To fully leverage big data, they need to be shared across institutions in a manner compliant with privacy considerations and the EU General Data Protection Regulation (GDPR). Federated machine learning is a promising option.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Crowson, M. G. et al. PloS Digit. Health 1, e0000033 (2022).
Rieke, N. et al. NPJ Digit. Med. 3, 19 (2020).
Sadilek, A. et al. NPJ Digit. Med. 4, 132 (2021).
Zolotareva, O. et al. Genome Biol. 22, 338 (2021).
Aouedi, O., Sacco, A., Piamrat, K. & Marchetto, G. IEEE J. Biomed. Health Inform. https://doi.org/10.1109/JBHI.2022.3185673 (2022).
Ficek, J., Wang, W., Chen, H., Dagne, G. & Daley, E. J. Am. Med. Inform. Assoc. 28, 2269–2276 (2021).
Dankar, F. K., Madathil, N., Dankar, S. K. & Boughorbel, S. JMIR Med. Inform. 7, e12702 (2019).
Huang, X. World Wide Web J Biol. 23, 2529–2545 (2020).
European Parliament/European Council. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02016R0679-20160504&from=EN (2016).
Winter, C., Battis, V. & Halvani, O. ZD Zeitschrift für Datenschutz 11, 489–493 (2019).
Kaulartz, M. & Braegelmann, T. Rechtshandbuch Artificial Intelligence und Machine Learning (C.H. Beck, 2020).
Ma, R. et al. Bioinformatics 36, 2872–2880 (2020).
Liu, T., Di, B., Wang, B. & Song, L. IEEE J. Sel. Top Signal. Process. 16, 546–558 (2022).
Zhang, X., Kang, Y., Chen, K., Fan, L. & Yang, Q. Preprint at http://arxiv.org/abs/2209.00230 (2022).
Bietti, A., Wei, C. Y., Dudik, M., Langford, J. & Wu, S. in Proc. Machine Learning Research Vol. 162 (eds Chaudhuri, K. et al.) 1945–1962 (MLR Press, 2022).
Mugunthan, V., Byrd, D., Polychroniadou, A. & Balch, T. H. J.P.Morgan https://www.jpmorgan.com/content/dam/jpm/cib/complex/content/technology/ai-research-publications/pdf-9.pdf (2019).
Antunes, R. S., André da Costa, C., Küderle, A., Yari, I. A. & Eskofier, B. ACM Trans. Intell. Syst. Technol. 13, 1–23 (2022).
Wibawa, F., Catak, F. O., Sarp, S., Kuzlu, M. & Cali, U. in Proc. 2022 European Interdisciplinary Cybersecurity Conference, 85–90 (Association for Computing Machinery, 2022).
Information Commissioner’s Office. ICO https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/documentation/(2022).
Zerka, F. et al. JCO Clin. Cancer Inform. 4, 184–200 (2020).
ePrivacy. https://www.eprivacy.eu/home/ (accessed 6 July 2022).
International Standard Organization. ISO https://www.iso.org/isoiec-27001-information-security.html (2022).
ISO/IEC JTC 1/SC 42 Artificial intelligence. ISO https://www.iso.org/standard/74438.html(2022).
Sheller, M. J. et al. Online supplement (Supplementary Information 1) to Sci. Rep. 10, 12598 (2020); https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-69250-1/MediaObjects/41598_2020_69250_MOESM1_ESM.docx
Sheller, M. J. et al. Sci. Rep. 10, 12598 (2020).
Truong, N., Sun, K., Wang, S., Guitton, F. & Guo, Y. Comput. Security 110, 102402 (2021).
Pfitzner, B., Steckhan, N. & Arnrich, B. ACM Trans. Internet Technol. 21, 1–31 (2021).
Lepri, B., Oliver, N. & Pentland, A. iScience 24, 102249 (2021).
Acknowledgements
Our work was funded by the German Federal Ministry of Education and Research (BMBF; grants 16DTM100A and 16DTM100C). We also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 826078. This publication reflects only the authors’ views, and the European Commission is not responsible for any use that may be made of the information it contains.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Machine Intelligence thanks Stuart McLennan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
Brauneck, A., Schmalhorst, L., Kazemi Majdabadi, M.M. et al. Federated machine learning in data-protection-compliant research. Nat Mach Intell 5, 2–4 (2023). https://doi.org/10.1038/s42256-022-00601-5
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-022-00601-5