirements of industry (for example, 
in creating large-scale datasets) nor those of academia (for example, 
in hosting competitions) (Fig. 2c). Notably, professional annotators 
demand a higher time and resource commitment from the creators 
of labelling instructions. Furthermore, they identify current labelling 
instructions as a main cause for annotation delay and rework (Fig. 2a).  
Interestingly, we found that extended text descriptions do not neces-
sarily boost annotation performance compared with minimal text 
descriptions (Fig. 4), although professional annotators expect them 
to improve the understanding of the labelling tasks (Fig. 2a). In con-
trast, the addition of pictures resulted in a clear improvement among 
all annotation providers (Fig. 4), which matches the assessment of 
the professional annotators (Fig. 2a). This improvement was mainly 
observed on ambiguous images with challenging conditions, such as 
poor illumination or intersecting objects, as depicted in Supplementary 
Note 2. Since ML models fail their prediction more often on ambiguous 
images than on clear images2, the correct annotation of such images in 
training datasets is particularly crucial for good performance. Lastly, 
annotators from professional annotation companies provide substan-
tially higher-quality annotations compared with those from the most 
popular crowdsourcing platform in health research, MTurk, regardless 
of the type of labelling instruction.

One of the key implications of our findings is that there is a huge 
discrepancy between the potential impact of labelling instructions on 
generating the desired annotations and their role in current (research) 
practice. Our study shows that scope and specific design choices of 
labelling instructions play a major role in generating the desired annota-
tions. Among other contributing factors such as prior annotation exper-
tise or training, labelling instructions may thus determine the attention 
to detail that annotators pay to annotating challenging images. The 
importance of this is amplified in cases of datasets becoming increas-
ingly complex and diversified over time, where more and more chal-
lenging data points are added due to initial prediction difficulties of the 
ML model. Consequently, researchers and practitioners alike should 
ensure proper representation of the necessary information in their 
labelling instructions, extend them if needed and invest the necessary 
time to produce informative annotated images. However, we observed 

that 76% of the recent MICCAI competitions did not report their label-
ling instructions (Fig. 2c). Since competitions are aimed at generating 
high publicity, it can be assumed that their current handling of labelling 
instructions represents the upper bound of quality regarding common 
practice, with the quality being substantially lower for research projects 
devoid of intense public scrutiny. This discrepancy is alarming and calls 
for a paradigm shift in common practice. Given our results, the MICCAI 
Special Interest Group47 for Biomedical Image Analysis Challenges is 
currently re-evaluating common competition practices and considering 
stricter rules for data quality for future challenges.

Another implication of our study is that generating and publish-
ing labelling instructions is a pre-condition for enabling independent 
verification and reproduction of the created annotations. Similarly 
to how published code enables the verification of algorithmic results 
in research papers, access to labelling instructions is necessary to 
understand annotators’ decisions and potentially re-create annota-
tions. Furthermore, the information provided in labelling instructions 
is important for ML practitioners. Based on the annotation decisions 
(for example, handling of occluded objects of interest) implemented in 
a dataset, ML practitioners need to define their own desired outcome 
for these occurrences and modify their ML model accordingly. Given 
their impact on the resulting annotations and the current poor state 
of datasets6–10, we argue that dataset creators and competition organ-
izers should publish their labelling instructions, as proposed in ref. 39. 
To advance current practice, we recommend the dataset and labelling 
instruction creation to be an iterative process properly modelling 
the underlying distribution of the data space, as described in ref. 13. In 
earlier stages of the dataset creation process, the focus should be on 
common occurrences (for example, common surgical instruments 
in the case of laparoscopic surgery) to generate strong initial model 
performance. Throughout the process, special, conflicting or rare 
occurrences should be added to the dataset to maximize the model 
performance and reflect the real-world distribution.

