Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational genomics

Crowdsourcing to predict RNA degradation and secondary structure


Predicting RNA degradation is a fundamental task in designing RNA-based therapeutic agents. Dual crowdsourcing efforts for dataset creation and machine learning were organized to learn biological rules and strategies for predicting RNA stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A dual crowdsourcing approach to tackle the challenge of predicting breakdown of RNA.


  1. Alonso, O. Info. Retrieval 16, 101–120 (2013).

    Article  Google Scholar 

  2. Andreasson, J. O. et al. Proc. Natl Acad. Sci. USA 119, e2112979119 (2022).

    Article  Google Scholar 

  3. Koodli, R. V. et al. PLoS Comput. Biol. 15, e1007059 (2019).

    Article  Google Scholar 

  4. Lee, J. et al. Proc. Natl Acad. Sci. USA 111, 2122–2127 (2014).

    Article  Google Scholar 

  5. Wayment-Steele, H. K. et al. Nat. Mach. Intell. 4, 1174–1184 (2022).

    Article  Google Scholar 

  6. Wayment-Steele, H. K. et al. Nucleic Acids Res. 49, 10604–10617 (2021).

    Article  Google Scholar 

  7. Danaee, P. et al. Nucleic Acids Res. 46, 5381–5394 (2018).

    Article  Google Scholar 

  8. Crichton, G., Pyysalo, S., Chiu, B. & Korhonen, A. BMC Bioinformatics 18, 368 (2017).

    Article  Google Scholar 

  9. Ding, D. Y. et al. in Biocomputing 2019: Proc. Pacific Symposium 18–29; (2019).

  10. Capel, H., Feenstra, K. A. & Abeln, S. Sci. Rep. 12, 10487 (2022).

    Article  Google Scholar 

  11. Vaswani, A. et al. In Guyon, I. et al. (eds), Advances in Neural Information Processing Systems vol. 30, pp. 6000–6010 (NeurIPS, 2017).

  12. Du, B., Liu, Z. & Luo, F. Inf. Sci. 582, 287–301 (2022).

    Article  Google Scholar 

  13. Xu, Q. et al. Preprint at (2020).

  14. Andriyanov, N. & Andriyanov, D. J. Phys. Conf. Ser. 1661, 012018 (2020).

    Article  Google Scholar 

  15. Agarwal, V. & Kelley, D. R. Genome Biol. 23, 245 (2022).

    Article  Google Scholar 

  16. Chen, C.-Y. et al. Proc. Natl Acad. Sci. USA 113, 206–211 (2016).

    Article  Google Scholar 

Download references


The author thanks L. Padgitt-Cobb and J. Valencia for reviewing this manuscript and providing valuable edits.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David A. Hendrix.

Ethics declarations

Competing interest

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrix, D.A. Crowdsourcing to predict RNA degradation and secondary structure. Nat Mach Intell 5, 101–103 (2023).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing