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Echo state graph neural networks with 
analogue random resistive memory arrays

Shaocong Wang1,2,3,9, Yi Li2,4,9, Dingchen Wang1,3, Woyu Zhang2,4, Xi Chen1,3, 
Danian Dong2,4, Songqi Wang1,2,3, Xumeng Zhang    5, Peng Lin    6, 
Claudio Gallicchio7, Xiaoxin Xu2,4, Qi Liu2,5, Kwang-Ting Cheng3,8, 
Zhongrui Wang    1,3  , Dashan Shang    2,4   & Ming Liu2,5

Recent years have witnessed a surge of interest in learning representations 
of graph-structured data, with applications from social networks to drug 
discovery. However, graph neural networks, the machine learning models 
for handling graph-structured data, face significant challenges when 
running on conventional digital hardware, including the slowdown of 
Moore’s law due to transistor scaling limits and the von Neumann bottleneck 
incurred by physically separated memory and processing units, as well as 
a high training cost. Here we present a hardware–software co-design to 
address these challenges, by designing an echo state graph neural network 
based on random resistive memory arrays, which are built from low-cost, 
nanoscale and stackable resistors for efficient in-memory computing. This 
approach leverages the intrinsic stochasticity of dielectric breakdown 
in resistive switching to implement random projections in hardware for 
an echo state network that effectively minimizes the training complexity 
thanks to its fixed and random weights. The system demonstrates 
state-of-the-art performance on both graph classification using the MUTAG 
and COLLAB datasets and node classification using the CORA dataset, 
achieving 2.16×, 35.42× and 40.37× improvements in energy efficiency 
for a projected random resistive memory-based hybrid analogue–digital 
system over a state-of-the-art graphics processing unit and 99.35%, 99.99% 
and 91.40% reductions of backward pass complexity compared with 
conventional graph learning. The results point to a promising direction for 
next-generation artificial intelligence systems for graph learning.

The great success of graph neural networks1,2, graph convolutional 
networks3 and graph attention networks4 well illustrates the power of 
machine learning in handling graph-structured data that simultane-
ously characterize both objects and their relationships. As a result, 

graph learning5 is quickly standing out in many real-world applications 
such as the prediction of chemical properties of molecules for drug 
discovery6, recommender systems of social networks7 and combinato-
rial optimization for design automation8. In the era of Big Data and the 
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Hardware–software co-design: ESGNN on random 
resistive memory arrays
Figure 1 illustrates the hardware–software co-design scheme, where 
random resistive memory arrays are used to physically implement the 
ESGNN. Hardware-wise, the random distribution of dielectric break-
down voltages, due to inevitable process variation and motion of ions, 
provides a natural source of randomness (entropy) to produce 
large-scale random resistive memory arrays that have been validated 
for implementations of true random number generators56 and physi-
cally unclonable functions57 (see Supplementary Note 1 for a com-
parison between random resistive memory arrays and pre-computed 
resistor arrays). Here, we fabricated CMOS-compatible nanoscale TaN/
TaOx/Ta/TiN resistive memory cells (Fig. 1a,b; see Supplementary  
Fig. 1 for device characteristics) in crossbar arrays (Fig. 1c) using the 
backend-of-line process on a 40 nm technology node tape-out  
(Methods). The chip is integrated on a printed circuit board with ana-
logue–digital conversion circuitry and a Xilinx ZYNQ system-on-chip, 
constituting a hybrid analogue–digital computing platform (see Methods 
and Supplementary Fig. 2 for the system design and a photo, and Sup-
plementary Note 2 for the system energy consumption estimation). As 
shown in Fig. 1c, the crossbar array is then partitioned into two sub-arrays 
to represent two weight matrices: WI ∈ ℝh×(u+1)  the input matrix and 
WR ∈ ℝh×h the recursive matrix, of the ESGNN, where u and h represent 
the input dimension and the hidden dimension of each node, respec-
tively (see Methods on mapping resistive memory conductance to 
weights). Biasing all the cells of an as-deposited resistive memory to 
the median of their breakdown voltages, some cells will experience 
dielectric breakdown if their breakdown voltages are lower than the 
applied voltage, forming random resistor arrays as illustrated by  
the conductance maps of both WI and WR in Fig. 1d (see Extended Data 
Fig. 1 for the stochasticity of dielectric breakdown voltages). Compared 
with pseudo random number generation using digital systems, the 
source of randomness here is the stochastic redox reactions and ion 
migrations that arise from the compositional inhomogeneity of resis-
tive memory cells, offering low-cost and highly scalable random resis-
tor arrays for in-memory computing (see Supplementary Note 3 for 
National Institute of Standards and Technology, NIST, true randomness 
test results). The corresponding histogram in Fig. 1e shows a conduct-
ance gap between breakdown cells and those remain insulating. The 
conductance distribution of the former follows a stable, quasi-normal 
distribution, which can be tailored by adjusting both fabrication con-
ditions and electrical operation parameters, offering tuneable hard-
ware implementations of ESGNN (see Supplementary Fig. 3 for the 
stability of the random resistor arrays and Supplementary Fig. 4 for 
their tunability).

Software-wise, the echo state network (ESN) is a type of reservoir 
computer26,31,43,58 comprising a large number of neurons with random 
and recurrent interconnections, where the states of all the neurons are 
accessible by a simple software readout layer55,59 (see Supplementary 
Figs. 5 and 6 for different types of reservoir computers and their imple-
mentations). The consecutive nonlinear random projections in the 
high-dimensional state space produce trajectories at the edge of chaos, 
benefitting graph embedding extraction as reported in ref. 55. The 
ESGNN builds on the FDGNN model55 but differs from FDGNN in terms 
of a finite iteration node embedding scheme and task-dependent clas-
sification heads, which leads to better immunity to over-smoothing 
and improved energy efficiency on multiple tasks (see Supplementary 
Note 4 for the detailed differences and Supplementary Table 1 for a 
summary of the differences). The network parameters of ESGNN are 
physically embodied by the two random resistive memory arrays, 
where the input matrix WI  modulates the influence of a node input 
feature vector on the node internal state, and the recursive matrix WR 
determines the influence of neighbouring nodes on the same node 
internal state (see Methods for the choice of resistance scaling factors 
to ensure the echo state property). This graph embedding process is 

Internet of Things (IoT), the size and scale of graph-structured data are 
exploding. For example, the social network Facebook has more than 
two billion users and one trillion edges representing social connec-
tions9. This imposes a critical challenge to the current graph learning 
paradigm that implements graph neural networks on conventional 
complementary metal–oxide–semiconductor (CMOS) digital circuits. 
Such digital hardware suffers from frequent and massive data shuttling 
between off-chip memory and processing units during graph learning, 
the so-called von Neumann bottleneck10–19. Furthermore, the technol-
ogy node of transistors has reached 3 nm, the length of a few unit cells 
of silicon. This leads to an inevitable slowdown of Moore’s Law that has 
fuelled the past development of CMOS chips in the last few decades. As 
a result, further scaling of transistor is becoming less cost-effective. Last 
but not least, the training of graph neural networks is expensive, due 
to tedious error backpropagation for node and graph embedding. For 
example, the training of PinSage took 78 hours on 32 central processing 
unit (CPU) cores and 16 Tesla K80 graphics processing units (GPUs)20. 
The growing challenges in both hardware, that is, the von Neumann 
bottleneck and transistor scaling, as well as software, that is, tedious 
training, calls for a brand-new paradigm for graph learning.

Resistive memory may provide a hardware solution to these 
issues21–45. When these resistive elements are grouped into a crossbar 
array, they can naturally perform vector–matrix multiplication, one 
of the most expensive and frequent operations (OPs) in graph learn-
ing46,47. The matrix is stored as the conductance of the resistive memory 
array, where Ohm’s law and Kirchhoff’s current law physically govern 
multiplication and summation, respectively. As a result, the data are 
stored and processed in the same location. This in-memory computing 
concept can largely obviate the energy and time overheads incurred by 
expensive off-chip memory access in graph learning on conventional 
digital hardware. In addition, resistive memory cells have a simple, 
capacitor-like structure, equipping them with excellent scalability and 
three-dimensional (3D) stackability. However, resistive memory suffers 
from a series of issues when changing their resistance that can defeat 
the efficiency advantage of in-memory graph learning, demanding 
frequent updates of resistive weights. This occurs because resistive 
memory relies on electrochemical reactions or phase changes to adjust 
the conductance48–53. This mechanism results in a switching energy and 
duration that are orders of magnitude higher than those of transistors. 
In addition, the inevitable stochasticity associated with ionic or atomic 
motions makes precise resistance changes difficult. As a result, graph 
learning has not yet experimentally leveraged the advantage of resis-
tive in-memory computing.

Here, we propose a novel hardware–software co-design, the 
random resisive memory-based echo state graph neural networks 
(ESGNN)54,55. The marriage of random resistive memory and ESGNN not 
only retains the boost of energy–area efficiency thanks to in-memory 
computing but also makes use of the intrinsic stochasticity of dielec-
tric breakdown to provide low-cost and nanoscale hardware random 
weights of ESGNN. Moreover, the echo state network employs iterative 
random projections for node and graph embedding, which gets rid of 
the tedious training of conventional graph neural networks, enabling 
efficient and affordable real-time graph learning.

In this Article, we showcase such a co-designed ESGNN physically 
implemented on a 40 nm resistive computing-in-memory macro to 
accelerate graph learning. We demonstrate state-of-the-art graph clas-
sification results on the MUTAG and COLLAB datasets, as well as node 
classification on the CORA dataset. We observe 2.16×, 35.42× and 40.37× 
improvements in the energy efficiency of a projected random resistive 
memory-based hybrid analogue–digital system compared with that of 
a state-of-the-art GPU for classifying the MUTAG, COLLAB and CORA 
dataset. Furthermore, the backward pass complexity is reduced by 
99.35%, 99.99% and 91.40% respectively, thanks to the representation 
extraction using random projections in ESGNN. Our system paves the 
way for efficient and fast graph learning in the future.
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schematically illustrated in Fig. 1f. For a given graph, the initial embed-
ding of node j is a zero vector s(0)j ∈ ℝh. The input feature of the same 
node xi ∈ ℝu+1 will first undergo a random projection using the input 
matrix to produce its input projection uj = WIxj ∈ ℝh. In each subse-
quent time step, a new state of the node is computed by aggregating 
its current state s(t)j  and input projection uj, and the states of all its 
neighbours after random projections by the recursive matrix 
∑k∈N( j)WRs

(t)
k  (where N (j) denotes the set of neighbouring nodes of 

node j). These consecutive random projections to high-dimensional 
space paired with nonlinear activations endow each node with a unique 
and discriminative representation. The final internal states of nodes, 
or node embeddings, will be used to create a graph embedding g ∈ ℝh 
by sum pooling for graph classification problems, as illustrated in  
Fig. 1g (see Methods for the details of node and graph embedding).

Graph classification with ESGNN
We first solve a representative graph classification task using the 
MUTAG molecular dataset60 with a random resistive memory-based 
ESGNN. MUTAG is a widely used molecular dataset that comprises 188 
nitroaromatic compounds (see Fig. 2a for examples and Supplementary 
Fig. 7 and Supplementary Table 2 for simulation results on the 
large-scale organic molecule dataset QM9). These molecular com-
pounds are essentially graphs. Their nodes stand for atoms, while edges 
denote chemical bonds. The molecular graphs can be divided into two 
categories according to their mutagenicity, that is, their ability to 
mutate genes of certain bacteria. Figure 2b shows the experimental 

input projection and evolution of node internal states of a single molec-
ular graph according to the process shown in Fig. 1f. Internal states of 
nodes (columns) gradually differ from projected input features by 
accumulating messages from neighbouring nodes and thus encode 
structural information pertaining to the topology of the graph (see 
Extended Data Fig. 2 and Supplementary Note 5 for the initialization 
and storage of intermediate node embeddings). Here, the embedding 
process is iterated four times to achieve a balance between capturing 
more topological information and over-smoothing61. The final graph 
embeddings of the entire dataset are shown in Fig. 2c, in which embed-
dings of the same class are similar while those from different classes 
have large contrast. Figure 2d visualizes the distribution of graph 
embeddings by mapping them to a two-dimensional (2D) space via 
principal component analysis (PCA), where orange and blue dots are 
graphs from positive and negative classes, respectively (see Supple-
mentary Fig. 8 for visualizing graph embedding distributions in 3D 
space). Although a few samples are mixed on the classification bound-
ary, the majority of samples can be well classified by a simple linear 
classifier thanks to the dynamics of the echo state network. These 
embedding vectors will be classified by a simple software readout layer 
(with 102 floating-point weights) optimized by linear regression at low 
hardware and energy cost (see Methods for the implementation and 
training of the readout layer and Supplementary Table 3 for the cost 
of the digital readout layer). To evaluate the classification performance 
of the MUTAG dataset, we use ten-fold cross-validation, where the 
accuracy of each fold is shown in Fig. 2e. The overall performance of 
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Fig. 1 | Hardware–software co-design of random resistive memory-based 
ESGNN for graph learning. a, A cross-sectional transmission electron 
micrograph of a single resistive memory cell that works as a random resistor after 
dielectric breakdown. Scale bar 20 nm. b, A cross-sectional transmission electron 
micrograph of the resistive memory crossbar array fabricated using the backend-
of-line process on a 40 nm technology node tape-out. Scale bar 500 nm. c, A 
schematic illustration of the partition of the random resistive memory crossbar 
array, where cells shadowed in blue are the weights of the recursive matrix 
(passing messages along edges) while those in red are the weights of the input 
matrix (transforming node input features). d, The corresponding conductance 

map of the two random resistor arrays in c. e, The conductance distribution 
of the random resistive memory arrays. f, The node embedding procedure of 
the proposed ESGNN. The internal state of each node at the next time step is 
co-determined by the sum of neighbouring contributions (blue arrows indicate 
multiplications between node internal state vectors and the recursive matrix  
in d), the input feature of the node after a random projection (red arrows indicate 
multiplications between input node feature vectors with the input matrix in d) 
and the node internal state in the previous time step. g, The graph embedding 
based on node embeddings. The graph embedding vector g is the sum pooling of 
all the node internal state vectors in the last time step.
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our implementation is approximately 92.11%, which is comparable to 
state-of-the-art algorithms such as deep divergence graph kernels or 
DDGK (91.58%)62 and Patchy-SAN (92.60%)63 running on digital comput-
ers (see Extended Data Fig. 3 for the accuracy distribution of 100 trials 
of ten-fold cross-validation simulation, Extended Data Fig. 4 for the 
simulated hyperparameter impact on accuracy, Supplementary  
Fig. 9 for the weight distribution and/or sparsity impact on accuracy 
and Supplementary Note 6, Extended Data Fig. 5 and Extended Data 
Table 1 for the ablation study to reveal the contribution of the echo 
state layer). The confusion matrices in Fig. 2f show that, on average, 
5.9 out of 6.4 (12 out of 13) molecule compounds of positive (negative) 
mutagenicity are correctly classified, which translates to a class-wise 
recognition rate of 91.64% (93.35%) (see Supplementary Fig. 10 for the 
confusion matrices of all the folds). To verify the boost in the energy 
efficiency, we conducted a preliminary comparison of the energy con-
sumption between the conventional digital hardware and our random 
resistive memory-based system. In Fig. 2g, the red bars show a break-
down of the number of multiply and accumulation (MAC) operations 
(OPs) in the ESGNN, while the light-blue and dark-blue bars show the 
associated estimation of the energy consumption of a state-of-the-art 

GPU and a projected random resistive memory-based hybrid analogue–
digital system, respectively. Since multiplications with the input matrix 
WI and recursive matrix WR account for the majority of OPs and thus 
power consumption in the forward pass of the ESGNN, the overall 
energy of the projected random resistive memory-based hybrid ana-
logue–digital system is approximately 34.44 μJ per forward pass of the 
entire dataset compared with approximately 74.32 μJ for the 
state-of-the-art GPU, resulting in an approximately 2.16× improvement 
in the inference energy efficiency (see Methods and Supplementary 
Fig. 11 for the impact of hyperparameters on the system energy effi-
ciency and Supplementary Note 7 for an energy consumption com-
parison with a state-of-the-art GPU). As the pseudoinverse is used to 
train the simple readout layer of the ESGNN, the number of OPs for 
readout layer optimization is approximately 1.05 mega-OPs (MOPs), 
in contrast to approximately 160.51 MOPs per epoch of stochastic gra-
dient descent with backpropagation for a graph neural network with 
the same number of weights, leading to an approximately 99.35% reduc-
tion of the backward pass complexity (see Supplementary Note 8 for 
details). In addition, the ESGNN on a projected random resistive 
memory-based hybrid analogue–digital system (34.51 μJ) offers a 
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Fig. 2 | Classification of molecular graphs. a, An illustration of some samples 
from the MUTAG molecular dataset, where nodes of different colours represent 
different atoms while edges are chemical bonds. Depending on the mutagenicity, 
these molecules are categorized into positive and negative classes. b, An example 
MUTAG node embedding process. The input features of all nodes, defined as X, are 
first projected onto the state space using the input matrix WI, and the hidden state 
of each node is updated according to the protocol shown in Fig. 1f and Methods, 
which leads to node embeddings that encapsulate graph information. c, The 
graph embedding vectors of the two categories of the MUTAG dataset. Each 
column vector is a graph embedding. The embeddings of the left (right) colour 
map are from the positive (negative) class. d, The graph embeddings are mapped 
to a 2D space using PCA. Pink (blue) dots represent molecules with positive 
(negative) mutagenicity, which can be linearly separated. e, The accuracy of each 

fold in a ten-fold cross-validation and the software baseline. The average accuracy 
is 92.11%, comparable to state-of-the-art algorithms. f, The confusion matrices of 
the experimental classification results. The upper matrix is a ten-fold averaged 
confusion matrix, which is then normalized horizontally to produce the lower 
matrix. g, A breakdown of the estimated MAC OPs (red bars) and associated 
energy (light-blue bars for a state-of-the-art GPU; dark-blue bars for a projected 
random resistive memory-based hybrid analogue–digital system). In a forward 
(backward) pass, the fully optimized model on a state-of-the-art GPU and the 
ESGNN on a projected random resistive memory-based hybrid analogue–digital 
system consume approximately 74.32 µJ (approximately 160.51 MOPs) and 
approximately 34.44 μJ (approximately 1.05 MOPs), respectively, revealing a >2.16 
fold improvement of the inference energy efficiency (a 99.35% reduction of the 
backward pass complexity). BP, backpropagation.
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reduction of 53.56% in the total training energy consumption (includ-
ing forward passing the echo state layer and optimizing the readout 
layer) compared with the software ESGNN on a state-of-the-art  
GPU (74.32 μJ).

In addition to modelling molecules, the random resistive 
memory-based ESGNN has also been used to solve a representative 
social network classification problem using the COLLAB dataset64. As 
shown in Fig. 3a, each graph of the COLLAB dataset depicts a research 
collaboration network from one of the three branches of physics: 
astrophysics, high energy physics and condensed matter physics. 
Here, nodes are researchers while edges denote collaboration rela-
tions. We randomly pick 200 graphs from the COLLAB dataset for 
learning (see Supplementary Table 4 for the results on the full-scale 
COLLAB dataset). Nodes (or researchers) in the COLLAB dataset share a 
unity input feature, rendering the input projections of different nodes 
identical in Fig. 3b. However, thanks to the iterative message passing 
in ESGNN, node internal states gradually integrate graph information 
such as topology along iterations, yielding the unique node embed-
dings shown in the last time step of Fig. 3b (see Extended Data Fig. 2 and 
Supplementary Note 5 for the initialization and storage of intermediate 
node embeddings). The final graph embeddings, grouped by classes, 