A further recommendation motivated by our study is for annota-
tion requesters to evaluate their annotator options more carefully 
and select their provider on the basis of suitability to their annotation 
requirements. While medical personnel alone may be too sparse and 
costly to satisfy the rising demand for annotated biomedical image 
data13, oftentimes, medical domain knowledge may be necessary only 
for the creation of the labelling instructions and not the annotation 
itself. Thus, crowdsourcing in combination with computer-assisted 
annotation strategies can be a valid and cost-effective approach. 
MTurk, the most commonly used crowdsourcing platform in health 
research17, follows a do-it-yourself model, where all components from 
annotator training to annotation tooling are provided by the annota-
tion requester and the crowdworkers are employed on a freelance basis. 
In contrast, professional annotation companies assign a dedicated 
contact person that oversees the project, with annotators trained 
and directly employed by the annotation company. While MTurk can 
quickly scale up with a large number of people, professional annota-
tion companies tend to scale up more slowly. However, professional 
annotators work on data annotation for a longer proportion of their 
workday and are usually assigned full-time to an annotation project 
(Fig. 5). Regarding location, the international annotation market leads 
to scenarios where requesters and annotators do not share the same 
(native) language. This reinforces the need for clear and concise label-
ling instructions with exemplary pictures as a fundamental require-
ment for scaling data annotation operations.

Irrespective of the person chosen to conduct the annotations, 
the required domain knowledge to perform a given annotation task 
depends mainly on the underlying problem statement and the used 
imaging modality. Furthermore, the scope and form of high-quality 
labelling instructions may vary depending on the underlying problem. 
For simpler problems, such as eye colour classification, shorter label-
ling instructions may be sufficient. Complicated annotation tasks, on 
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the other hand, may require elaborate labelling instructions up to 400 
pages in length48 to properly communicate the necessary information. 
Regarding form, a labelling instruction is not restricted to being a docu-
ment, and could be presented in video or app format as well. Which 
format or combination works best for the problem at hand should 
be determined individually. Regardless, the chosen format should 
be archivable to enable consistent onboarding of additional annota-
tors and access for future users of the dataset to understand the data 
generation process. In case of doubt, sharing more information than 
necessary in the labelling instructions is preferable to sharing too little 
information, as evidenced by our work (Fig. 4).

Of note, with performance assessment of crowdworkers still 
conducted by examining their performance on reference standard 
datasets13,49 or measuring the inter-worker agreement50,51, the recom-
mended iterative labelling instruction generation would potentially 
reduce errors resulting from lacking quality in labelling instructions 
and should thus result in a more precise assessment of crowdworkers’ 
actual performances.

Another implication of our findings is the effect of annotation errors 
on the life cycle of an ML system. Data critically impact the entire pipe-
line of an ML system, from the initial problem statement up to the final 
model deployment52. Annotation errors, often referred to as ‘label noise’, 
thus represent a long-standing challenge in the ML community, which 
has led to the development of pre-processing methods to clean data or 
the creation of models that are more robust to annotation errors53. This 
holds especially true for the safety-critical biomedical domain, in which 
high-quality test images are the foundation for the medical certification 
of new solutions54,55. It should be noted that robustness also plays a par-
ticularly important role in this domain. Hence, there is a risk of rare cases 
being mislabelled and not contributing sufficiently to the robustness 
assessment. Our experiments show that images with rare but relevant 
characteristics particularly benefit from labelling instructions with a 
higher density of information (Supplementary Note 2).

Furthermore, annotation errors in the test set have drastic con-
sequences for ML competitions, which are often considered the gold 
standard for identifying the best algorithm for a specific research ques-
tion. Competitions typically lead to winning algorithms becoming the 
new state-of-the-art method and being awarded tremendous monetary 
rewards and recognition40. Even for well-established datasets, such as 
ImageNet56, annotation errors in the test set falsify the selection of the 
best-performing model. For example, a trained ResNet-18 model was 
shown to outperform a trained ResNet-50 model if the prevalence of 
originally mislabelled test examples increases by just 6%, given the 
corrected ImageNet test set6. This issue is further aggravated by the 
fact that competition test sets are frequently inaccessible to the public 
after a competition ends, making auditing of the test sets impossible. 
A comprehensive overview of data issues and their cascading effect 
is provided in ref. 52. In summary, reducing annotation errors early on 
within the life cycle of an ML system by providing higher-quality label-
ling instructions positively impacts data pre-processing, model selec-
tion, model training, model validation and finally model deployment.

