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Emergent behaviour and neural dynamics in 
artificial agents tracking odour plumes

Satpreet H. Singh    1  , Floris van Breugel2, Rajesh P. N. Rao1 & 
Bingni W. Brunton1

Tracking an odour plume to locate its source under variable wind and 
plume statistics is a complex task. Flying insects routinely accomplish such 
tracking, often over long distances, in pursuit of food or mates. Several 
aspects of this remarkable behaviour and its underlying neural circuitry 
have been studied experimentally. Here we take a complementary in silico 
approach to develop an integrated understanding of their behaviour 
and neural computations. Specifically, we train artificial recurrent neural 
network agents using deep reinforcement learning to locate the source of 
simulated odour plumes that mimic features of plumes in a turbulent flow. 
Interestingly, the agents’ emergent behaviours resemble those of flying 
insects, and the recurrent neural networks learn to compute task-relevant 
variables with distinct dynamic structures in population activity. Our 
analyses put forward a testable behavioural hypothesis for tracking plumes 
in changing wind direction, and we provide key intuitions for memory 
requirements and neural dynamics in odour plume tracking.

Locating the source of an odour in a windy environment is a challenging 
control problem, where an agent must act to correct course in the face 
of intermittent odour signals, changing wind direction and variability 
in odour plume shape1,2. Moreover, an agent tracking an intermittent 
plume needs memory, where current and past egocentric odour, visual 
and wind sensory signals must be integrated to determine the next 
action. For flying insects, localizing the source of odour plumes ema-
nating from potential food sources or mates is critical for survival and 
reproduction. Therefore, many aspects of their plume tracking abilities 
have been experimentally studied in great detail3–5. However, most such 
studies are limited to one or two levels of analysis, such as behaviour6, 
computation7,8 or neural implementation9.

Despite the wide adoption of wind tunnel experiments to study 
odour plume tracking10, generating controlled dynamic odour plumes 
in turbulent flow and recording flight trajectories at high resolution is 
expensive and laborious. Exciting alternative approaches have been 
developed using virtual reality11 and kilometre-scale outdoor disper-
sal experiments12. While behavioural experiments are now tractable, 
collecting substantial neural data during free flight in small insects 
remains technologically infeasible, and larger insects require larger 
wind tunnels. Here we are motivated to take a complementary in 

silico approach using artificial recurrent neural network (RNN) agents 
trained to track simulated odour plumes that mimic features of plumes 
evolving in turbulent flow, with the goal of developing an integrated 
understanding of the behavioural strategies and the associated neural 
computations that support plume tracking.

In recent years, artificial neural networks (ANNs) have gained 
increasing popularity for modelling and understanding aspects of neu-
ral function and animal behaviour including vision13, movement14 and 
navigation15,16. Whereas many ANNs have been trained using supervised 
approaches that rely on labelled training data, an alternative emerging 
algorithmic toolkit known as deep reinforcement learning (DRL) has 
made it computationally tractable to train ANN agents (Fig. 1d). In par-
ticular, an ANN agent receives sensory observations and task-aligned 
rewards based on its actions at each step and tries to learn a strategy for 
its next actions to maximize total expected reward17. Such learning- and 
optimization-based models are normative in the sense that they can pre-
scribe how a neural system should behave, rather than describing how it 
has been observed to behave. As neuroscience moves towards studying 
increasingly naturalistic behaviours18,19, such normative approaches are 
gaining traction as tools to gain insight, rapidly explore hypotheses and 
generate ideas for theoretical development20–24.
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the neural dynamics that underlie these behaviours. At a behavioural 
level, we find that the agents’ actions can be summarized by mod-
ules that closely resemble those observed in flying insects. While 
odour plumes that do not change in direction can be tracked using a  
few steps of history, longer timescales of memory are essential for 
plumes that are non-stationary and change direction unpredicta-
bly. Interestingly, the learned tracking behaviour of RNN agents in 
non-stationary plumes suggests a testable experimental hypothe-
sis: that tracking is accomplished through local plume shape rather  
than wind direction. The RNNs learn to represent variables known  
to be important to flying insect navigation, such as head direction  
and time between odour encounters. Further, the low-dimensional 
neural activity associated with the emergent behaviour modules  
represents behaviourally relevant variables and is structured into  
two distinct regimes.

Flying insects search for sources of odour using several strategies, 
depending on the spatial scale being considered and odour source vis-
ibility3 (Fig. 1a). Close to the odour source, insects can fly to the source 
guided by vision. At longer ranges (from a few metres up to about 
100 m; ref. 25) or when the odour source is not yet visible, their search 
must be guided by olfaction to detect odours and mechanosensation to 
estimate wind velocity. At this larger scale, there are a few stereotyped 
behavioural sequences known to be important for plume tracking5: 
upwind surges when the insect can sense the odour, and cross-wind 
casts and U turns to locate the plume body when the insect loses the 
odour scent (Fig. 1a). Here we focus on this larger-scale odour- and 
wind-guided regime, where agents have access to only mechanosen-
sory and olfactory cues.

