
Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 104

nature machine intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

Echo state graph neural networks with
analogue random resistive memory arrays

Shaocong Wang1,2,3,9, Yi Li2,4,9, Dingchen Wang1,3, Woyu Zhang2,4, Xi Chen1,3,
Danian Dong2,4, Songqi Wang1,2,3, Xumeng Zhang    5, Peng Lin    6,
Claudio Gallicchio7, Xiaoxin Xu2,4, Qi Liu2,5, Kwang-Ting Cheng3,8,
Zhongrui Wang    1,3  , Dashan Shang    2,4  & Ming Liu2,5

Recent years have witnessed a surge of interest in learning representations
of graph-structured data, with applications from social networks to drug
discovery. However, graph neural networks, the machine learning models
for handling graph-structured data, face significant challenges when
running on conventional digital hardware, including the slowdown of
Moore’s law due to transistor scaling limits and the von Neumann bottleneck
incurred by physically separated memory and processing units, as well as
a high training cost. Here we present a hardware–software co-design to
address these challenges, by designing an echo state graph neural network
based on random resistive memory arrays, which are built from low-cost,
nanoscale and stackable resistors for efficient in-memory computing. This
approach leverages the intrinsic stochasticity of dielectric breakdown
in resistive switching to implement random projections in hardware for
an echo state network that effectively minimizes the training complexity
thanks to its fixed and random weights. The system demonstrates
state-of-the-art performance on both graph classification using the MUTAG
and COLLAB datasets and node classification using the CORA dataset,
achieving 2.16×, 35.42× and 40.37× improvements in energy efficiency
for a projected random resistive memory-based hybrid analogue–digital
system over a state-of-the-art graphics processing unit and 99.35%, 99.99%
and 91.40% reductions of backward pass complexity compared with
conventional graph learning. The results point to a promising direction for
next-generation artificial intelligence systems for graph learning.

The great success of graph neural networks1,2, graph convolutional
networks3 and graph attention networks4 well illustrates the power of
machine learning in handling graph-structured data that simultane-
ously characterize both objects and their relationships. As a result,

graph learning5 is quickly standing out in many real-world applications
such as the prediction of chemical properties of molecules for drug
discovery6, recommender systems of social networks7 and combinato-
rial optimization for design automation8. In the era of Big Data and the

Received: 5 September 2022

Accepted: 4 January 2023

Published online: 13 February 2023

 Check for updates

1Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China. 2Key Laboratory of Microelectronic Devices &
Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China. 3ACCESS – AI Chip Center for Emerging Smart
Systems, InnoHK Centers, Hong Kong, China. 4University of Chinese Academy of Sciences, Beijing, China. 5Frontier Institute of Chip and System, Fudan
University, Shanghai, China. 6College of Computer Science and Technology, Zhejiang University, Zhejiang, China. 7Department of Computer Science,
University of Pisa, Pisa, Italy. 8Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
9These authors contributed equally: Shaocong Wang and Yi Li.  e-mail: zrwang@eee.hku.hk; shangdashan@ime.ac.cn

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00609-5
http://orcid.org/0000-0002-3828-151X
http://orcid.org/0000-0002-0679-8063
http://orcid.org/0000-0003-2264-0677
http://orcid.org/0000-0003-3573-8390
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00609-5&domain=pdf
mailto:zrwang@eee.hku.hk
mailto:shangdashan@ime.ac.cn

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 105

Article https://doi.org/10.1038/s42256-023-00609-5

Hardware–software co-design: ESGNN on random
resistive memory arrays
Figure 1 illustrates the hardware–software co-design scheme, where
random resistive memory arrays are used to physically implement the
ESGNN. Hardware-wise, the random distribution of dielectric break-
down voltages, due to inevitable process variation and motion of ions,
provides a natural source of randomness (entropy) to produce
large-scale random resistive memory arrays that have been validated
for implementations of true random number generators56 and physi-
cally unclonable functions57 (see Supplementary Note 1 for a com-
parison between random resistive memory arrays and pre-computed
resistor arrays). Here, we fabricated CMOS-compatible nanoscale TaN/
TaOx/Ta/TiN resistive memory cells (Fig. 1a,b; see Supplementary
Fig. 1 for device characteristics) in crossbar arrays (Fig. 1c) using the
backend-of-line process on a 40 nm technology node tape-out
(Methods). The chip is integrated on a printed circuit board with ana-
logue–digital conversion circuitry and a Xilinx ZYNQ system-on-chip,
constituting a hybrid analogue–digital computing platform (see Methods
and Supplementary Fig. 2 for the system design and a photo, and Sup-
plementary Note 2 for the system energy consumption estimation). As
shown in Fig. 1c, the crossbar array is then partitioned into two sub-arrays
to represent two weight matrices: WI ∈ ℝh×(u+1) the input matrix and
WR ∈ ℝh×h the recursive matrix, of the ESGNN, where u and h represent
the input dimension and the hidden dimension of each node, respec-
tively (see Methods on mapping resistive memory conductance to
weights). Biasing all the cells of an as-deposited resistive memory to
the median of their breakdown voltages, some cells will experience
dielectric breakdown if their breakdown voltages are lower than the
applied voltage, forming random resistor arrays as illustrated by
the conductance maps of both WI and WR in Fig. 1d (see Extended Data
Fig. 1 for the stochasticity of dielectric breakdown voltages). Compared
with pseudo random number generation using digital systems, the
source of randomness here is the stochastic redox reactions and ion
migrations that arise from the compositional inhomogeneity of resis-
tive memory cells, offering low-cost and highly scalable random resis-
tor arrays for in-memory computing (see Supplementary Note 3 for
National Institute of Standards and Technology, NIST, true randomness
test results). The corresponding histogram in Fig. 1e shows a conduct-
ance gap between breakdown cells and those remain insulating. The
conductance distribution of the former follows a stable, quasi-normal
distribution, which can be tailored by adjusting both fabrication con-
ditions and electrical operation parameters, offering tuneable hard-
ware implementations of ESGNN (see Supplementary Fig. 3 for the
stability of the random resistor arrays and Supplementary Fig. 4 for
their tunability).

Software-wise, the echo state network (ESN) is a type of reservoir
computer26,31,43,58 comprising a large number of neurons with random
and recurrent interconnections, where the states of all the neurons are
accessible by a simple software readout layer55,59 (see Supplementary
Figs. 5 and 6 for different types of reservoir computers and their imple-
mentations). The consecutive nonlinear random projections in the
high-dimensional state space produce trajectories at the edge of chaos,
benefitting graph embedding extraction as reported in ref. 55. The
ESGNN builds on the FDGNN model55 but differs from FDGNN in terms
of a finite iteration node embedding scheme and task-dependent clas-
sification heads, which leads to better immunity to over-smoothing
and improved energy efficiency on multiple tasks (see Supplementary
Note 4 for the detailed differences and Supplementary Table 1 for a
summary of the differences). The network parameters of ESGNN are
physically embodied by the two random resistive memory arrays,
where the input matrix WI modulates the influence of a node input
feature vector on the node internal state, and the recursive matrix WR
determines the influence of neighbouring nodes on the same node
internal state (see Methods for the choice of resistance scaling factors
to ensure the echo state property). This graph embedding process is

Internet of Things (IoT), the size and scale of graph-structured data are
exploding. For example, the social network Facebook has more than
two billion users and one trillion edges representing social connec-
tions9. This imposes a critical challenge to the current graph learning
paradigm that implements graph neural networks on conventional
complementary metal–oxide–semiconductor (CMOS) digital circuits.
Such digital hardware suffers from frequent and massive data shuttling
between off-chip memory and processing units during graph learning,
the so-called von Neumann bottleneck10–19. Furthermore, the technol-
ogy node of transistors has reached 3 nm, the length of a few unit cells
of silicon. This leads to an inevitable slowdown of Moore’s Law that has
fuelled the past development of CMOS chips in the last few decades. As
a result, further scaling of transistor is becoming less cost-effective. Last
but not least, the training of graph neural networks is expensive, due
to tedious error backpropagation for node and graph embedding. For
example, the training of PinSage took 78 hours on 32 central processing
unit (CPU) cores and 16 Tesla K80 graphics processing units (GPUs)20.
The growing challenges in both hardware, that is, the von Neumann
bottleneck and transistor scaling, as well as software, that is, tedious
training, calls for a brand-new paradigm for graph learning.