A limitation of our study could be seen in the fact that we included 
only one dataset. Our chosen dataset combines the advantages of 
high-quality reference annotations, representing the real-world com-
plexity with gradually increasing stages of difficulty and high volume. 
We chose to include only one sample scenario since running several 
experiments with the same annotation companies and different data-
sets poses substantial risks of exposing the experimental setting. 
Annotation companies are typically well aware of the most common 
datasets and would additionally spot the known experimental struc-
ture of gradually increasing labelling instructions within the same 
layout. Awareness of the experimental setting would in turn lead to 
results being skewed in favour of high-quality performances, since 
these companies are inherently motivated to present their work as 
reliable. A further limitation of our study is that MTurk required a 

different annotation tooling than the annotation tooling used by the 
professional annotation companies. To mitigate a potential impact 
of the toolings, all participating annotators had no prior experience 
with their respective tooling and both toolings included best design 
practices to enable high-quality annotations.

Our study was subject to several design choices. For the perfor-
mance measurement, we focused on the DSC as an overlap-based met-
ric. Utilizing distance-based metrics, such as the normalized surface 
distance, yielded similar results. For the statistical analysis, we assumed 
that the non-zero DSC scores follow a beta distribution as it is the more 
natural distribution for this kind of data. We further assumed that the 
random effects in the two-part ZIBMM are normally distributed and 
correlated. The correlation assumption was reasonable in that, as the 
probability of severe annotation errors increases, the expected DSC 
score decreases and vice versa.

Even though this paper focuses on labelling instructions asso-
ciated with biomedical image analysis, we believe that the findings 
can be translated to other research fields, and to crowdsourced data 
annotation in general. We expect the impact to go beyond academia 
because industrial production ML projects by nature depend on a 
pre-defined level of annotation quality to obtain the required algorithm 
performance level. Consequently, it stands to reason that more effort 
and monetary resources should especially be invested in developing 
labelling instructions in industry13.

The present work opens up several future research avenues: First, 
a structured competition submission system has improved the quality 
of biomedical image analysis competitions in recent years39. By col-
lecting the submitted labelling instructions and the corresponding 
feedback over time, a model could be trained to provide an automated 
quality feedback mechanism for labelling instructions in the biomedi-
cal domain. Second, professional annotation companies usually con-
duct quality assurance checks by experienced annotators or team 
leads before providing their created annotations to the annotation 
requester. Although we obtained substantial quality improvements in 
the obtained annotations by optimizing the labelling instructions, it 
would be of interest to analyse potential further impact of such quality 
assurance checks. Additionally, the interaction effects between expe-
rienced annotators working on quality assurance checks and instruc-
tions with varying levels of information density could be of interest 
to the scientific community. Third, data pipelines with a long-term 
focus face the risk of concept drift, where the initially captured dis-
tribution of input data changes. How labelling instructions should 
evolve along ever-changing data and its distribution remains an open 
question to be tackled. Finally, with an increasing educational shift 
towards digitalization and data science, involving medical students 
in medical image annotation as part of their study programme could 
potentially become a new source of crowdsourcing. Future research 
should examine this promising symbiotic relationship, where medi-
cal students obtain hands-on ML-related skills highly relevant to their 
profession while at the same time easing the annotation bottleneck 
for the scientific community.

In summary, our study is the first to examine the impact of the 
quality of labelling instructions on annotation work performed both 
by professional annotators and crowdworkers. We uncovered a sub-
stantial discrepancy between the demand of professional annotators 
for better labelling instructions and current common practice. Given 
the rapidly increasing complexity and diversity of datasets, we envision 
the establishment and widespread adoption of quality standards for 
labelling instructions to become imperative in the future.