In this Article, we describe behaviours that emerge in RNN agents 
trained to track odours in a flexible plume simulation and analyse  
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Fig. 1 | Training artificial agents to track dynamic odour plumes with DRL. 
a, A schematic of a flying insect performing a plume tracking task, showing 
upwind surge, cross-wind cast and U-turn behaviours. In this work, we model 
the spatial scale (dashed rectangle) where the insect can use only olfactory 
and mechanosensory wind sensing cues for plume tracking. b, The plume 
simulator models stochastic emission of odour packets from a source carried 
by wind. Odour packets are subject to advection by wind, random cross-wind 
perturbation and radial diffusion. c, An example of a plume simulation where 
the wind direction changed several times. The centreline of the plume is in 
red. d, A schematic of how the artificial agent interacts with the environment 
at each time step. The plume simulator model of the environment determines 
the sensory information x (egocentric wind-direction vector and local odour 
concentration) available to the agent and the rewards used in training. The agent 

navigates within the environment with actions a (turn direction and magnitude 
of movement). e, Agents are modelled as neural networks and trained by DRL. 
An RNN generates an internal state representation h from sensory observations, 
followed by parallel actor and critic heads that implement the agent’s control 
policy and predict the state values, respectively. The actor and critic heads are 
two-layer, feedforward MLP networks. f, A schematic to illustrate an agent’s 
head direction and course direction and the wind direction, all measured with 
respect to the ground and anticlockwise from the x axis. Course direction is the 
direction in which the agent actually moves, accounting for the effect of the wind 
on the agent’s intended direction of movement (head direction). Egocentric wind 
direction is the direction of the wind as sensed by the agent. Panels a,f adapted 
with permission from ref. 98 under a Creative Commons licence CC BY 4.0. Panel a 
inspired by a figure in Baker et al.3.
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Related work
In the field of neural computation, an emerging body of work has used 
DRL to train ANNs that solve tasks closely inspired by tasks from neuro-
science. For instance, agents have been trained to study learning and 
dynamics in the motor cortex26,27, time encoding in the hippocampus28, 
reward-based learning and meta-learning in the prefrontal cortex29–31 
and task-associated representations across multiple brain areas32. There 
have been several recent perspectives articulating the relevance of 
this emerging algorithmic toolkit to neuroscience33,34 and ethology35.

Our work is most directly related to three recent research efforts. 
Merel et al.22 developed a virtual-reality model of a rodent embodied 
in a skeleton body and endowed with a deep ANN ‘brain’. They trained 
this model using DRL to solve four tasks and then analysed the virtual 
rodent’s emergent behaviour and neural activity, finding similarities 
at an abstract level between their agent and observations from rodent 
studies. Reddy et al.36 studied the trail tracking strategies of terrestrial 
animals with one (for example one antenna) or two (for example two 
nostrils) odour sensors. They found that RL agents trained on simulated 
trails recapitulate the stereotypical zig-zagging tracking behaviour 
seen in such animals. Using a static trail model and an explicit (not 
neural) probabilistic model for sensory integration, they studied the 
effect of varying agent and task parameters on the emergent stereo-
typical zig-zagging behaviour. Rapp and Nawrot37 used a biologically 
detailed spiking neural circuit model of a fly mushroom body to study 
sensory processing, learning and motor control in flying insects when 
foraging within turbulent odour plumes.

We build on the approach of these recent papers that study artifi-
cial agents solving neural-inspired tasks, and our work is also distinct 
in several key ways. First, we simulate a more computationally chal-
lenging task than the static trail tracking task of Reddy et al.36, because 
our odour environment is configurable, dynamic and stochastic. In 
contrast, Rapp and Nawrot37 use a similar plume environment with only 
constant-wind-direction plumes, but with the added complexity of a 
secondary distractor odour that their agent must learn to avoid. Sec-
ond, we have made several simplifications and abstractions that make 
analysis more tractable, so that we may focus on the general principles 
behind plume tracking. Specifically, we omit biomechanical details, 
impose no biologically inspired connectivity constraints and do not use 
spiking neurons. Instead, our networks are ‘vanilla’ RNNs (rather than 
the gated RNNs used by Merel et al.22 or the spiking neurons of Rapp 
and Nawrot37), which facilitates analyses from the dynamical systems 
perspective38–42. We analyse emergent behaviours and neural dynamics 
at the network level, which provides us with an abstract understanding 
of task-relevant neural computations that is robust to small changes in 
network architecture and training hyperparameters39,41,42. Finally but 
importantly, since we do not model vision or joint-level motor control 
as do Merel et al.22, our neural networks are simpler and can be trained 
on a computational budget accessible to an academic laboratory.

Results
Our in silico agents learn strategies to successfully localize plume 
sources in non-stationary environments. In this section, we briefly 
summarize our approach and characterize agent performance, then 
highlight their emergent behavioural and neural features. In addition 
to comparing artificial agents with biology, we discover behavioural 
strategies that motivate future experiments and gain intuition about 
the neural computations underlying these emergent behaviours.

Training artificial agents to track odour plumes
We use a particle-based two-dimensional plume model43, which is com-
putationally tractable and can provide exemplars that are known to 
approximate features of real-world odour plumes such as intermit-
tency, rapid fluctuations in instantaneous concentration, and Gauss-
ian time-averaged cross-section concentration (Fig. 1b). Agents are 
actor–critic neural networks44 that receive continuous-valued sensory 

observations as inputs (that is, egocentric instantaneous wind velocity 
and local odour concentration) and produce continuous-valued move 
and turn actions (Fig. 1e). Parameters of the environment simulation 
and agent actions are roughly matched to the capability of flies. Training 
is done using the proximal policy optimization (PPO)45 algorithm, with 
agents initialized at random locations within or slightly outside plumes 
that switch directions multiple times during the course of the episode.