Resistive memory may provide a hardware solution to these
issues21–45. When these resistive elements are grouped into a crossbar
array, they can naturally perform vector–matrix multiplication, one
of the most expensive and frequent operations (OPs) in graph learn-
ing46,47. The matrix is stored as the conductance of the resistive memory
array, where Ohm’s law and Kirchhoff’s current law physically govern
multiplication and summation, respectively. As a result, the data are
stored and processed in the same location. This in-memory computing
concept can largely obviate the energy and time overheads incurred by
expensive off-chip memory access in graph learning on conventional
digital hardware. In addition, resistive memory cells have a simple,
capacitor-like structure, equipping them with excellent scalability and
three-dimensional (3D) stackability. However, resistive memory suffers
from a series of issues when changing their resistance that can defeat
the efficiency advantage of in-memory graph learning, demanding
frequent updates of resistive weights. This occurs because resistive
memory relies on electrochemical reactions or phase changes to adjust
the conductance48–53. This mechanism results in a switching energy and
duration that are orders of magnitude higher than those of transistors.
In addition, the inevitable stochasticity associated with ionic or atomic
motions makes precise resistance changes difficult. As a result, graph
learning has not yet experimentally leveraged the advantage of resis-
tive in-memory computing.

Here, we propose a novel hardware–software co-design, the
random resisive memory-based echo state graph neural networks
(ESGNN)54,55. The marriage of random resistive memory and ESGNN not
only retains the boost of energy–area efficiency thanks to in-memory
computing but also makes use of the intrinsic stochasticity of dielec-
tric breakdown to provide low-cost and nanoscale hardware random
weights of ESGNN. Moreover, the echo state network employs iterative
random projections for node and graph embedding, which gets rid of
the tedious training of conventional graph neural networks, enabling
efficient and affordable real-time graph learning.

In this Article, we showcase such a co-designed ESGNN physically
implemented on a 40 nm resistive computing-in-memory macro to
accelerate graph learning. We demonstrate state-of-the-art graph clas-
sification results on the MUTAG and COLLAB datasets, as well as node
classification on the CORA dataset. We observe 2.16×, 35.42× and 40.37×
improvements in the energy efficiency of a projected random resistive
memory-based hybrid analogue–digital system compared with that of
a state-of-the-art GPU for classifying the MUTAG, COLLAB and CORA
dataset. Furthermore, the backward pass complexity is reduced by
99.35%, 99.99% and 91.40% respectively, thanks to the representation
extraction using random projections in ESGNN. Our system paves the
way for efficient and fast graph learning in the future.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 106

Article https://doi.org/10.1038/s42256-023-00609-5

schematically illustrated in Fig. 1f. For a given graph, the initial embed-
ding of node j is a zero vector s(0)j ∈ ℝh. The input feature of the same
node xi ∈ ℝu+1 will first undergo a random projection using the input
matrix to produce its input projection uj = WIxj ∈ ℝh. In each subse-
quent time step, a new state of the node is computed by aggregating
its current state s(t)j and input projection uj, and the states of all its
neighbours after random projections by the recursive matrix
∑k∈N(j)WRs

(t)
k (where N (j) denotes the set of neighbouring nodes of

node j). These consecutive random projections to high-dimensional
space paired with nonlinear activations endow each node with a unique
and discriminative representation. The final internal states of nodes,
or node embeddings, will be used to create a graph embedding g ∈ ℝh
by sum pooling for graph classification problems, as illustrated in
Fig. 1g (see Methods for the details of node and graph embedding).

Graph classification with ESGNN
We first solve a representative graph classification task using the
MUTAG molecular dataset60 with a random resistive memory-based
ESGNN. MUTAG is a widely used molecular dataset that comprises 188
nitroaromatic compounds (see Fig. 2a for examples and Supplementary
Fig. 7 and Supplementary Table 2 for simulation results on the
large-scale organic molecule dataset QM9). These molecular com-
pounds are essentially graphs. Their nodes stand for atoms, while edges
denote chemical bonds. The molecular graphs can be divided into two
categories according to their mutagenicity, that is, their ability to
mutate genes of certain bacteria. Figure 2b shows the experimental

input projection and evolution of node internal states of a single molec-
ular graph according to the process shown in Fig. 1f. Internal states of
nodes (columns) gradually differ from projected input features by
accumulating messages from neighbouring nodes and thus encode
structural information pertaining to the topology of the graph (see
Extended Data Fig. 2 and Supplementary Note 5 for the initialization
and storage of intermediate node embeddings). Here, the embedding
process is iterated four times to achieve a balance between capturing
more topological information and over-smoothing61. The final graph
embeddings of the entire dataset are shown in Fig. 2c, in which embed-
dings of the same class are similar while those from different classes
have large contrast. Figure 2d visualizes the distribution of graph
embeddings by mapping them to a two-dimensional (2D) space via
principal component analysis (PCA), where orange and blue dots are
graphs from positive and negative classes, respectively (see Supple-
mentary Fig. 8 for visualizing graph embedding distributions in 3D
space). Although a few samples are mixed on the classification bound-
ary, the majority of samples can be well classified by a simple linear
classifier thanks to the dynamics of the echo state network. These
embedding vectors will be classified by a simple software readout layer
(with 102 floating-point weights) optimized by linear regression at low
hardware and energy cost (see Methods for the implementation and
training of the readout layer and Supplementary Table 3 for the cost
of the digital readout layer). To evaluate the classification performance
of the MUTAG dataset, we use ten-fold cross-validation, where the
accuracy of each fold is shown in Fig. 2e. The overall performance of

WI

uj = WI xj

WR

Σk є N(j)WR sk
(t = 1) g

Condutance (µS)

C
ou

nt
s

C
onductance (µS)

1,200

800

400

0
0 10 20

Without
breakdown

With
breakdown

30

20

10

0
WI

WR

a b c d e

f

t = 0 t = 1 t = 2 t = 3 t = 4

g

TaN

TaOx

Ta

TiN

Fig. 1 | Hardware–software co-design of random resistive memory-based
ESGNN for graph learning. a, A cross-sectional transmission electron
micrograph of a single resistive memory cell that works as a random resistor after
dielectric breakdown. Scale bar 20 nm. b, A cross-sectional transmission electron
micrograph of the resistive memory crossbar array fabricated using the backend-
of-line process on a 40 nm technology node tape-out. Scale bar 500 nm. c, A
schematic illustration of the partition of the random resistive memory crossbar
array, where cells shadowed in blue are the weights of the recursive matrix
(passing messages along edges) while those in red are the weights of the input
matrix (transforming node input features). d, The corresponding conductance

map of the two random resistor arrays in c. e, The conductance distribution
of the random resistive memory arrays. f, The node embedding procedure of
the proposed ESGNN. The internal state of each node at the next time step is
co-determined by the sum of neighbouring contributions (blue arrows indicate
multiplications between node internal state vectors and the recursive matrix
in d), the input feature of the node after a random projection (red arrows indicate
multiplications between input node feature vectors with the input matrix in d)
and the node internal state in the previous time step. g, The graph embedding
based on node embeddings. The graph embedding vector g is the sum pooling of
all the node internal state vectors in the last time step.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 107