Methods
Following the definition of terms used throughout this study, we will 
describe the selected data, the annotation providers, the labelling 
instructions, the experimental setup and the statistical analysis in 
detail throughout this section.
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Definitions
We use the following terms throughout the paper:

Annotation provider: An entity that provides annotations per-
formed by human workers. They can be categorized into two types of 
annotation providers: (1) crowdsourcing platforms, such as MTurk, and 
(2) professional annotation companies (see the following definitions).

Annotation requester: An entity that wants a dataset annotated 
by an external annotation provider.

Challenge/competition: We follow the challenge definition of the 
BIAS statement, which defines a challenge as an “open competition on a 
dedicated scientific problem in the field of biomedical image analysis.  
A challenge is typically organized by a consortium that issues a dedi-
cated call for participation. A challenge may deal with multiple different 
tasks for which separate assessment results are provided. For example, 
a challenge may target the problem of segmentation of human organs 
in computed tomography (CT) images. It may include several tasks 
corresponding to the different organs of interest”40.

Challenge/competition task: The BIAS statement defines a chal-
lenge task as a “subproblem to be solved in the scope of a challenge for 
which a dedicated ranking/leaderboard is provided (if any)”40.

Labelling instruction: A document or tool that specifies how to cor-
rectly label (imaging) data. The different types of labelling instructions 
are defined below and presented in greater detail in Supplementary 
Notes 6–8.

MTurk: A two-sided crowdsourcing marketplace that enables 
annotation requesters to hire freelance workers, referred to as MTurk 
crowdworkers, to perform discrete tasks on-demand.

MTurk crowdworker: A remotely located person performing dis-
crete on-demand tasks on MTurk on their own hardware. They are 
employed on a freelance basis.

Professional annotation company: A company focusing mainly on 
generating annotations for (imaging) data. Their workers are located 
in regular office space and mainly employed full-time.

Professional annotator: An on-site located and full-time employed 
person performing annotations for a professional annotation company 
in a provided office space with according hardware.

International professional annotator survey
To obtain a comprehensive understanding of the current issues profes-
sional annotators face with respect to labelling instructions and their 
work characteristics, we developed a 26-item questionnaire (provided 
in Supplementary Note 4). The survey was distributed among five 
internationally operating annotation companies in best-cost coun-
tries that exclusively employ professional annotators. To increase the 
statistical validity of the submitted entries (n = 363), we employed a 
twofold filtering strategy of the entries: (1) a control question pair, 
which consists of the positive and negative formulation of a question, 
and (2) an instructional manipulation check, as recommended in ref. 57.  
The check asks the participant to answer an open-ended question with 
a specific set of words that can only be answered by carefully reading 
the question text. The filtering resulted in 298 remaining entries.

Competition analysis
Our goal was to capture the current handling of labelling instructions 
in biomedical image analysis. Thus, we included all MICCAI registered 
competitions that were published until the end of 2021. We retrieved 
the registered competitions from the MICCAI website, where all MIC-
CAI registered competitions are published. This resulted in a list of 53 
competitions with 96 competition tasks. Two engineers with a proven 
history in reviewing competitions rated all submitted standardized 
competition design documents of the individual competition tasks 
as to whether a labelling instruction was provided by the competition 
task. In addition, ambiguous cases were marked as such. This resulted 
in an inter-rater agreement of 90.6%. Contradictory ratings were mainly 
cases where both raters marked the competition task as ambiguous and 

were solved by an independent third engineer with a proven history in 
reviewing competitions. Twenty competition tasks were excluded as 
not applicable in the process, as they provided a valid reasoning why 
labelling instructions cannot be provided. An example is the Medical 
Out-of-Distribution Analysis Challenge58, where the publication of 
the labelling instruction would enable cheating, because it contains 
information about the placement of out-of-distribution objects in 
the competition data. The result of the competition tasks analysis is 
provided in Supplementary Note 3.