For evaluation, we assess trained agents on additional simulations 
across four wind configurations: ‘constant’, where the wind direction 
is held constant (0°) throughout the episode; ‘switch-once’, where 
the wind makes one 45° anticlockwise switch during the episode; 
‘switch-many’, where the wind direction changes at multiple random 
times during the episode; ‘sparse’, which is the same as the constant con-
figuration except that the puff birth rate is reduced (0.4-fold), resulting 
in more intermittent odour detections, as observed for real-world tur-
bulent plumes. To demonstrate that our agents still perform well when 
odours are highly intermittent, we also include additional simulations 
on ‘sparser’ plumes, in which the puff radial diffusion rate is lowered 
(0.5-fold) in addition to lowering the puff birth rate as is done in sparse 
plumes. Unless otherwise specified, we describe results from one agent 
chosen at random from among the top five performers of 14 trained 
agents. See Methods and Extended Data Table 5 for more details and 
Supplementary Information for data on remaining agents.

Emergent behavioural modules across varying wind 
conditions
Our trained RNN agents are able to complete the plume tracking task 
with changing wind direction and varying plume sparsity (Fig. 2 shows 
some example trajectories). The observed trajectories can be sum-
marized by three behaviour modules, determined approximately by 
the time elapsed since the agent last sensed odour (Fig. 3). We refer to 
these three modules as ‘tracking’, ‘lost’ and ‘recovering’. In the track-
ing module, the agent rapidly moves closer to the plume source, using 
either straight-line trajectories when it is well within the plume, or a 
quasiperiodic ‘plume skimming’ behaviour, where it stays close to the 
edge of the plume while moving in and out of it. The interval between 
the agent’s encounters with odour packets in this module is under 0.5 s. 
Recovering corresponds to an irregular behaviour where the agent 
makes large, usually cross-wind, movements after having lost track of 
the plume for a relatively short period of time (about 0.5 s). Lost cor-
responds to a periodic behaviour that appears variably across trained 
agents as either a spiralling or slithering/oscillating motion, often 
with an additional slow drift in an arbitrary direction. This behaviour 
is seen when the agent has not encountered the plume for a relatively 
long time, typically over 1 s. Thresholds used to segment each agent’s 
trajectories into behaviour modules were determined by visual inspec-
tion (Extended Data Table 1).

Agents that are successful in tracking plumes in constant wind direc-
tion primarily use the tracking and recovering modules (see animations 
accompanying released code). Successful trajectories on the switch-once 
and switch-many plumes reveal that RNN agents use more complex 
strategies in the face of changing wind directions. If an agent is in the 
tracking module and well within the plume at the time of wind-direction 
change, it continues along its path until it reaches the edge of the plume 
without changing its actions. If it is skimming the edge of the plume when 
the wind-direction switch happens, it tries to compensate for the added 
movement of the plume by making more pronounced oscillations in and 
out of the plume. Finally, if the agent cannot keep up with the movement 
of the plume, it typically orchestrates a sequence of large oscillations 
and spiral-like movements, corresponding to the recovering and lost 
modules, to try to find the plume boundary. On returning to the plume, 
it resumes the tracking module behaviours once again.

Agents are able to execute successful tracking in sparse plumes, 
even when the odour encounters are increasingly intermittent (example  
trajectories in Fig. 2b,c). In these examples, we decreased the birth 
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rate and diffusion rate of the odour packets in the plume simulation  
(Fig. 1b), resulting in environments with cross-wind odour profiles that 
are strongly non-Gaussian, causing even sparser odour encounters 
for the agent.

Agents track plume centreline and not current wind direction
Successful trajectories in plumes that switch direction suggest that 
agents take the local shape of the plume into account, rather than just 

the current wind conditions (Fig. 3e,f and animations accompanying 
released code). To quantify this, we look at the empirical distributions 
of an agent’s course direction computed with respect to the current 
wind direction, and with respect to the centreline of the nearby plume 
(Fig. 1c). The agent’s course direction (Fig. 1f) is defined as the direc-
tion of its instantaneous movement with respect to the ground. (See 
Methods for details of calculations.) Figure 3 shows that the empirical 
course-direction distributions are much better aligned with the plume 
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Fig. 2 | Examples of successful plume tracking trajectories and associated 
odour sensory streams under various plume simulator configurations. Left: 
snapshots of odour plumes (grey) overlaid with RNN agent trajectories, which are 
coloured according to whether the agent was able to sense the presence (green) 
or absence (dark blue) of odour. Trajectories start at the filled black circle and 
end at the odour source, indicated by dotted cross-hairs in the left-hand side of 
each panel. The plume visualizations are from the end of the tracking episode 
(last frame) and thus deviate from the plume as observed by the agent during 
the episode. The arrow within the dotted circle above the cross-hairs shows the 
direction of the wind at the time of the snapshot. All examples use a 0.5 m s−1 wind. 
Middle: odour concentration profiles at vertical breadthwise grid lines in the 