are shown in Fig. 3c, where graphs from the condensed matter com-
munity and the high energy community are well separated from each 
other owing to clear differences in topology. This is also corroborated 
by the distribution of graph embedding vectors by mapping them to 
a 2D space using PCA (Fig. 3d), where blue (condensed matter phys-
ics) and purple (high energy physics) dots are linearly separable (see 
Supplementary Fig. 8 for visualizing graph embedding distributions 
in 3D space). On the other hand, graphs from the astrophysics commu-
nity tend to share similar topologies with the other two, which is also 
revealed by the fact that pink dots (astrophysics) partially overlap with 
blue and purple dots. The graph embedding vectors will be classified 
by a simple software readout layer at small hardware and energy cost, 
like that used for the MUTAG dataset. Figure 3e shows the classification 
performance of a ten-fold cross-validation (see Supplementary Fig. 10  
for the confusion matrices of all the folds). The random resistive 
memory-based ESGNN is able to achieve state-of-the-art accuracy of 
73.00%, compared with 73.90% for graph sample and aggregate (Graph-
SAGE)65 and 73.76% for dynamic graph convolutional neural networks 
(DGCNN)66 (see Extended Data Fig. 3 for the accuracy distribution of 
100 trials of ten-fold cross-validation simulation, Extended Data Fig. 4 
for the simulated hyperparameter impact on accuracy, Supplementary 
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Fig. 3 | Classification of collaboration networks. a, Example collaboration 
network graphs from the COLLAB dataset that correspond to different branches 
of physics: astrophysics (AP), high energy physics (HE) and condensed matter 
physics (CM). Each node denotes a researcher, while an edge represents a 
collaboration relation. b, An example COLLAB node embedding process 
according to the protocol shown in Fig. 1f and Methods, which leads to node 
embeddings that encapsulate more graph information. c, Graph embedding 
vectors of the three categories of the COLLAB dataset. Each column is a graph 
embedding. d, Graph embeddings mapped to a 2D space using PCA. Orange, 
blue and purple dots denote collaboration networks from the AP, CM and HE 
communities, respectively, revealing a clear boundary between AP and CM. e, The  
accuracy of each fold in a ten-fold cross-validation and the software baseline.  

The average accuracy is 73.00%, comparable to state-of-the-art algorithms. f, The 
confusion matrices of the experimental classification results. The upper matrix 
is a ten-fold averaged confusion matrix, which is then normalized horizontally 
to produce the lower matrix. g, A breakdown of the estimated OPs (red bars) and 
associated energy (light-blue bars for a state-of-the-art GPU; dark-blue bars for a 
projected random resistive memory-based hybrid analogue–digital system). In 
a forward (backward) pass, the fully optimized model on a state-of-the-art GPU 
and ESGNN on a projected random resistive memory-based hybrid analogue–
digital system consume approximately 8.31 mJ (approximately 16.98 GOPs) and 
approximately 234.59 μJ (approximately 1.16 MOPs), respectively, revealing a 
>35.42 fold improvement of the inference energy efficiency (an approximately 
99.99% reduction of the backward pass complexity).
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Fig. 9 for the weight distribution and/or sparsity impact on accuracy 
and Supplementary Note 6, Extended Data Fig. 5 and Extended Data 
Table 1 for the ablation study to reveal the contribution of the echo 
state layer). Figure 3f shows the experimentally acquired confusion 
matrix of the ten-fold cross-validation (see Supplementary Fig. 10 
for the confusion matrices of all the folds). The accuracy of correctly 
classifying astrophysics reaches 85.82%, but 31.83% and 43.48% of 
the samples from condensed matter physics and high energy physics 
tend to be misclassified as astrophysics, respectively, which is attrib-
uted to the imbalanced dataset. Figure 3g shows the breakdown of 
OPs in the graph learning and compares the energy consumption of a 
projected random resistive memory-based analogue–digital system 
with that of a state-of-the-art GPU. Similar to experiments on MUTAG 
molecular classification, the majority of the OPs are contributed by 
the graph embedding procedure, leading to an overall energy con-
sumption of approximately 234.59 μJ per forward propagation of 
the entire dataset, considerably lower than that of the conventional 

implementation (approximately 8.31 mJ), achieving a 35.42 fold improve-
ment in the inference energy efficiency (see Methods and Supplementary  
Fig. 11 for the impact of hyperparameters on system energy efficiency 
and Supplementary Note 7 for the energy consumption comparison 
with a state-of-the-art GPU). The number of OPs for optimizing the 
readout layer of the ESGNN is approximately 1.16 MOPs, compared 
with approximately 16.98 giga-OPs (GOPs) of one-epoch stochastic 
gradient descent with backpropagation for a graph neural network 
with the same amount of parameters, thanks to the fixed and random 
weights of the ESGNN, effectively reducing the backward pass complex-
ity by approximately 99.99% (see Supplementary Note 8 for details). In 
addition, the ESGNN on a projected random resistive memory-based 
hybrid analogue–digital system (0.23 mJ) offers a reduction of 97.18% 
in the total training energy consumption (including forward passing 
the echo state layer and optimizing the readout layer) compared with 
the software ESGNN on a state-of-the-art GPU (8.31 mJ) (see Supple-
mentary Note 7 for details).
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Fig. 4 | Node classification of a citation network. a, An illustration of the  
large-scale citation network CORA. Each node in the graph is a scholarly article, 
while an edge indicates a citation between two papers. There are a total of seven 
article categories, indicated by node colours, according to their discipline.  
b, The node classification scheme. The input graph is first embedded using the 
ESGNN according to the protocol shown in Fig. 1f and Methods, followed by a 
graph convolution layer serving as the readout to produce a classification vector 
for each node. c, An illustration of simulated node embeddings. Coloured boxes 
on the left are the zoom-in of node embedding details. d, A node embedding 
mapped to a 2D spacing using t-SNE, showing clear clustering of nodes of the 
same categories. e, The accuracy of ten random tests for node classification and 