Dataset selection
The Heidelberg Colorectal (HeiCo) segmentation44,45 dataset, compris-
ing medical instrument segmentations in laparoscopic video data, 
served as the basis for this study. Each image was enhanced by 21 meta 
annotations representing relevant image characteristics or artefacts 
(for example, whether overlapping instruments or motion blur are 
present on the image), where each image characteristic is a binary 
annotation decision59. The meta annotations were implemented by 
a trained engineer with extensive annotation experience, who was 
involved in the original creation process of the dataset. On the basis of 
the meta annotations, the images were categorized into nine different 
image categories, which represented the potential annotation difficulty 
and served for the subsequent image selection:

 (1) Simple category: Images do not contain any artefact on the 
instruments.

 (2) Chaos category: Images contain at least three different artefacts 
on the instruments. Moreover, images containing a higher 
number of instruments are preferred.

 (3) Trocar category: At least one trocar is present on the image.
 (4) Intersection category: At least two medical instruments are 

intersecting on the image.
 (5) Motion blur category: A minimum of one medical instrument 

with the motion blur artefact is present on the image.
 (6) Underexposure category: At least one medical instrument on 

the image is underexposed.
 (7) Text overlay category: Text overlay is present and obstructs the 

view of the image.
 (8) Image overlay category: An image overlay is present and ob-

structs the view of the image.
 (9) Random category: Images are randomly selected from the 

remaining images in the test set.

We selected 234 unique frames corresponding to the defined cat-
egories. Each unique image was annotated four times per labelling 
instruction and per annotation provider, resulting in 60 annotations per 
image (generating a total of 14,040 annotated images). Fifteen unique 
images from category 1 to category 8 were selected by hand, account-
ing for roughly half of the images. The only exception was category 8, 
because there existed only 11 unique images that matched the definition 
of the category. The other half was selected randomly (category 9).

Annotation providers
The study was conducted on the basis of five annotation providers, 
consisting of four professional annotation companies and the crowd-
sourcing platform MTurk. Each annotator participated exclusively 
with one of the three labelling instructions. We selected high-quality 
representatives for the professional annotation companies and the 
crowdsourcing platform. The professional annotation companies oper-
ate internationally, and their annotators are located in best-cost coun-
tries. The selected companies had a proven track record in large-scale 
industry annotation projects. Participating crowdworkers on MTurk 
had to fulfil the following quality requirements: (1) 98% accepted 
human intelligence tasks (HITs) and (2) a minimum of 5,000 accepted 
HITs. Our quality requirements thus far surpassed the quality require-
ments of researchers working with MTurk, which normally require 95% 
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accepted HITs with a minimum of 100 accepted HITs20,21,25,35. To capture 
a representative sample of the population on MTurk, we spread our 
HITs across 40 days and all times of day. We followed Litman et al. to 
ensure a fair worker compensation23.

Labelling instructions
As a labelling instruction specifies how to correctly label the (imaging) 
data, we defined a set of design rules that are shared across all labelling 
instructions:

 (1) The information of a labelling instruction is provided in a 
slide layout for better human information processing.

 (2) Each slide represents a chunk, an encapsulated unit of informa-
tion. Chunking reduces the demand on the working memory.

 (3) Related information chunks are positioned near each other.
 (4) A consistent layout with defined fonts, symbols and colours is 

applied.

Minimal text labelling instructions. The minimal text labelling 
instructions consist of a limited textual description, including posi-
tive examples and the most common annotation occurrences (Sup-
plementary Note 6). This represents a situation where only little effort 
was put into creating the labelling instruction. For example, text overlay 
references the uncommon occurrence of text that is visible in the 
image. Because it is an uncommon occurrence, it is not mentioned in 
the minimal text labelling instruction. As a baseline, the minimal text 
labelling instructions consist of seven slides with 168 words.

Extended text labelling instructions. The extended text labelling 
instructions extend the minimal text labelling instructions with a 
comprehensive text description, which is supported by both positive 
examples and counterexamples in text form. Furthermore, both com-
mon and uncommon cases are included (Supplementary Note 7). In this 
labelling instruction for example, the uncommon occurrence of text 
overlay is described in detail. This resulted in ten slides with 446 words.