simulated arena, x = {2, 4, 6, 8} m. Right: odour concentration as sensed by the agent 
over time C(t), and odour concentration profiles along the horizontal lengthwise 
grid line at y = 0 m. a–e, Each row is a different plume configuration: constant 
left-to-right wind-direction plume (a), sparse plume with the same left-to-right 
constant wind direction but reduced (0.4-fold) birth rate of odour packets (b), 
sparser plume, which is like the sparse configuration and additionally has a reduced 
(0.5-fold) puff radial diffusion rate (c), switch-once plume, which makes one 45° 
anticlockwise wind-direction switch during the tracking episode (d), and switch-
many plume with wind direction switches occurring every ~3 s (e). Animations 
accompanying released code provide additional examples of successful and 
unsuccessful tracking episodes. a.u., arbitrary units; FPS, frames per second.
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centreline than with the wind for one example agent. For switch-once 
plumes, the peak of the course-direction distribution is much closer 
to ±180° when considered relative to the centreline than relative to 
the wind direction. This observation indicates that the agent’s flight 
is on average aligned (antiparallel) with the plume centreline, but at 
an ≈45° angle with respect to the current wind direction. Similarly, 
the same trend holds in the switch-many configuration, where the 
course-direction distribution is aligned with the plume centreline, but 
diverges from the wind direction. This trend holds across all five RNN 
agents (Supplementary Figs. 3–12).

Low-dimensional neural activity with task-relevant variables
We now turn our attention to the neural dynamics of the RNNs as agents 
perform plume tracking. Rather than characterizing the activity of 
individual units, we consider the population activity of the network46.

First, we reduce and visualize the population activity of our RNN 
across the constant, switch-once and switch-many plume configura-
tions and find that the neural activity is low dimensional (Fig. 4g), 
with the first five to eight principal components explaining 90% of the  
variance in the 64-dimensional population activity. This trend holds 
across all five RNN agents (Supplementary Figs. 13–17).
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differences between the three behaviour modules across key behavioural 
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estimates for drift in the x direction (Δx) and y direction (Δy) per time step 
show how tracking is characterized by primarily upwind (negative x-direction) 
movement in both tracking and recover modules, but less so in the lost module. 
y-direction movements are notable in the tracking and recovering modules, 
corresponding to more complex turning behaviours, but minimal in the lost 
module. Turn action: left/right turning movements are balanced in the tracking 
module as the agent closely tracks the edge of the plume, but it is biased towards 

clockwise movements in the other two modules, especially the lost module. 
Move action: the agent substantially modulates its forward movement speed in 
the lost module only. Stray distance: the agent strays from the plume minimally 
in the tracking module, but substantially otherwise. Empirical distributions of 
course direction suggest that agents track the plume with respect to the plume 
centreline rather than the current wind direction. d–f, Kernel density estimates 
of an agent’s course direction relative to the local plume centreline (solid blue) 
and to the current wind direction (dashed orange) in three plume configurations. 
±180° means antiparallel movement with respect to the plume centreline,  
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Bottom row panel titles indicate how many time steps and how many successful 
episodes were summarized in each plot.
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To gain insights into the computations supporting the plume 
tracking behaviour, we look for variables represented in this 
low-dimensional population activity that are relevant for solving the 
task. We find that the RNNs have learned to represent task-relevant 
quantities beyond the instantaneous egocentric sensory observations 
received from the simulator (Fig. 4a–d).

Interestingly, these quantities reflect information necessary for 
solving these challenging plume tracking tasks and require memories 
of past sensory cues encountered by the agent. First, the agent’s head 
direction, or its orientation with respect to the ground, is evident in 
Fig. 4a. The time since the plume was last encountered is encoded as 
in Fig. 4b and may be involved in determining transitions between 
behaviour modules. Whereas the agent only receives local odour con-
centrations as a sensory input, we find that an exponentially weighted 
moving average of sensed odour concentrations is present in Fig. 4c. 
We conjecture that this quantity may be useful as a memory in the face 
of an intermittent odour signal arising from a patchy odour plume. 
Similarly, an exponentially weighted moving average of a discretized 
odour encounter signal is evident in Fig. 4d.

To quantify how important these represented variables are to 
actual task performance, we train a random forest47 classifier to predict 
the (discretized) actions taken by the agent over successful trajectories 
(see Methods for details). We also estimate the relative importance of 
each input feature by calculating its permutation importance score47,48, 
which is an estimate of the reduction in the classifier’s accuracy across 
several (N = 30) randomized permutations of that feature. Classifier 
accuracies using all aforementioned represented features (Fig. 4f) 
along with instantaneous egocentric sensory features are 10–18% 
higher across all agents than that using classifiers receiving just instan-
taneous egocentric sensory observations, and 26–51% higher across all 
agents than that produced by a majority-class classifier (see Extended 
Data Tables 2 and 3 for each agent’s feature metadata and classifier 
accuracies, respectively). Represented variables have permutation 
importance scores within the range covered by the importance scores 
of the instantaneous egocentric sensory inputs. Time since plume was 
last encountered is always one of the top two most important features, 
close to the x component of the egocentric wind velocity. The two 
time-averaged odour features always easily dwarf the importance of the  
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Fig. 4 | Neural activity of RNN is low dimensional and represents biologically 
relevant variables. a–d, Neural activity trajectories plotted over a diversity 
of plume conditions and tracking outcomes: a, coloured according to agent 
head direction ΘHEAD; b, steps since last odour encounter Tlast; c, exponentially 
weighted moving average (EWMA) of odour concentration (odourEWMA, window 
size 8 steps); d, exponentially weighted moving average of recent odour 
encounters (odourENC, window size 46 steps). The sliding-window sizes for c and 
d are determined by identifying the peaks of these curves. e, Quality of fit (R2) 
of a linear model regressing neural activity onto odourEWMA and odourENC for 
sliding windows of varying lengths. The plot of cumulative variance explained 
by the top principal components of neural activity aggregated across multiple 