Article https://doi.org/10.1038/s42256-023-00609-5

our implementation is approximately 92.11%, which is comparable to
state-of-the-art algorithms such as deep divergence graph kernels or
DDGK (91.58%)62 and Patchy-SAN (92.60%)63 running on digital comput-
ers (see Extended Data Fig. 3 for the accuracy distribution of 100 trials
of ten-fold cross-validation simulation, Extended Data Fig. 4 for the
simulated hyperparameter impact on accuracy, Supplementary
Fig. 9 for the weight distribution and/or sparsity impact on accuracy
and Supplementary Note 6, Extended Data Fig. 5 and Extended Data
Table 1 for the ablation study to reveal the contribution of the echo
state layer). The confusion matrices in Fig. 2f show that, on average,
5.9 out of 6.4 (12 out of 13) molecule compounds of positive (negative)
mutagenicity are correctly classified, which translates to a class-wise
recognition rate of 91.64% (93.35%) (see Supplementary Fig. 10 for the
confusion matrices of all the folds). To verify the boost in the energy
efficiency, we conducted a preliminary comparison of the energy con-
sumption between the conventional digital hardware and our random
resistive memory-based system. In Fig. 2g, the red bars show a break-
down of the number of multiply and accumulation (MAC) operations
(OPs) in the ESGNN, while the light-blue and dark-blue bars show the
associated estimation of the energy consumption of a state-of-the-art

GPU and a projected random resistive memory-based hybrid analogue–
digital system, respectively. Since multiplications with the input matrix
WI and recursive matrix WR account for the majority of OPs and thus
power consumption in the forward pass of the ESGNN, the overall
energy of the projected random resistive memory-based hybrid ana-
logue–digital system is approximately 34.44 μJ per forward pass of the
entire dataset compared with approximately 74.32 μJ for the
state-of-the-art GPU, resulting in an approximately 2.16× improvement
in the inference energy efficiency (see Methods and Supplementary
Fig. 11 for the impact of hyperparameters on the system energy effi-
ciency and Supplementary Note 7 for an energy consumption com-
parison with a state-of-the-art GPU). As the pseudoinverse is used to
train the simple readout layer of the ESGNN, the number of OPs for
readout layer optimization is approximately 1.05 mega-OPs (MOPs),
in contrast to approximately 160.51 MOPs per epoch of stochastic gra-
dient descent with backpropagation for a graph neural network with
the same number of weights, leading to an approximately 99.35% reduc-
tion of the backward pass complexity (see Supplementary Note 8 for
details). In addition, the ESGNN on a projected random resistive
memory-based hybrid analogue–digital system (34.51 μJ) offers a

Echo state
layer

Readout
layer

BP and
weight update

Readout
regression

108

107

106

105N
um

be
r o

f M
AC

O
Ps

10–3

10–4

10–5

10–6

Energy (J)

55.83%

99.35%
0.934 0.066

0.084 0.916

0.9

0.5

0.1

5.9 0.5

1 12

10

6

2

Predicted

Ac
tu

al

Po
si

tiv
e

N
eg

at
iv

e
N

eg
at

iv
e

Po
si

tiv
e

Positive Negative

Positive NegativeSoftware
average

0 1 2 3 4 5 6 7 8 9
0

0.4

0.8

ith fold

Ac
cu

ra
cy

–4 0 4

0.3

0.1

–0.1

Principal component 1

Pr
in

ci
pa

l
co

m
po

ne
nt

 2

Positive Negative

3

2

1

0.04

0.02

0

0.10

0.05

0

t = 0 t = 1 t = 2 t = 3

C F

O N

Positive Negative

a b WI X

c d

e f g

Fig. 2 | Classification of molecular graphs. a, An illustration of some samples
from the MUTAG molecular dataset, where nodes of different colours represent
different atoms while edges are chemical bonds. Depending on the mutagenicity,
these molecules are categorized into positive and negative classes. b, An example
MUTAG node embedding process. The input features of all nodes, defined as X, are
first projected onto the state space using the input matrix WI, and the hidden state
of each node is updated according to the protocol shown in Fig. 1f and Methods,
which leads to node embeddings that encapsulate graph information. c, The
graph embedding vectors of the two categories of the MUTAG dataset. Each
column vector is a graph embedding. The embeddings of the left (right) colour
map are from the positive (negative) class. d, The graph embeddings are mapped
to a 2D space using PCA. Pink (blue) dots represent molecules with positive
(negative) mutagenicity, which can be linearly separated. e, The accuracy of each

fold in a ten-fold cross-validation and the software baseline. The average accuracy
is 92.11%, comparable to state-of-the-art algorithms. f, The confusion matrices of
the experimental classification results. The upper matrix is a ten-fold averaged
confusion matrix, which is then normalized horizontally to produce the lower
matrix. g, A breakdown of the estimated MAC OPs (red bars) and associated
energy (light-blue bars for a state-of-the-art GPU; dark-blue bars for a projected
random resistive memory-based hybrid analogue–digital system). In a forward
(backward) pass, the fully optimized model on a state-of-the-art GPU and the
ESGNN on a projected random resistive memory-based hybrid analogue–digital
system consume approximately 74.32 µJ (approximately 160.51 MOPs) and
approximately 34.44 μJ (approximately 1.05 MOPs), respectively, revealing a >2.16
fold improvement of the inference energy efficiency (a 99.35% reduction of the
backward pass complexity). BP, backpropagation.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 108

Article https://doi.org/10.1038/s42256-023-00609-5

reduction of 53.56% in the total training energy consumption (includ-
ing forward passing the echo state layer and optimizing the readout
layer) compared with the software ESGNN on a state-of-the-art
GPU (74.32 μJ).

In addition to modelling molecules, the random resistive
memory-based ESGNN has also been used to solve a representative
social network classification problem using the COLLAB dataset64. As
shown in Fig. 3a, each graph of the COLLAB dataset depicts a research
collaboration network from one of the three branches of physics:
astrophysics, high energy physics and condensed matter physics.
Here, nodes are researchers while edges denote collaboration rela-
tions. We randomly pick 200 graphs from the COLLAB dataset for
learning (see Supplementary Table 4 for the results on the full-scale
COLLAB dataset). Nodes (or researchers) in the COLLAB dataset share a
unity input feature, rendering the input projections of different nodes
identical in Fig. 3b. However, thanks to the iterative message passing
in ESGNN, node internal states gradually integrate graph information
such as topology along iterations, yielding the unique node embed-
dings shown in the last time step of Fig. 3b (see Extended Data Fig. 2 and
Supplementary Note 5 for the initialization and storage of intermediate
node embeddings). The final graph embeddings, grouped by classes,

are shown in Fig. 3c, where graphs from the condensed matter com-
munity and the high energy community are well separated from each
other owing to clear differences in topology. This is also corroborated
by the distribution of graph embedding vectors by mapping them to
a 2D space using PCA (Fig. 3d), where blue (condensed matter phys-
ics) and purple (high energy physics) dots are linearly separable (see
Supplementary Fig. 8 for visualizing graph embedding distributions
in 3D space). On the other hand, graphs from the astrophysics commu-
nity tend to share similar topologies with the other two, which is also
revealed by the fact that pink dots (astrophysics) partially overlap with
blue and purple dots. The graph embedding vectors will be classified
by a simple software readout layer at small hardware and energy cost,
like that used for the MUTAG dataset. Figure 3e shows the classification
performance of a ten-fold cross-validation (see Supplementary Fig. 10
for the confusion matrices of all the folds). The random resistive
memory-based ESGNN is able to achieve state-of-the-art accuracy of
73.00%, compared with 73.90% for graph sample and aggregate (Graph-
SAGE)65 and 73.76% for dynamic graph convolutional neural networks
(DGCNN)66 (see Extended Data Fig. 3 for the accuracy distribution of
100 trials of ten-fold cross-validation simulation, Extended Data Fig. 4
for the simulated hyperparameter impact on accuracy, Supplementary

10–1

10–2

10–3

10–4

10–5

10–6

108

107

106

105

109

1010

Echo state
layer

Readout
layer

BP and
weight update

Readout
regression

N
um

be
r o

f M
AC

O
Ps

Energy (J)