the software baseline. The average accuracy is 87.12%, comparable to state-
of-the-art algorithms. f, The normalized confusion matrices of the simulated 
classification results. g, A breakdown of the estimated OPs (red bars) and the 
associated energy consumption (light-blue bars for a state-of-the-art GPU; 
dark-blue bars for a projected random resistive memory-based hybrid analogue–
digital system). In a forward (backward) pass, the fully trainable model on a state-
of-the-art GPU and ESGNN on a projected random resistive memory-based hybrid 
analogue–digital system consume approximately 24.20 mJ (approximately 63.18 
GOPs) and approximately 599.47 μJ (approximately 5.43 GOPs), respectively, 
revealing a >40.37 fold improvement in the inference energy efficiency (and an 
approximately 91.40% reduction of the backward pass complexity).
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Node classification using ESGNN
In addition to graph classification tasks, node classification tasks con-
stitute another important category of graph learning. We simulate our 
ESGNN in solving a large-scale node classification problem with the 
CORA citation network dataset67, which is schematically illustrated in 
Fig. 4a (see Supplementary Table 5 for the simulation results on the 
large-scale social network dataset REDDIT). This graph contains  
2,708 nodes, each of which represents a scientific publication and 
belongs to one of the seven research disciplines labelled by the node 
colour. Each edge of the graph represents a citation relationship 
between two publications. The input node features are 
1,433-dimensional word vectors. The graph is then fed into the ESGNN 
for node embeddings (Fig. 4b). Different from the graph classification 
tasks that employ a trainable fully connected readout layer, a single 
software graph convolution layer serves as the readout layer with train-
able weights to classify nodes, improving the accuracy without sig-
nificantly increasing hardware and time cost (Methods). Figure 4c 
shows the node embeddings of the whole dataset according to Fig. 1f, 
grouped by node classes, where some dimensions are highly discrim-
inative across different classes. Figure 4d shows the distribution of 
node embedding in a 2D space using t-distributed stochastic neighbour 
embedding (t-SNE) dimension reduction. Nodes from the same cate-
gory are clearly clustered without any supervision (see Supplementary 
Fig. 8 for visualizing node embedding distributions in 3D space). To 
evaluate the performance, we measure the accuracy of ESGNN with 
different randomly initialized weights (Methods). The ten-time average 
test accuracy reaches 87.12% in Fig. 4e, being comparable to those of 
state-of-the-art algorithms such as graph convolutional networks (GCN) 
(86.64%)3 and graph attention networks (GAT) (88.65%)4 running on 
conventional digital systems (see Extended Data Fig. 3 for the accuracy 
distribution of 100 trials of ten-fold cross-validation simulation and 
Extended Data Fig. 4 for the simulated hyperparameter impact on 
accuracy). Figure 4f shows the simulated confusion matrix, which is 
dominated by diagonal elements, affirming the high classification 
accuracy. To benchmark the efficiency of our random resistive memory 
in solving this node classification problem, we count the OPs of differ-
ent steps (Fig. 4g, red bars). The total number of OPs is approximately 
50.05 GOPs per forward pass of the entire dataset, the majority of which 
(approximately 42.25 GOPs) comes from multiplications with the recur-
rent weight matrix WR, while the second largest contribution (approx-
imately 7.76 GOPs) is from multiplications with the input weight matrix 
WI. The number of OPs for the backpropagation and weight updating 
of the readout layer is approximately 5.43 GOPs per epoch, while that 
for a graph neural network with the same number of parameters is 
approximately 63.18 GOPs per epoch, indicating a 91.40% reduction 
of the OPs (energy consumption) in the backpropagation and weight 
updating (see Supplementary Note 8 for details). The corresponding 
energy consumptions for inference are approximately 24.20 mJ and 
599.47 μJ for a state-of-the-art GPU (light-blue bars) and a projected 
random resistive memory-based hybrid analogue–digital system 
(dark-blue bars), respectively, affirming the 40.37× large boost of 
energy efficiency in node classification (see Supplementary Fig. 11 for 
the simulated hyperparameters impact on energy efficiency). In addi-
tion, the ESGNN on a projected random resistive memory-based hybrid 
analogue–digital system (3.09 mJ) offers a 88.44% reduction of the 
training energy (including forward passing the echo state layer and 
optimizing the readout layer) compared with that on a state-of-the-art 
GPU (26.69 mJ) (see Supplementary Note 7 for details).

Discussion
In this paper, we demonstrate a hardware–software co-design scheme 
for graph learning. Hardware-wise, the stochasticity of resistive switch-
ing is leveraged to produce low-cost and scalable random resistive 
memory arrays that physically implement the weights of an ESGNN, 
featuring in-memory computing with large parallelism and high 

efficiency that overcomes the von Neumann bottleneck and slowdown 
of Moore’s law. Software-wise, ESGNN not only takes advantage of the 
physical random projections enabled by random resistive memory 
arrays in performing graph embedding but also substantially reduces 
the training complexity of traditional graph learning. The resultant 
system demonstrates great potential as a brand-new edge learning 
platform for graphs.

Methods
Fabrication of resistive memory chips
The resistive memory chip consists of a 512 × 512 crossbar array. Each 
of the resistive memory cells is integrated on the 40 nm standard logic 
platform. The resistive memory cells, including bottom electrodes, 
top electrodes and a transition-metal oxide dielectric layer, are built 
between the metal 4 and metal 5 layers of the backend-of-line process. 
The via of the bottom electrodes, with a diameter of 60 nm, is patterned 
by photolithography and etching. The via is filled with TaN by physical 
vapour deposition followed by chemical mechanical polishing. A buffer 
layer of 10 nm TaN is deposited by physical vapour deposition on the 
bottom electrode via. Then, 5 nm Ta is deposited and then oxidized 
in an oxygen ambident to form an 8 nm TaOx dielectric layer. The top 
electrodes comprise 3 nm Ta and 40 nm TiN, which are sequentially 
deposited by physical vapour deposition. After fabrication, the logic 
backend-of-line metal is deposited using the standard logic process. 
Cells in the same column share top electrode connections, while those 
in the same row share bottom electrode connections. Finally, the chip 
was post-annealed in vacuum at 400 °C for 30 min.