plume configurations (constant, switch-once and switch-many) suggests a 
low-dimensional structure. f, Horizontal box plots of feature permutation 
importance scores of classifier trained to predict agent actions. Features include 
quantities plotted in a–d (ΘHEAD, Tlast, odourEWMA and odourENC), and instantaneous 
egocentric sensory observations (wind wX, wY and odour). Box plots show first 
and third quartiles (box dimensions), median (vertical line), 1.5 × interquartile 
range (whiskers) and outliers, if any (open circles). g, 90% of the variance  
of the 64-dimensional neural activity can be explained by the first five principal 
components. See Supplementary Figs. 13–17 for corresponding plots for  
other agents.
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instantaneous odour feature. Furthermore, time-averaged odour  
concentrations are more important than time-averaged odour encoun-
ters in four out of five agents. Head direction has an importance inter-
mediate to the two time-averaged odour features in four out of five 
agents. Note that the estimates provided by this analysis are approxi-
mate due to the discretization of the action data and correlations 
between features.

Neural dynamics are organized into structured regimes
We now examine the dynamics of the RNN activations (hidden state) 
and how it evolves over the course of tracking episodes. This analysis 
is inspired by previous work characterizing the nonlinear dynamics 
of RNN agents by their fixed points and transitions among them39,41,42. 
However, in a noteworthy deviation from these structures, we did not 
find any fixed points in our RNNs. Instead, our RNNs adopt neural 
dynamics that are better described by dynamical regimes. Specifi-
cally, the dynamics appear to organize themselves into overlapping 
but distinctly structures associated with the tracking and lost behav-
ioural modules (Fig. 5). Interestingly, the periodic spiral or oscillatory 
movements seen in the lost behavioural module appear to also have a 
quasiperiodic limit-cycle structure in the neural state space (Fig. 5d), 
while the neural dynamics associated with the tracking behaviour are 
represented as quasiperiodic ‘funnel-like’ structures (Fig. 5c). We also 
see an amorphous transition region associated with the recovering 
behavioural module. We see the same approximate structures (limit 
cycles and funnel) emerge in the neural dynamics for four of the five 
RNN agents. See Supplementary Figs. 18–22 for data on all five agents.

RNN connectivity reveals signatures of instability and 
memory
The weight matrices and recurrence Jacobians of our RNNs after train-
ing offer some theoretical insights into how the neural dynamics of the 
artificial agents are shaped to track plumes.

We find that the training process reorganizes the eigenvalue 
spectrum of the RNN recurrence matrix Wh (Fig. 6a; also see Methods 
for definition). Before training, weights are initialized as normally 
distributed random variables with associated eigenvalues randomly 

distributed within the unit circle. After training, there are multiple 
eigenvalues outside the unit circle in the complex plane. Interestingly, 
for all five agents, there is at least one strictly real-valued eigenvalue 
larger than unity. Along with external stimuli, these unstable eigenval-
ues drive the network’s hidden dynamics.

Comparing the time-averaged stimulus integration timescales 
of trained RNNs (Methods) with those of the untrained RNNs reveals 
that training adjusts these timescales to lie well within the maximum 
episode length of 300 time steps (Fig. 6b). Furthermore, we see that the 
bulk of these timescales are within about 12 time steps (≈0.5 s), suggest-
ing that the plume tracking task predominantly needs short-timescale 
memories. In Extended Data Table 4, we see that this trend holds across 
all five RNNs.

Finally, to understand the role of memory capacity in plume track-
ing, we compare the performance of our trained RNNs with trained 
feedforward multilayer perceptron networks (MLPs) that receive 
varying timescales of sensory history (Methods). As seen in Fig. 6c–f, 
RNNs outperform MLPs for every plume tracking task, with the per-
formance gains being largest in the most challenging tasks. For MLPs, 
longer-duration sensory memories support much better performance 
on tougher tracking tasks, where the plumes switch more often or 
odour packets are sparser.

Discussion
Our artificial RNN agents exhibit similarities to biology at the levels of 
behaviour, computation and neural dynamics. In this section, we draw 
these comparisons, discuss their significance and suggest theoretical 
insights that may be relevant for researchers interested in biological 
plume tracking.

Behavioural features
The complex behaviour exhibited by our agents can be decomposed 
into simpler modules, sequenced by the time elapsed since the agent 
last encountered the plume (Fig. 3). These modules show features simi-
lar to upwind surging, cross-wind casting and U-turn behaviours previ-
ously reported in many studies on moths, fruit flies and other flying 
insects3,5,10,49. The spiralling behaviour seen in the agent’s lost behaviour 
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module has been previously proposed as a plume reacquisition strat-
egy7; however, it deviates from the gradually widening cross-wind cast-
ing strategy typically seen in flying insects. Furthermore, the variable 
sequencing behaviour modules resemble the odour-loss-activated 
clock mechanism that has been previously proposed to drive changes 
in flight behaviour in moths50–52.