97.18% 99.99%

0.86 0.088 0.054

0.32 0.66 0.017

0.43 0.051 0.51

9.5 0.9 0.6

1.1 2.1 0.1

2.4 0.3 3

Ac
tu

al

Predicted
AP CM HE

H
E

C
M

AP
H

E
C

M
AP

0.7

0.4

0.1

2

5

8

Software
average

0 1 2 3 4 5 6 7 8 9
0

0.4

0.8

ith fold

Ac
cu

ra
cy

Principal component 1

Pr
in

ci
pa

l c
om

po
ne

nt
 2

0 400 800

8

4

0

–4

60

40

20

80

AP CM HE

0.2

0

0.4

0.02

0

0.04

t = 0 t = 1 t = 2 t = 3WIX

AP CM HE

a b

c d

e f g

Fig. 3 | Classification of collaboration networks. a, Example collaboration
network graphs from the COLLAB dataset that correspond to different branches
of physics: astrophysics (AP), high energy physics (HE) and condensed matter
physics (CM). Each node denotes a researcher, while an edge represents a
collaboration relation. b, An example COLLAB node embedding process
according to the protocol shown in Fig. 1f and Methods, which leads to node
embeddings that encapsulate more graph information. c, Graph embedding
vectors of the three categories of the COLLAB dataset. Each column is a graph
embedding. d, Graph embeddings mapped to a 2D space using PCA. Orange,
blue and purple dots denote collaboration networks from the AP, CM and HE
communities, respectively, revealing a clear boundary between AP and CM. e, The
accuracy of each fold in a ten-fold cross-validation and the software baseline.

The average accuracy is 73.00%, comparable to state-of-the-art algorithms. f, The
confusion matrices of the experimental classification results. The upper matrix
is a ten-fold averaged confusion matrix, which is then normalized horizontally
to produce the lower matrix. g, A breakdown of the estimated OPs (red bars) and
associated energy (light-blue bars for a state-of-the-art GPU; dark-blue bars for a
projected random resistive memory-based hybrid analogue–digital system). In
a forward (backward) pass, the fully optimized model on a state-of-the-art GPU
and ESGNN on a projected random resistive memory-based hybrid analogue–
digital system consume approximately 8.31 mJ (approximately 16.98 GOPs) and
approximately 234.59 μJ (approximately 1.16 MOPs), respectively, revealing a
>35.42 fold improvement of the inference energy efficiency (an approximately
99.99% reduction of the backward pass complexity).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 109

Article https://doi.org/10.1038/s42256-023-00609-5

Fig. 9 for the weight distribution and/or sparsity impact on accuracy
and Supplementary Note 6, Extended Data Fig. 5 and Extended Data
Table 1 for the ablation study to reveal the contribution of the echo
state layer). Figure 3f shows the experimentally acquired confusion
matrix of the ten-fold cross-validation (see Supplementary Fig. 10
for the confusion matrices of all the folds). The accuracy of correctly
classifying astrophysics reaches 85.82%, but 31.83% and 43.48% of
the samples from condensed matter physics and high energy physics
tend to be misclassified as astrophysics, respectively, which is attrib-
uted to the imbalanced dataset. Figure 3g shows the breakdown of
OPs in the graph learning and compares the energy consumption of a
projected random resistive memory-based analogue–digital system
with that of a state-of-the-art GPU. Similar to experiments on MUTAG
molecular classification, the majority of the OPs are contributed by
the graph embedding procedure, leading to an overall energy con-
sumption of approximately 234.59 μJ per forward propagation of
the entire dataset, considerably lower than that of the conventional

implementation (approximately 8.31 mJ), achieving a 35.42 fold improve-
ment in the inference energy efficiency (see Methods and Supplementary
Fig. 11 for the impact of hyperparameters on system energy efficiency
and Supplementary Note 7 for the energy consumption comparison
with a state-of-the-art GPU). The number of OPs for optimizing the
readout layer of the ESGNN is approximately 1.16 MOPs, compared
with approximately 16.98 giga-OPs (GOPs) of one-epoch stochastic
gradient descent with backpropagation for a graph neural network
with the same amount of parameters, thanks to the fixed and random
weights of the ESGNN, effectively reducing the backward pass complex-
ity by approximately 99.99% (see Supplementary Note 8 for details). In
addition, the ESGNN on a projected random resistive memory-based
hybrid analogue–digital system (0.23 mJ) offers a reduction of 97.18%
in the total training energy consumption (including forward passing
the echo state layer and optimizing the readout layer) compared with
the software ESGNN on a state-of-the-art GPU (8.31 mJ) (see Supple-
mentary Note 7 for details).

1010

109

108N
um

be
r o

f M
AC

O
Ps

10–2

10–3

Energy (J)

98.11%

91.40%

Echo state
layer

Readout
layer

BP and
weight update

Readout
regression

C
4

C
5

C
6

C
1

C
2

C
3

C
7

C4 C5 C6C1 C2 C3 C7

Ac
tu

al

Predicted

0

0.4

0.8
0.80 0.03 0.04 0.05 0.05 0.01 0.02

0.980.00 0.00 0.00 0.00 0.01 0.00

0.950.00 0.02 0.01 0.00 0.01 0.01

0.840.03 0.02 0.03 0.06 0.01 0.00

0.910.03 0.02 0.00 0.03 0.00 0.00

0.810.00 0.040.00 0.09 0.04 0.02

0.870.01 0.00 0.00 0.03 0.02 0.06

Software
average

0 1 2 3 4 5 6 7 8 9
0

0.4

0.8

ith test

Ac
cu

ra
cy

tSNE dimension 1

tS
N

E
di

m
en

si
on

 2

600–60

60

0

–60

2

1

0

C4 C5 C6C1 C2 C3 C7

Echo state
network

Node

embeddings Classification

vectors

a b

c

e f g

d

Fig. 4 | Node classification of a citation network. a, An illustration of the
large-scale citation network CORA. Each node in the graph is a scholarly article,
while an edge indicates a citation between two papers. There are a total of seven
article categories, indicated by node colours, according to their discipline.
b, The node classification scheme. The input graph is first embedded using the
ESGNN according to the protocol shown in Fig. 1f and Methods, followed by a
graph convolution layer serving as the readout to produce a classification vector
for each node. c, An illustration of simulated node embeddings. Coloured boxes
on the left are the zoom-in of node embedding details. d, A node embedding
mapped to a 2D spacing using t-SNE, showing clear clustering of nodes of the
same categories. e, The accuracy of ten random tests for node classification and

the software baseline. The average accuracy is 87.12%, comparable to state-
of-the-art algorithms. f, The normalized confusion matrices of the simulated
classification results. g, A breakdown of the estimated OPs (red bars) and the
associated energy consumption (light-blue bars for a state-of-the-art GPU;
dark-blue bars for a projected random resistive memory-based hybrid analogue–
digital system). In a forward (backward) pass, the fully trainable model on a state-
of-the-art GPU and ESGNN on a projected random resistive memory-based hybrid
analogue–digital system consume approximately 24.20 mJ (approximately 63.18
GOPs) and approximately 599.47 μJ (approximately 5.43 GOPs), respectively,
revealing a >40.37 fold improvement in the inference energy efficiency (and an
approximately 91.40% reduction of the backward pass complexity).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 110