The hybrid analogue–digital computing platform
As shown in Supplementary Fig. 2, the platform consists of an 
eight-channel digital-to-analogue converter (DAC80508, 16-bit resolu-
tion; Texas Instruments) and two eight-bit shift registers (SN74HC595; 
Texas Instruments) to source 64-way parallel analogue voltages with 
eight independent voltage amplitudes in the range from 0 to 5 V. To 
perform vector–matrix multiplication, a DC voltage is applied to bit 
lines of the resistive memory chip through a four-channel analogue 
multiplexer (MUX, CD4051B; Texas Instruments). The results are rep-
resented by currents from source lines and converted to voltages by 
trans-impedance amplifiers (OPA4322-Q1; Texas Instruments). The 
voltages are then read by an analogue-to-digital converter (ADS8324, 
14-bit resolution; Texas Instruments), which passes the readings to the 
Xilinx system-on-chip.

Multibit vector–matrix multiplication
To perform vector–matrix multiplication, the analogue input vector 
is first digitized into an m-bit binary vector where each element is an 
m-bit binary number (m = 4 in this case). The analogue multiplication 
is therefore approximated by m times multiplication with binary input 
vectors corresponding to different significance. In each multiplication, 
a row is biased to a small fixed voltage (for example, 0.3 V) if it receives 
a bit ‘1’ or grounded if it receives a bit ‘0’. The output currents of all the 
columns are acquired sequentially using the column MUX. The result-
ant currents are multiplied with the significance and accumulated in 
the digital domain. Note that a larger m leads to better precision but 
an increased cost of energy and time.

Graph classification experiments
As shown in Fig. 1c, the crossbar array is partitioned logically into two 
conductance matrices GI ∈ ℝh×(u+1) and GR ∈ ℝh×h (where u and h repre-
sent the dimension of the input feature vector and the number of 
hidden neurons, h = 50 for both the MUTAG and COLLAB datasets) 
which are then mapped to the input weight matrix WI = αIGI ∈ ℝh×(u+1) 
and the recursive matrix WR = αRGR ∈ ℝh×h, respectively. Here, the scal-
ing factors αI and αR are hyperparameters, which are set to 0.0016 μS−1 
and 0.006 μS−1, respectively in the graph classification experiments to 
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ensure the echo state properties of the network (spectral radius less 
than unity).

Given a graph 𝒢𝒢 = (𝒢𝒢𝒢 𝒢) with n nodes xi ∈ 𝒢𝒢 and edges (xi𝒢xj) ∈ ε, 
we first compute the input projection of each node feature vector. For 
the jth node, its node input feature vector is xj ∈ ℝu+1 (with a unit bias) 
and the input projection is uj = WIxj ∈ ℝh, where xj is quantized to a 
four-bit binary vector mapped to voltages applied to the random resis-
tive memory array. For the MUTAG dataset, the node feature vectors 
are the concatenations of one-hot vectors and the bias (xj ∈ ℝ7+1), 
denoting their atom types. For the COLLAB dataset, the node feature 
vectors are constant, that is, the concatenation of a unit scalar and the 
bias (xj ∈ ℝ1+1). The node internal state vector, or its embedding, is then 
iteratively updated (see Extended Data Fig. 2 and Supplementary  
Note 5 for the initialization and storage of the intermediate node 
embeddings). The internal state vector of the jth node at time t + 1, 
denoted by s(t+1)j ∈ ℝh, is computed by aggregating its state s(t)j  and input 
projection uj and the states of all its neighbours after random projec-
tions by the recursive matrix ∑k∈N(j) WRs

(t)
k  (where N (j) denotes the set 

of neighbouring nodes of node j) according to equation (1).

s(t+1)j = as(t)j + (1 − a)σ [uj + ∑
k∈N(j)

WRs
(t)
k ] 𝒢 (1)

where σ is the activation function (tanh, in this work), a is the leaky 
factor (0.2, in this work) and s(t)k  is quantized to a four-bit binary vector 
mapped to voltages applied to the random resistive memory array. All 
other arithmetic OPs are performed in the digital domain.

The graph embedding is computed by sum pooling of all node 
embeddings of a given graph to extract a single feature vector as the 
representation of the graph, or mathematically g = ∑j s

(T)
j ∈ ℝh, where 

T is the total number of iterations. Unlike classical echo state networks, 
the node internal state in ESGNN iterates finite times (Extended  
Data Fig. 4), as a trade-off between accuracy, energy cost and over- 
smoothing.

The readout layer is a fully connected layer implemented in the 
digital domain. For the MUTAG (COLLAB) dataset consisting of two 
(three) categories, the readout layer maps graph embedding vectors 
g onto class vectors o ∈ ℝ2 (o ∈ ℝ3) using 102 (153) floating-point 
weights with bias. It shall be noted the two-category classification 
can also be performed by mapping g onto class scalars o ∈ ℝ to further 
reduce the number of weights of the readout layer. During training, 
we first evaluate graph embeddings of the entire training set. The 
embeddings and the labels are then concatenated for evaluating the 
weights of the fully connected readout layer using linear 
regression.