Our observations make a behavioural hypothesis that agents 
track plumes with respect to the centreline rather than with respect 
to the current wind direction. In a previous study on tracking in 
constant-wind-direction plumes, ref. 53 proposed a model where 
insects explicitly performed upwind surges when close to the plume 
centreline. However, a later study8 failed to find support for this model. 
Our analysis provides intuition for the role of centreline tracking in 
non-stationary plumes and suggests a testable hypothesis: we predict 
that centreline tracking behaviours will be more apparent in flying 
insects when they track plumes in wind that switches direction.

Algorithms for odour localization
How biological organisms search and localize odour sources has a long 
and rich literature, and a variety of algorithms has been developed to 
explain this capability of single-celled organisms, cells in an organ 
and animals in complex environments. Where gradients exist, these 
smoothly varying rates of changes in concentration may be exploited 
to localize odour sources by chemotaxis and related algorithms54–56. 
However, in intermittent odour landscapes, gradient-based algorithms 

cannot be successful, and the Infotaxis algorithm was developed as  
an alternative57–60.

Both Infotaxis58 and our approach are formulated as solutions to 
plume tracking as a partially observable Markov decision process17. Info-
taxis chooses actions (movements) to maximally reduce the expected 
entropy of the odour source location probability on the next time step. 
This makes two computational requirements of the agent. First, agents 
must store a probability distribution for the source location spanning 
the size of the arena being navigated. Second, agents must perform 
Bayesian inference1. In contrast, here our approach is to learn this 
control policy from only locally available measurements, and actions 
are chosen to maximize the expected discounted reward over a trajec-
tory. Compared with Infotaxis, our approach produces trajectories 
with a stronger semblance to biology and a control policy that reacts 
to changing wind conditions. It also uses a neural implementation that 
does not make any (potentially biologically implausible) assumptions 
about which variables are implemented or how inference is performed.

Neural representations
Our RNN agents learn to represent variables that have been previously 
reported to be crucial to odour navigation (Fig. 4). First, agent head 
direction has been found to be implemented as a ring attractor cir-
cuit in the central complex of many flying insects and is implicated  
in navigation61–64. Second, time since plume was last encountered  
is analogous to the hypothesized internal clock that determines  
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b, Time-averaged (over six episodes and 1,738 time steps) stimulus integration 
timescales associated with stable eigenmodes of recurrence Jacobian Jrec show a 
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top five integration timescales for the agent shown are 56.5, 13.0, 7.7, 6.8 and 5.8 
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agents from each agent architecture, across different plume configurations for 
the same set of 240 initial conditions across varying agent starting location and 
head direction, and plume simulator state. ‘MLP_X’ refers to feedforward 
networks with X time steps of sensory history. Across all plume configurations, 
RNNs generally outperform feedforward networks, with more pronounced gains 
for more complex, switching wind direction (‘switch-once’, ‘switch-many’) plume 
tasks. In feedforward networks, performance on plumes with switching wind 
direction can improve statistically significantly with increasing memory. 
However, no statistically significant effect was observed for plumes with 
constant wind direction. Regression lines (solid black) are fitted on only MLP data 
(N = 30, five agents per MLP type), but are extended slightly (dotted line) for 
comparison with RNNs (P values are for a two-sided Wald test with the null 
hypothesis that the slope is zero).
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behaviour switching in moths50–52. Additionally, ref. 4 showed  
how this variable is encoded by the bursting olfactory receptor  
neurons in many animals, and that it contains information relevant to 
navigating in turbulent odours.

Third, the exponential moving average of odour encounters was pre-
viously65 found to determine the probability of turn and stop behaviours 
in walking flies navigating in turbulent plumes. Specifically, higher odour 
encounter rates were associated with more frequent saccadic upwind 
turns66. Fourth, the exponentially moving average of sensed odour con-
centration is motivated by previous40 theoretical work that posits expo-
nentially weighted moving averages to be good canonical models for 
stimulus integration in RNNs. Between these two time-averaged odour 
variables, the best represented window length for time-averaged con-
centration is substantially shorter (≈0.3 s) than that for time-averaged 
encounters (≈1.9 s). Furthermore, we find that time-averaged odour 
concentration is relatively better represented and more important in 
predicting agent behaviour, corroborating the intuition that turn deci-
sions during flight would require quick decision-making on subsecond 
timescales. We note that alternative variables beyond these four may 
exist that better explain agent navigation decisions.

Neural dynamics
As often seen in neurobiological recordings67, the population activity 
of our RNNs is low dimensional, with the top five to eight principal com-
ponents explaining an overwhelming majority of the 64-dimensional 
population’s total variance (Fig. 4g).

The neural dynamics associated with behaviour modules  
further exhibits interesting structure. Lost behaviours are represented 
as quasi-limit-cycles, while tracking behaviours show a funnel-like 
structure (Fig. 5). Similar one-dimensional circular manifolds and 
two-dimensional funnels42,68 have been previously reported on the 
representational geometry of sensory populations.

The role of memory
Two independent analyses give us insight into the memory require-
ments of the plume tracking task (Fig. 6). We find that the bulk of 
stimulus integration timescales are within ~12 steps or 0.5 s, and 
that longer sensory histories and network recurrence lead to better 
performance on more challenging tasks, such when plumes switch 
direction. Together, we believe that memory is crucial for tracking 
plumes with non-stationary wind direction, but short timescale 
(under ~0.5 s) and reflexive mechanisms may be sufficient for tracking 
constant-wind-direction plumes. This corroborates previous results8,53 
and extends them by highlighting the importance of longer-term  
memory in cases where the wind changes direction.