Article https://doi.org/10.1038/s42256-023-00609-5

Node classification using ESGNN
In addition to graph classification tasks, node classification tasks con-
stitute another important category of graph learning. We simulate our
ESGNN in solving a large-scale node classification problem with the
CORA citation network dataset67, which is schematically illustrated in
Fig. 4a (see Supplementary Table 5 for the simulation results on the
large-scale social network dataset REDDIT). This graph contains
2,708 nodes, each of which represents a scientific publication and
belongs to one of the seven research disciplines labelled by the node
colour. Each edge of the graph represents a citation relationship
between two publications. The input node features are
1,433-dimensional word vectors. The graph is then fed into the ESGNN
for node embeddings (Fig. 4b). Different from the graph classification
tasks that employ a trainable fully connected readout layer, a single
software graph convolution layer serves as the readout layer with train-
able weights to classify nodes, improving the accuracy without sig-
nificantly increasing hardware and time cost (Methods). Figure 4c
shows the node embeddings of the whole dataset according to Fig. 1f,
grouped by node classes, where some dimensions are highly discrim-
inative across different classes. Figure 4d shows the distribution of
node embedding in a 2D space using t-distributed stochastic neighbour
embedding (t-SNE) dimension reduction. Nodes from the same cate-
gory are clearly clustered without any supervision (see Supplementary
Fig. 8 for visualizing node embedding distributions in 3D space). To
evaluate the performance, we measure the accuracy of ESGNN with
different randomly initialized weights (Methods). The ten-time average
test accuracy reaches 87.12% in Fig. 4e, being comparable to those of
state-of-the-art algorithms such as graph convolutional networks (GCN)
(86.64%)3 and graph attention networks (GAT) (88.65%)4 running on
conventional digital systems (see Extended Data Fig. 3 for the accuracy
distribution of 100 trials of ten-fold cross-validation simulation and
Extended Data Fig. 4 for the simulated hyperparameter impact on
accuracy). Figure 4f shows the simulated confusion matrix, which is
dominated by diagonal elements, affirming the high classification
accuracy. To benchmark the efficiency of our random resistive memory
in solving this node classification problem, we count the OPs of differ-
ent steps (Fig. 4g, red bars). The total number of OPs is approximately
50.05 GOPs per forward pass of the entire dataset, the majority of which
(approximately 42.25 GOPs) comes from multiplications with the recur-
rent weight matrix WR, while the second largest contribution (approx-
imately 7.76 GOPs) is from multiplications with the input weight matrix
WI. The number of OPs for the backpropagation and weight updating
of the readout layer is approximately 5.43 GOPs per epoch, while that
for a graph neural network with the same number of parameters is
approximately 63.18 GOPs per epoch, indicating a 91.40% reduction
of the OPs (energy consumption) in the backpropagation and weight
updating (see Supplementary Note 8 for details). The corresponding
energy consumptions for inference are approximately 24.20 mJ and
599.47 μJ for a state-of-the-art GPU (light-blue bars) and a projected
random resistive memory-based hybrid analogue–digital system
(dark-blue bars), respectively, affirming the 40.37× large boost of
energy efficiency in node classification (see Supplementary Fig. 11 for
the simulated hyperparameters impact on energy efficiency). In addi-
tion, the ESGNN on a projected random resistive memory-based hybrid
analogue–digital system (3.09 mJ) offers a 88.44% reduction of the
training energy (including forward passing the echo state layer and
optimizing the readout layer) compared with that on a state-of-the-art
GPU (26.69 mJ) (see Supplementary Note 7 for details).

Discussion
In this paper, we demonstrate a hardware–software co-design scheme
for graph learning. Hardware-wise, the stochasticity of resistive switch-
ing is leveraged to produce low-cost and scalable random resistive
memory arrays that physically implement the weights of an ESGNN,
featuring in-memory computing with large parallelism and high

efficiency that overcomes the von Neumann bottleneck and slowdown
of Moore’s law. Software-wise, ESGNN not only takes advantage of the
physical random projections enabled by random resistive memory
arrays in performing graph embedding but also substantially reduces
the training complexity of traditional graph learning. The resultant
system demonstrates great potential as a brand-new edge learning
platform for graphs.

Methods
Fabrication of resistive memory chips
The resistive memory chip consists of a 512 × 512 crossbar array. Each
of the resistive memory cells is integrated on the 40 nm standard logic
platform. The resistive memory cells, including bottom electrodes,
top electrodes and a transition-metal oxide dielectric layer, are built
between the metal 4 and metal 5 layers of the backend-of-line process.
The via of the bottom electrodes, with a diameter of 60 nm, is patterned
by photolithography and etching. The via is filled with TaN by physical
vapour deposition followed by chemical mechanical polishing. A buffer
layer of 10 nm TaN is deposited by physical vapour deposition on the
bottom electrode via. Then, 5 nm Ta is deposited and then oxidized
in an oxygen ambident to form an 8 nm TaOx dielectric layer. The top
electrodes comprise 3 nm Ta and 40 nm TiN, which are sequentially
deposited by physical vapour deposition. After fabrication, the logic
backend-of-line metal is deposited using the standard logic process.
Cells in the same column share top electrode connections, while those
in the same row share bottom electrode connections. Finally, the chip
was post-annealed in vacuum at 400 °C for 30 min.

The hybrid analogue–digital computing platform
As shown in Supplementary Fig. 2, the platform consists of an
eight-channel digital-to-analogue converter (DAC80508, 16-bit resolu-
tion; Texas Instruments) and two eight-bit shift registers (SN74HC595;
Texas Instruments) to source 64-way parallel analogue voltages with
eight independent voltage amplitudes in the range from 0 to 5 V. To
perform vector–matrix multiplication, a DC voltage is applied to bit
lines of the resistive memory chip through a four-channel analogue
multiplexer (MUX, CD4051B; Texas Instruments). The results are rep-
resented by currents from source lines and converted to voltages by
trans-impedance amplifiers (OPA4322-Q1; Texas Instruments). The
voltages are then read by an analogue-to-digital converter (ADS8324,
14-bit resolution; Texas Instruments), which passes the readings to the
Xilinx system-on-chip.

Multibit vector–matrix multiplication
To perform vector–matrix multiplication, the analogue input vector
is first digitized into an m-bit binary vector where each element is an
m-bit binary number (m = 4 in this case). The analogue multiplication
is therefore approximated by m times multiplication with binary input
vectors corresponding to different significance. In each multiplication,
a row is biased to a small fixed voltage (for example, 0.3 V) if it receives
a bit ‘1’ or grounded if it receives a bit ‘0’. The output currents of all the
columns are acquired sequentially using the column MUX. The result-
ant currents are multiplied with the significance and accumulated in
the digital domain. Note that a larger m leads to better precision but
an increased cost of energy and time.

Graph classification experiments
As shown in Fig. 1c, the crossbar array is partitioned logically into two
conductance matrices GI ∈ ℝh×(u+1) and GR ∈ ℝh×h (where u and h repre-
sent the dimension of the input feature vector and the number of
hidden neurons, h = 50 for both the MUTAG and COLLAB datasets)
which are then mapped to the input weight matrix WI = αIGI ∈ ℝh×(u+1)
and the recursive matrix WR = αRGR ∈ ℝh×h, respectively. Here, the scal-
ing factors αI and αR are hyperparameters, which are set to 0.0016 μS−1
and 0.006 μS−1, respectively in the graph classification experiments to

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 111

Article https://doi.org/10.1038/s42256-023-00609-5

ensure the echo state properties of the network (spectral radius less
than unity).

Given a graph 𝒢𝒢 = (𝒢𝒢𝒢 𝒢) with n nodes xi ∈ 𝒢𝒢 and edges (xi𝒢xj) ∈ ε,
we first compute the input projection of each node feature vector. For
the jth node, its node input feature vector is xj ∈ ℝu+1 (with a unit bias)
and the input projection is uj = WIxj ∈ ℝh, where xj is quantized to a
four-bit binary vector mapped to voltages applied to the random resis-
tive memory array. For the MUTAG dataset, the node feature vectors
are the concatenations of one-hot vectors and the bias (xj ∈ ℝ7+1),
denoting their atom types. For the COLLAB dataset, the node feature
vectors are constant, that is, the concatenation of a unit scalar and the
bias (xj ∈ ℝ1+1). The node internal state vector, or its embedding, is then
iteratively updated (see Extended Data Fig. 2 and Supplementary
Note 5 for the initialization and storage of the intermediate node
embeddings). The internal state vector of the jth node at time t + 1,
denoted by s(t+1)j ∈ ℝh, is computed by aggregating its state s(t)j and input
projection uj and the states of all its neighbours after random projec-
tions by the recursive matrix ∑k∈N(j) WRs

(t)
k (where N (j) denotes the set

of neighbouring nodes of node j) according to equation (1).

s(t+1)j = as(t)j + (1 − a)σ [uj + ∑
k∈N(j)

WRs
(t)
k] 𝒢 (1)

where σ is the activation function (tanh, in this work), a is the leaky
factor (0.2, in this work) and s(t)k is quantized to a four-bit binary vector
mapped to voltages applied to the random resistive memory array. All
other arithmetic OPs are performed in the digital domain.