All hyperparameters (for example, the weight scaling factors αI 
and αR, the iteration time T and the leaky rate a) are optimized by grid 
searching the hyperparameter space to maximize the hardware per-
formance in the ten-fold cross-validation tests.

Node classification simulation
For the CORA simulation, we use PyTorch 1.9.0 as the deep learning 
framework and Torch-geometric 1.7.2 as the graph deep learning 
tool. The CORA dataset visualized in Fig. 4a uses the force-directed 
Kamada–Kawai algorithm, where the data are grouped by classes. The 
coordinates of nodes have been slightly refined for better visualization. 
The node embedding follows the same protocol as that of graph clas-
sification tasks using 1,000 neurons. The readout layer is a single graph 
convolutional layer. During the training, the readout layer is optimized 
using stochastic gradient descent by minimizing a cross-entropy loss 
function. The readout layer has been trained for 200 epochs with a 
learning rate of 0.01, a weight decay factor of 0.005, a momentum of 0.9 
and a dropout rate of 0.2. The performance of the model is assessed by 
training the readout layer upon different randomly initialized weights 
(ten sets of weights were used here).

Data availability
The MUTAG dataset60, the COLLAB dataset64 and the CORA dataset67 
are publicly available. All other measured data are freely available upon 
request. Source data are provided with this paper and also available at 
https://github.com/wangsc1912/ESGNN ref. 68.

Code availability
The code that supports the plots within this paper and other findings of 
this study is available at https://github.com/wangsc1912/ESGNN ref. 68. 
The code that supports the communication between the custom-built 
printed circuit board and the integrated resistive memory chip of the 
hybrid analogue–digital system (see Supplementary Fig. 2 for the 
system block diagram) is available from the corresponding author on 
reasonable request.
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Extended Data Fig. 1 | Stochasticity of dielectric breakdown voltages.  
a, Distribution of the dielectric breakdown voltages in a 20×20 resistive memory 
array. The resistance of all pristine cells is ~10 MΩ. Linear voltage sweeps starting 
from 3 V with a step 0.05 V are applied to all cells. The breakdown voltage is 
defined as the smallest voltage which makes the cell resistance smaller than 
20 kΩ. b, The corresponding histogram of the dielectric breakdown voltages 
in a, which follows a quasi-Normal distribution. The breakdown voltage 

provides a knob to tune the sparsity of the random resistive memory arrays. 
c-d, The optimal sparsity was searched in software, which was translated to 
the programming voltage according to the measured breakdown voltage 
distribution before being physically applied to the resistive memory array. e, The 
resultant sparsity (the proportion of devices without breakdown) of the random 
conductance matrix is close to the optimal sparsity identified in software.
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Extended Data Fig. 2 | Performance of different noisy initialization of node 
embeddings. a-c, Initial node embeddings sampled from scaled Gaussian 
distributions for the MUTAG, COLLAB and CORA datasets, respectively.  
d-f, Initial node embeddings sampled from scaled uniform distributions for the 
MUTAG, COLLAB, and CORA datasets, respectively. The performance decreases 

with the increment of the scale of both noises. Each box consists of 10 trial points. 
Each trial point is acquired using a 10-fold cross validation. The box bounds the 
interquartile range with the median marked by the red line and mean by the green 
triangle. Whiskers extend to 1.5 times of the interquartile range. Flier points 
beyond whiskers are explicitly plotted.
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Extended Data Fig. 3 | Distribution of classification accuracy with randomly initialized resistive memory. The accuracy of 100 trials 10-fold cross-validation 
simulation on the a, MUTAG dataset, b, the COLLAB dataset, and c, the CORA dataset.
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Extended Data Fig. 4 | Simulated hyperparameter impact on performance 
of both graph and node classification tasks. a, c, e, Simulated impact of 
number of neurons of the ESGNN on classifying the a MUTAG, c COLLAB, and e 
CORA datasets, respectively. The average accuracy increases with the number 
of neurons. b, d, f, Simulated impact of embedding iterations on classifying the 
b MUTAG, d COLLAB, and f CORA datasets. The accuracy first increases with 
the number of iterations and peaks with 4 iterations in classifying MUTAG and 

COLLAB datasets, or 2 iterations in classifying CORA dataset, a result  
of over-smoothing. Each box consists of 10 trial points. Each trial point is 
acquired using a 10-fold cross validation. The box bounds the interquartile range 
with the median marked by the red line and mean by the green triangle. Whiskers 
extend to 1.5 times of the interquartile range. Flier points beyond whiskers are 
explicitly plotted.
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Extended Data Table. 1 | Ablation study on echo state layers

Ablation study on sum/mean/max pooling of the node input features (first 3 rows) and sum/mean/max pooling of the neighbour-aware node embeddings (next 3 rows) as well as our ESGNN 
(last row).

MUTAG COLLAB

Global Sum pooling 86.32% 57.50%

Global Mean pooling 73.16% 55.00%

Global Max pooling 73.16% 55.00%

Sum + edge 86.32% 59.50%

Mean + edge 88.42% 65.00%

Max + edge 88.42% 65.00%

ESGNN 92.11% 73.00%
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