Limitations and future work
Our results motivate several avenues of further development. First, our 
plume simulator is a computationally efficient but only approximate 
model that can provide a sufficiently realistic time series of odour encoun-
ters for a moving agent. However, it does not capture some aspects of 
real plumes, such as the filamentous nature of plumes2, or the variation 
of whiff duration and whiff frequency as a function of distance from 
source69. Further developments in efficient yet highly accurate models of 
turbulent flows70 could provide better simulations where finer-timescale 
interactions between agents and simulations could be learned.

Second, here we used vanilla recurrent units with no biomechanical  
body model, and models that incorporate known complexity from 
biology as constraints may give rise to further insights. For instance, 
DRL agents may be trained using spiking neural networks71. Further, 
the wealth of architectural insights emerging from the fly connectome 
may be used to constrain wiring motifs in artificial networks72. Model-
ling multiple antennae36,73, or more generally a biomechanical body, 
would enrich the interactions between the agent and the simulation 
environment22,74.

Third, multitask training should produce agents with richer behav-
iours and more complex neural activity structures with shared and 
task-specific adaptations75,76. Adding other sensory modalities such 
as vision and training the agents in a three-dimensional virtual-reality 
environment could produce more realistic perceptual representations 
in the agent35,77.

Finally, future work could explore learning algorithms that respect 
biological constraints such as excitation–inhibition balance and  
Dale’s law78–80. More complex training curricula81 or alternative training 
algorithms using evolutionary techniques82 might be able to mitigate 
the notable performance variability we observed in our agents.

Our analyses also motivate further methodological develop-
ment in theoretical tools to understand actor–critic RNNs. Currently 
available reverse-engineering methods that characterize RNNs using 
discrete dynamical features such as fixed points39–41 are not applica-
ble to the continuous and amorphous dynamical structures that we 
encountered in our analyses (Fig. 5). New methods are also needed 
for comparing multiple agents at the behavioural level, specifically 
taking into account the compounding differences that arise from small 
differences in action–stimulus loops. Finally, further theoretical work 
is required to understand the role of training-induced unstable RNN 
connectivity eigenmodes, such as those observed in Fig. 6, including 
extensions of analytic techniques developed to understand RNNs 
trained by supervised learning38,40,83.

Conclusion
In this paper, we used DRL to train RNN agents to solve a stochastic 
plume tracking task. We find several behavioural and neural features 
that emerge in these trained agents and connect these features with 
how flying insects track turbulent plumes. Our findings motivate future 
experiments and theoretical developments, and provide a foundation 
for more nuanced future work. We hope our approach will contribute 
to the growing convergence in the understanding of artificial and bio-
logical networks84. Efforts to reverse engineer such neural network 
agents will help accelerate the development of similar methods for 
biological agents85,86. Moreover, our RNN agents may serve as genera-
tive models of complex naturalistic behaviours, which may facilitate 
the development of behaviour analysis tools for biology87–89. Insights 
from these studies may also inspire the development of robotic agents 
with artificial olfactory sensing.

Methods
Plume simulation
We implement a particle-based two-dimensional plume simulation 
model (Fig. 1f) that mimics both short-timescale features (intermit-
tency, instantaneous concentrations) and long-timescale features 
(Gaussian time-averaged concentration, filamentous long-range puff 
transport, meandering plume structure) of real-world odour plumes 
evolving in a turbulent flow43. This type of simulation has been used 
in a wide range of domains including olfactory navigation5, robotics92 
and sensor networks93. The simulator (Fig. 1b) comprises a spatially 
homogeneous wind vector field (0.5 m s−1 with configurable direction) 
and an odour source located at the origin that emits odour puffs as a 
Poisson process. Puffs are initialized with a fixed initial radius (r0) and 
concentration (c0). They then undergo a fixed-rate radial diffusion 
(rt = rt−1 + rδ) such that their concentration reduces in proportion to their 
increase in volume, that is, ct = c0(r0/rt)

3. In addition, each emitted puff 
is advected downwind at the wind velocity and perturbed randomly  
by cross-wind translation. In other words, each puff effectively  
performs a biased random walk downwind over time, while diffusing 
in concentration spatially. Our simulated plumes and agents are con-
strained to two dimensions for simplicity of analysis. The dimensions 
of the simulated arena are [−2 m, +10 m] and [−5 m, +5 m] in the x and 
y axes respectively, totalling a 120 m2 arena. Plumes are simulated 
at 100 iterations per second. The plume’s centreline is obtained by 
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simulating puffs that have no random cross-wind translation at each 
iteration (Fig. 1f).

We simulate the following four wind configurations. First, the wind 
direction is held constant (0°) throughout the simulation (constant). 
Second, the wind direction makes one 45° anticlockwise switch during 
a tracking episode (switch-once). Third, the wind direction switches at 
multiple random times during a tracking episode (switch-many). Each 
wind direction turn is a random draw from a Gaussian distribution 
with mean 0 and s.d. 45°, truncated at ±60°, and occurs approximately 
every 3 s. Fourth, the wind direction is held constant, but the puff birth 
rate is reduced (0.4-fold) compared with the constant configuration 
(sparse). See Supplementary Section 1 for further details of the plume 
simulation.