The graph embedding is computed by sum pooling of all node
embeddings of a given graph to extract a single feature vector as the
representation of the graph, or mathematically g = ∑j s

(T)
j ∈ ℝh, where

T is the total number of iterations. Unlike classical echo state networks,
the node internal state in ESGNN iterates finite times (Extended
Data Fig. 4), as a trade-off between accuracy, energy cost and over-
smoothing.

The readout layer is a fully connected layer implemented in the
digital domain. For the MUTAG (COLLAB) dataset consisting of two
(three) categories, the readout layer maps graph embedding vectors
g onto class vectors o ∈ ℝ2 (o ∈ ℝ3) using 102 (153) floating-point
weights with bias. It shall be noted the two-category classification
can also be performed by mapping g onto class scalars o ∈ ℝ to further
reduce the number of weights of the readout layer. During training,
we first evaluate graph embeddings of the entire training set. The
embeddings and the labels are then concatenated for evaluating the
weights of the fully connected readout layer using linear
regression.

All hyperparameters (for example, the weight scaling factors αI
and αR, the iteration time T and the leaky rate a) are optimized by grid
searching the hyperparameter space to maximize the hardware per-
formance in the ten-fold cross-validation tests.

Node classification simulation
For the CORA simulation, we use PyTorch 1.9.0 as the deep learning
framework and Torch-geometric 1.7.2 as the graph deep learning
tool. The CORA dataset visualized in Fig. 4a uses the force-directed
Kamada–Kawai algorithm, where the data are grouped by classes. The
coordinates of nodes have been slightly refined for better visualization.
The node embedding follows the same protocol as that of graph clas-
sification tasks using 1,000 neurons. The readout layer is a single graph
convolutional layer. During the training, the readout layer is optimized
using stochastic gradient descent by minimizing a cross-entropy loss
function. The readout layer has been trained for 200 epochs with a
learning rate of 0.01, a weight decay factor of 0.005, a momentum of 0.9
and a dropout rate of 0.2. The performance of the model is assessed by
training the readout layer upon different randomly initialized weights
(ten sets of weights were used here).

Data availability
The MUTAG dataset60, the COLLAB dataset64 and the CORA dataset67
are publicly available. All other measured data are freely available upon
request. Source data are provided with this paper and also available at
https://github.com/wangsc1912/ESGNN ref. 68.

Code availability
The code that supports the plots within this paper and other findings of
this study is available at https://github.com/wangsc1912/ESGNN ref. 68.
The code that supports the communication between the custom-built
printed circuit board and the integrated resistive memory chip of the
hybrid analogue–digital system (see Supplementary Fig. 2 for the
system block diagram) is available from the corresponding author on
reasonable request.

References
1.	 Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G.

The graph neural network model. IEEE Trans. Neural Netw. 20,
61–80 (2008).

2.	 Micheli, A. Neural network for graphs: a contextual constructive
approach. IEEE Trans. Neural Netw. 20, 498–511 (2009).

3.	 Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks.In Proc. 5th International Conference on
Learning Representations (OpenReview.net, 2017).

4.	 Veličković, P. et al. Graph attention networks. In Proc. 6th
International Conference on Learning Representations
(OpenReview.net, 2018).

5.	 Bacciu, D., Errica, F., Micheli, A. & Podda, M. A gentle introduction
to deep learning for graphs. Neural Netw. 129, 203–221 (2020).

6.	 Sun, M. et al. Graph convolutional networks for computational
drug development and discovery. Brief. Bioinform. 21,
919–935 (2020).

7.	 Fan, W. et al. Graph neural networks for social recommendation.
In The World Wide Web Conference (WWW) 417–426 (ACM, 2019).

8.	 Mirhoseini, A. et al. A graph placement methodology for fast chip
design. Nature 594, 207–212 (2021).

9.	 Lerer, A. et al. Pytorch-biggraph: a large-scale graph embedding
system. In Proc. Machine Learning and Systems Vol. 1, 120–131
(MLSys, 2019).

10.	 Ielmini, D. & Wong, H. S. P. In-memory computing with resistive
switching devices. Nat. Electron. 1, 333–343 (2018).

11.	 Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3,
371–382 (2020).

12.	 Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics
based on memristive systems. Nat. Electron. 1, 22–29 (2018).

13.	 Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic
materials. Nat. Nanotechnol. 15, 517–528 (2020).

14.	 Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory devices and applications for in-memory computing.
Nat. Nanotechnol. 15, 529–544 (2020).

15.	 Xi, Y. et al. In-memory learning with analog resistive switching
memory: a review and perspective. Proc. IEEE 109, 14–42 (2021).

16.	 Yu, S. Neuro-inspired computing with emerging nonvolatile
memorys. Proc. IEEE 106, 260–285 (2018).

17.	 Burr, G. W. et al. Neuromorphic computing using non-volatile
memory. Adv. Phys. X 2, 89–124 (2016).

18.	 Jeong, D. S. & Hwang, C. S. Nonvolatile memory materials for
neuromorphic intelligent machines. Adv. Mater. 30, 1704729
(2018).

19.	 Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for
neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

20.	 Ying, R. et al. Graph convolutional neural networks for web-scale
recommender systems. In Proc. 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining 974–983
(ACM, 2018).

http://www.nature.com/natmachintell
https://github.com/wangsc1912/ESGNN
https://github.com/wangsc1912/ESGNN

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 112

Article https://doi.org/10.1038/s42256-023-00609-5

21.	 Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification
by memristive crossbar circuits using ex situ and in situ training.
Nat. Commun. 4, 2072 (2013).

22.	 Prezioso, M. et al. Training and operation of an integrated
neuromorphic network based on metal-oxide memristors.
Nature 521, 61–64 (2015).

23.	 Yu, S. et al. Binary neural network with 16 Mb RRAM macro chip
for classification and online training. In 2016 IEEE International
Electron Devices Meeting 16.2.1–16.2.4 (IEEE, 2017).

24.	 Yao, P. et al. Face classification using electronic synapses.
Nat. Commun. 8, 15199 (2017).

25.	 Sheridan, P. M. et al. Sparse coding with memristor networks.
Nat. Nanotechnol. 12, 784–789 (2017).

26.	 Du, C. et al. Reservoir computing using dynamic memristors for
temporal information processing. Nat. Commun. 8, 2204 (2017).

27.	 Ambrogio, S. et al. Equivalent-accuracy accelerated
neural-network training using analogue memory. Nature 558,
60–67 (2018).

28.	 Bayat, F. M. et al. Implementation of multilayer perceptron
network with highly uniform passive memristive crossbar circuits.
Nat. Commun. 9, 2331 (2018).

29.	 Boybat, I. et al. Neuromorphic computing with multi-memristive
synapses. Nat. Commun. 9, 2514 (2018).

30.	 Hu, M. et al. Memristor-based analog computation and neural
network classification with a dot product engine. Adv. Mater. 30,
1705914 (2018).

31.	 Moon, J. et al. Temporal data classification and forecasting using
a memristor-based reservoir computing system. Nat. Electron. 2,
480–487 (2019).

32.	 Cai, F. et al. A fully integrated reprogrammable memristor–
CMOS system for efficient multiply–accumulate operations. Nat.
Electron. 2, 290–299 (2019).

33.	 Duan, Q. et al. Spiking neurons with spatiotemporal dynamics and
gain modulation for monolithically integrated memristive neural
networks. Nat. Commun. 11, 3399 (2020).