Extended text including pictures labelling instructions. The 
extended text including pictures labelling instructions complement 
the extended text labelling instructions with pictures (Supplementary 
Note 8). The pictures include textual descriptions, symbols, markings 
and the usage of colour to convey the information on the slides. In addi-
tion, rare annotation occurrences are included as well. This represents 
a situation where extensive (domain) knowledge about the labelling 
process is present and documented in detail in the labelling instruction. 
Hence, in our example, the uncommon occurrence of text overlay is 
described in detail with text and pictures. These labelling instructions 
consist of 16 slides with 961 words.

Setup for the labelling instruction experiments
Each of the five labelling providers annotated the same images subse-
quently with each labelling instruction, using separate annotators. We 
started with the minimal text labelling instructions, followed by the 
extended text labelling instructions, and provided the extended text 
including pictures labelling instructions last, to prevent information 
leakage. As an additional security measure, we added a minimum break 
of 10 days between two labelling instructions. No individual ques-
tions from the annotators regarding the labelling instruction content 
were answered to prevent a potential information advantage for an 
annotation provider that could impact the statistical analysis. Each 
annotator was only allowed to participate for a single labelling instruc-
tion. All participating annotators had no prior experience with their 
respective annotation tooling. Furthermore, no worker selection tasks 
were used for the annotation providers. Each professional annotator 
annotated a total of 72 images. To properly simulate the parallelization 
of crowdsourcing, each MTurk crowdworker annotated four images. 

After the submission of their annotations, each MTurk crowdworker 
could submit a short optional survey about their work characteristics.

Statistical analysis
To quantify the impact of labelling instructions and the two annotator 
types, the following statistical methods were used:

To ensure compatibility with prior work on the data, we utilized the 
same metrics as suggested in ref. 45, in which the dataset was originally 
introduced as part of the MICCAI Robust Medical Instrument Segmenta-
tion Challenge 2019. We analysed the annotation results based on the DSC 
scores with a two-part ZIBMM60: (1) the first part included a logistic mixed 
model analysing the probability of severe annotation errors (at least one 
instrument with DSC of 0 in one frame) and (2) the second part consisted 
of a beta mixed model analysing the non-zero DSC values of an image when 
valid annotations occurred. The image variable and the annotation worker 
variable were modelled as random effects while the type of labelling instruc-
tions, annotator type, image category and access to context video were 
modelled as fixed effects with two-side hypothesis tests. The model was 
implemented in the brms package in R (ref. 61), where vague Gaussian priors 
centred on 0 were used for the fixed effects and half-Cauchy priors were 
assigned for the standard deviation of the random effects. A total of 4,000 
Markov chain Monte Carlo samples were generated across four chains. 
The obtained estimates of the covariates are on the log-odds scale and 
were exponentiated to obtain the odds ratio for each covariate. Software:  
R version 4.0.2 (package brms version 2.16.0).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Six datasets were utilized during the current study: DS1: Captured 
biomedical competition design documents from publicly available 
sources (2020–2021). DS2: Reference annotations for the HeiCo44,45 
dataset. DS3: Captured annotations from professional annotators and 
MTurk crowdworkers. DS4: Individual professional annotator responses 
to the survey ‘Labeling Instructions Survey’. DS5: Individual MTurk 
crowdworker responses to optional work characteristics survey. These 
questions are a subset of the DS4 questions. DS6: DSC scores between 
DS2, DS3 and the existing output of six algorithms from a recent medical 
instrument instance segmentation challenge. For DS1, the individual 
challenge design documents are freely available at MICCAI62. A report-
ing summary for the evaluation is available as Supplementary Note 3. 
DS2 is freely available from Synapse63. DS3, DS4, DS5 and DS6 are avail-
able from the corresponding author L.M.-H. upon reasonable request.

Code availability
The repository with the statistical code (excluding the raw data) is 
publicly available at https://github.com/IMSY-DKFZ/labeling_instruc-
tions_matter (ref. 64).
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