34.	 Joshi, V. et al. Accurate deep neural network inference using
computational phase-change memory. Nat. Commun. 11,
2473 (2020).

35.	 Yao, P. et al. Fully hardware-implemented memristor
convolutional neural network. Nature 577, 641–646 (2020).

36.	 Woźniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep
learning incorporating biologically inspired neural dynamics and
in-memory computing. Nat. Mach. Intell. 2, 325–336 (2020).

37.	 Xue, C.-X. et al. A CMOS-integrated compute-in-memory macro
based on resistive random-access memory for AI edge devices.
Nat. Electron. https://doi.org/10.1038/s41928-020-00505-5 (2020).

38.	 Karunaratne, G. et al. In-memory hyperdimensional computing.
Nat. Electron. 3, 327–337 (2020).

39.	 Liu, Z. et al. Neural signal analysis with memristor arrays towards
high-efficiency brain–machine interfaces. Nat. Commun. 11,
4234 (2020).

40.	 Sun, Z., Pedretti, G., Bricalli, A. & Ielmini, D. One-step regression
and classification with cross-point resistive memory arrays.
Sci. Adv. 6, eaay2378 (2020).

41.	 Yang, K. et al. Transiently chaotic simulated annealing based
on intrinsic nonlinearity of memristors for efficient solution of
optimization problems. Sci. Adv. 6, eaba9901 (2020).

42.	 Karunaratne, G. et al. Robust high-dimensional memory-
augmented neural networks. Nat. Commun. 12, 2468 (2021).

43.	 Zhong, Y. et al. Dynamic memristor-based reservoir computing
for high-efficiency temporal signal processing. Nat. Commun. 12,
408 (2021).

44.	 Milano, G. et al. In materia reservoir computing with a fully
memristive architecture based on self-organizing nanowire
networks. Nat. Mater. 21, 195–202 (2022).

45.	 Dalgaty, T. et al. In situ learning using intrinsic memristor
variability via Markov chain Monte Carlo sampling. Nat. Electron.
4, 151–161 (2021).

46.	 Song, L., Zhuo, Y., Qian, X., Li, H. & Chen, Y. GraphR: Accelerating
graph processing using ReRAM. In Proc. IEEE International
Symposium on High Performance Computer Architecture 531–543
(IEEE, 2018).

47.	 Dai, G., Huang, T., Wang, Y., Yang, H. & Wawrzynek, J. GraphSAR: A
sparsity-aware processing-in-memory architecture for large-
scale graph processing on ReRAMs. In Proc. 24th Asia and
South Pacific Design Automation Conference (ASPDAC) 120–126
(ACM, 2019).

48.	 Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized
conductance atomic switch. Nature 433, 47–50 (2005).

49.	 Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based
resistive switching memories – nanoionic mechanisms,
prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

50.	 Ohno, T. et al. Short-term plasticity and long-term potentiation
mimicked in single inorganic synapses. Nat. Mater. 10,
591–595 (2011).

51.	 Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100,
1951–1970 (2012).

52.	 Valov, I. et al. Atomically controlled electrochemical
nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11,
530–535 (2012).

53.	 Valov, I. et al. Nanobatteries in redox-based resistive switches
require extension of memristor theory. Nat. Commun. 4,
1771 (2013).

54.	 Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science
304, 78–80 (2004).

55.	 Gallicchio, C. & Micheli, A. Fast and deep graph neural networks.
In Proc. AAAI Conference on Artificial Intelligence 34, 3898–3905
(AAAI, 2020).

56.	 Jiang, H. et al. A novel true random number generator based on a
stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

57.	 Nili, H. et al. Hardware-intrinsic security primitives enabled
by analogue state and nonlinear conductance variations in
integrated memristors. Nat. Electron. 1, 197–202 (2018).

58.	 Lukoševičius, M. & Jaeger, H. Reservoir computing approaches
to recurrent neural network training. Comput. Sci. Rev. 3,
127–149 (2009).

59.	 Gallicchio, C. & Micheli, A. Graph echo state networks. In The
2010 International Joint Conference on Neural Networks 1–8
(IEEE, 2010).

60.	 Debnath, A. K., Lopez de Compadre, R. L., Debnath, G.,
Shusterman, A. J. & Hansch, C. Structure–activity relationship
of mutagenic aromatic and heteroaromatic nitro compounds.
Correlation with molecular orbital energies and hydrophobicity.
J. Med. Chem. 34, 786–797 (1991).

61.	 Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proc. of
the AAAI Conference on Artificial Intelligence 32 (AAAI, 2018).

62.	 Al-Rfou, R., Perozzi, B. & Zelle, D. Ddgk: Learning graph
representations for deep divergence graph kernels. In World Wide
Web Conference 37–48 (ACM, 2019).

63.	 Niepert, M., Ahmed, M. & Kutzkov, K. Learning convolutional
neural networks for graphs.In International Conference on
Machine Learning 2014–2023 (PMLR, 2016).

64.	 Yanardag, P. & Vishwanathan, S. Deep graph kernels. In Proc. 21th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining 1365–1374 (ACM, 2015).

65.	 Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation
learning on large graphs. In Advances in Neural Information
Processing Systems (Curran Associates, Inc., 2017).

http://www.nature.com/natmachintell
https://doi.org/10.1038/s41928-020-00505-5

Nature Machine Intelligence | Volume 5 | February 2023 | 104–113 113

Article https://doi.org/10.1038/s42256-023-00609-5

66.	 Zhang, M., Cui, Z., Neumann, M. & Chen, Y. An end-to-end deep
learning architecture for graph classification. In AAAI Conference
on Artificial Intelligence (AAAI, 2018).

67.	 Sen, P. et al. Collective classification in network data. AI Mag. 29,
93–93 (2008).

68.	 Wang, S. et al. Code for ‘Echo state graph neural networks
with analogue random resistor arrays’. HKU Library https://doi.
org/10.25442/hku.21762944 (2022).

Acknowledgements
This research is supported by the National Key R&D Program of
China (grant no. 2018YFA0701500), the National Natural Science
Foundation of China (grant nos. 62122004, 61874138, 61888102
and 61821091), the Strategic Priority Research Program of the
Chinese Academy of Sciences (grant no. XDB44000000), Beijing
Natural Science Foundation (grant no. Z210006), the Hong Kong
Research Grant Council (grant Nos. 27206321 and 17205922)
and the Innovation and Technology Commission of Hong Kong
(grant no. MHP/066/20). This research is also partially supported
by ACCESS – AI Chip Center for Emerging Smart Systems, sponsored
by Innovation and Technology Fund, Hong Kong SAR. We thank
Y. Jiang, Y. Gao, Y. Ding, J. Chen and J. Yue for their kind help
and advice.

Author contributions
Z.W. and S.C.W. conceived the work. Z.W., D.S., S.C.W., Y.L., D.W. and
W.Z. contributed to the design and development of the models,
software and the hardware experiments. S.C.W., Y.L., C.G., D.W. and
W.Z. interpreted, analysed and presented the experimental results.
Z.W., D.S., S.C.W. and Y.L. wrote the manuscript. All authors discussed
the results and implications and commented on the manuscript
at all stages.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-023-00609-5.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s42256-023-00609-5.

Correspondence and requests for materials should be addressed
to Zhongrui Wang or Dashan Shang.

Peer review information Nature Machine Intelligence thanks Yiran
Chen and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natmachintell
https://doi.org/10.25442/hku.21762944
https://doi.org/10.25442/hku.21762944
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s42256-023-00609-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

0

20

40

0 20 40

Breakdown

B
it

L
in

es

Word Lines

No Breakdown

Resistor Array (50×50),
Program Voltage 3.45 V

54%

46%

Percentage of
Dielectric

Breakdown0

20

40

0 20 40

1

B
it

L
in

es

Word Lines

0

Resistors
Programing

WR (50×50), Sparsity 50%
0

20

40

0 20 40

1

B
it

L
in

es

Word Lines

0

WR (50×50), Sparsity 20%

Sparsity
Optimization

Program Voltage
Selection

0

20

40

60

80

Fr
eq

ue
nc

y

Breakdown Voltage (V)
3.2 3.3 3.4 3.5 3.73.6

Statistics of
Breakdown VoltagesB

it
L

in
es

Word Lines

0

5

10

15

0 5 10 15

3.7

3.6

3.5

3.4

3.3

3.2

Unit: Va b

c d e

Extended Data Fig. 1 | Stochasticity of dielectric breakdown voltages.
a, Distribution of the dielectric breakdown voltages in a 20×20 resistive memory
array. The resistance of all pristine cells is ~10 MΩ. Linear voltage sweeps starting
from 3 V with a step 0.05 V are applied to all cells. The breakdown voltage is
defined as the smallest voltage which makes the cell resistance smaller than
20 kΩ. b, The corresponding histogram of the dielectric breakdown voltages
in a, which follows a quasi-Normal distribution. The breakdown voltage

provides a knob to tune the sparsity of the random resistive memory arrays.
c-d, The optimal sparsity was searched in software, which was translated to
the programming voltage according to the measured breakdown voltage
distribution before being physically applied to the resistive memory array. e, The
resultant sparsity (the proportion of devices without breakdown) of the random
conductance matrix is close to the optimal sparsity identified in software.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

A
cc

ur
ac

y

Scaling Coefficient
1 0.1 0.01 0.001 0.0001 0.00001

0.7

0.9

0.3

0.5

0.1

A
cc

ur
ac

y

Scaling Coefficient
1 0.1 0.01 0.001 0.0001 0.00001

0.7

0.6

0.5

0.4

A
cc

ur
ac

y

Scaling Coefficient
1 0.1 0.01 0.001 0.0001 0.00001

0.9

0.8

0.7

A
cc

ur
ac

y

Scaling Coefficient
1 0.1 0.01 0.001 0.0001 0.00001

0.7

0.9

0.3

0.5

0.1

A
cc

ur
ac

y

Scaling Coefficient
1 0.1 0.01 0.001 0.0001 0.00001

0.7

0.6

0.5

0.4

A
cc

ur
ac

y

Scaling Coefficient
1 0.1 0.01 0.001 0.0001 0.00001

0.9

0.8

0.7

0.6

0.5

a

d

b

e

c

f

Extended Data Fig. 2 | Performance of different noisy initialization of node
embeddings. a-c, Initial node embeddings sampled from scaled Gaussian
distributions for the MUTAG, COLLAB and CORA datasets, respectively.
d-f, Initial node embeddings sampled from scaled uniform distributions for the
MUTAG, COLLAB, and CORA datasets, respectively. The performance decreases

with the increment of the scale of both noises. Each box consists of 10 trial points.
Each trial point is acquired using a 10-fold cross validation. The box bounds the
interquartile range with the median marked by the red line and mean by the green
triangle. Whiskers extend to 1.5 times of the interquartile range. Flier points
beyond whiskers are explicitly plotted.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

Mean Accuracy: 86.72%
Std: 0.0054

C
ou

nt
s

Accuracy (%)

15

10

5

0
85.5 86.0 86.5 87.0 87.5 88.0

Mean Accuracy: 73.44%
Std: 0.0103

C
ou

nt
s

Accuracy (%)
71.0 72.0 73.0 74.0 75.0 76.0

Mean Accuracy: 92.29%
Std: 0.0087

C
ou

nt
s

Accuracy (%)

25

20

15

10

5

90.0 91.0 92.0 93.0 94.0
0

20

15

10

5

0

a b c

Extended Data Fig. 3 | Distribution of classification accuracy with randomly initialized resistive memory. The accuracy of 100 trials 10-fold cross-validation
simulation on the a, MUTAG dataset, b, the COLLAB dataset, and c, the CORA dataset.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

A
cc

ur
ac

y

Number of Iterations

0.90

0.80

0.70

0.60

0.50

1 2 3 4 5 6200 600 800 1000

0.90

0.85

1200400

A
cc

ur
ac

y

Number of Neurons

0.75

0.70

0.65

0.80

A
cc

ur
ac

y

Number of Iterations

0.80

0.70

0.60

0.50

0.40 1 10 202 3 4 5 152 5 10 20 30 40 50 100

0.74

0.66

0.70

0.62

A
cc

ur
ac

y

Number of Neurons

Number of Iterations

0.70

0.75

0.80

0.85

0.90

0.95

1 2 3 4 5 1510 20

A
cc

ur
ac

y

A
cc

ur
ac

y

Number of Neurons

4 8 12 20 50

1.00

0.90

0.80

0.70

c

a b

d

e f

Extended Data Fig. 4 | Simulated hyperparameter impact on performance
of both graph and node classification tasks. a, c, e, Simulated impact of
number of neurons of the ESGNN on classifying the a MUTAG, c COLLAB, and e
CORA datasets, respectively. The average accuracy increases with the number
of neurons. b, d, f, Simulated impact of embedding iterations on classifying the
b MUTAG, d COLLAB, and f CORA datasets. The accuracy first increases with
the number of iterations and peaks with 4 iterations in classifying MUTAG and

COLLAB datasets, or 2 iterations in classifying CORA dataset, a result
of over-smoothing. Each box consists of 10 trial points. Each trial point is
acquired using a 10-fold cross validation. The box bounds the interquartile range
with the median marked by the red line and mean by the green triangle. Whiskers
extend to 1.5 times of the interquartile range. Flier points beyond whiskers are
explicitly plotted.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

Sum/Mean/Max

Pooling

Initial Node
Features

Graph
Embedding

Readout

Classification
Result

Graph

Pooling

Graph
Embedding

Readout

Classification
Result

Neighbor

Aggregation

Graph

Neighborhood Aggregation

a

b

Extended Data Fig. 5 | The graph embedding schemes for ablation study. a, The graph embeddings are produced by sum, mean, or max pooling the node input
features. b, The graph embeddings are produced by sum, mean, or max pooling the neighbour-aware node embeddings (aggregating node input features of the
neighbouring nodes).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00609-5

Extended Data Table. 1 | Ablation study on echo state layers

Ablation study on sum/mean/max pooling of the node input features (first 3 rows) and sum/mean/max pooling of the neighbour-aware node embeddings (next 3 rows) as well as our ESGNN
(last row).

MUTAG COLLAB

Global Sum pooling 86.32% 57.50%

Global Mean pooling 73.16% 55.00%

Global Max pooling 73.16% 55.00%

Sum + edge 86.32% 59.50%

Mean + edge 88.42% 65.00%

Max + edge 88.42% 65.00%

ESGNN 92.11% 73.00%

http://www.nature.com/natmachintell

	Echo state graph neural networks with analogue random resistive memory arrays

	Hardware–software co-design: ESGNN on random resistive memory arrays

	Graph classification with ESGNN

	Node classification using ESGNN

	Discussion

	Methods

	Fabrication of resistive memory chips

	The hybrid analogue–digital computing platform

	Multibit vector–matrix multiplication

	Graph classification experiments

	Node classification simulation

	Acknowledgements

	Fig. 1 Hardware–software co-design of random resistive memory-based ESGNN for graph learning.
	Fig. 2 Classification of molecular graphs.
	Fig. 3 Classification of collaboration networks.
	Fig. 4 Node classification of a citation network.
	Extended Data Fig. 1 Stochasticity of dielectric breakdown voltages.
	Extended Data Fig. 2 Performance of different noisy initialization of node embeddings.
	Extended Data Fig. 3 Distribution of classification accuracy with randomly initialized resistive memory.
	Extended Data Fig. 4 Simulated hyperparameter impact on performance of both graph and node classification tasks.
	Extended Data Fig. 5 The graph embedding schemes for ablation study.
	Extended Data Table. 1 Ablation study on echo state layers.