Agent architecture
Our agents are actor–critic networks (Fig. 1e), where an RNN receives 
sensory observations and passes a transformed representation of 
them onto parallel actor and critic heads that are both two-layer 
MLPs44. The actor head implements a control policy to map the 
RNN’s learned state representation to actions, while the critic head 
implements a value function that maps the state representation to 
an estimate of the state’s value based on rewards. This value func-
tion is used only during agent training and not thereafter. In the DRL 
literature, two-layer-deep heads are typically sufficiently expressive 
for such control problems94. At each time step, an agent receives a 
three-dimensional real-valued input vector comprising egocentric 
wind velocities (x, y) and odour concentration at its current location. 
In response, the agent produces continuous-valued turn (maximum 
±6.25π rad s−1) and forward-movement (maximum 2.5 m s−1) actions; 
these velocities are matched to the capabilities of flying fruit flies6,10. 
In contrast to the orthogonal initialization typically employed in the 
mainstream machine learning literature95, we initialize our RNNs  
with normally distributed weights to facilitate comparisons with the 
computational neuroscience literature75,96,97.

Additionally, to understand the role of memory in tracking 
performance, we compare the RNN-based agents with an alterna-
tive feedforward-only network (MLP) architecture with fixed-length 
memory (Fig. 6), simulated by appending historical sensory observa-
tions onto instantaneous network inputs98. Although such MLPs are 
far from being biologically plausible architectures, they serve as useful 
tools for abstract comparison since their memory capacities can be 
controlled precisely. Both RNN and MLP layers across all agents are  
64 units wide with tanh nonlinearities.

Agent training and evaluation
We train our agents using the PPO algorithm45, which is known to 
robustly solve continuous-observation-space continuous-action-space 
control problems without needing substantial hyperparameter tuning. 
To guide agent training, we developed a curriculum and a simple reward 
function that greatly rewards homing in on the odour source, mildly 
rewards actions that reduce the radial distance between agent and 
odour source and penalizes longer-duration trajectories and straying 
too far from the plume. We train 14 independently randomly initialized 
networks for each architecture type, that is, RNNs and MLPs with 2, 4, 
6, 8, 10 and 12 time steps of observation history.

Next, we evaluated each trained agent’s performance with a 
behavioural assay. Each trained agent is evaluated with 240 episodes 
at different initializations (15 initial locations, two initial simulation 
timestamps and eight initial head directions), and in each of the con-
stant, switch-once and switch-many plume configurations. For each 
architecture type, we proceed to analyse only the five seeds with the 
best performance, as measured by total number of successful epi-
sodes across the four plume configurations. Agent training/evaluation  
episodes are run at 25 frames per second on a subsampled plume  
and limited to 300 frames/time steps (12 s of flight) per episode to  

accelerate DRL training. To demonstrate agent performance on more 
patchy odour plumes, the simulations used for Fig. 2c (and all analyses in  
Supplementary Section 7) use a plume radial diffusion rate that is 50%  
of the rate used while training. See Extended Data Table 5 for all asso-
ciated hyperparameters, and Supplementary Section 1 for additional 
details on agent training and evaluation.

Agents track plume centreline and not current wind direction
Subtracting the current wind-direction angle from the course direc-
tion provides the course direction with respect to the wind. To find the 
course direction with respect to the centreline, we first find the median 
local centreline angle using centreline puffs (Fig. 1c) within a ±2 cm band 
of the x coordinate of the agent’s location, then subtract this from the 
course direction with respect to the ground. The empirical distributions 
include aggregate data from when agents are in the tracking behaviour 
module from up to 60 random successful trajectories from the con-
stant, switch-once and switch-many plume configurations. Addition-
ally, for the switch-once configuration, we trim trajectories to consider 
only the time steps after the wind-direction switch has occurred.

Neural activity dimensionality and neural representations
Odour encounters. Our definition of odour encounters is identical to 
that used by Demir et al.65 The stream of odour inputs is discretized to 
be 1 at the first time step of the stream where the odour is perceptible 
and 0 for the remaining contiguous steps where it is still perceptible.

Agent action classifier. To quantify how important these represented 
variables are to actual task performance, we train a random forest47 
classifier to predict actions taken by the agent over successful tra-
jectories. We uniformly partition the turn and move action variables, 
which are continuous valued, into domains of three and two discrete 
classes respectively. These classes correspond roughly to ‘left’, ‘centre’ 
and ‘right’ turns, and to ‘fast’ and ‘slow’ forward movements. These 
are concatenated to form a six-class independent variable. The clas-
sifier receives instantaneous sensory observations (egocentric wind 
speed x and y components wX, wY and odour concentration) and the 
four aforementioned encoded features as inputs. Training and test 
sets are a randomized non-overlapping 80%–20% split of evaluation 
episodes, balanced across plume configuration and episode outcomes. 
We make a 20-trial threefold cross-validated randomized search over 
the number-of-estimators (range [10, 50]) hyperparameter, and then 
train a classifier using the best hyperparameter on the whole training 
set. We next estimate the relative importance of each input feature by 
calculating its permutation importance score47,48, which is an estimate 
of the reduction in the classifier’s accuracy across several (N = 30) ran-
domized permutations of that feature. Note again that the estimates 
provided by this analysis are approximate due to the discretization of 
the action data and correlations between features.

We determine the window sizes99 for odour concentrations and 
encounters by linearly regressing neural activity onto them for slid-
ing windows of varying lengths, and we choose the window size that 
produces the best fit as measured by the coefficient of determination 
R2 (Fig. 4e). The best moving-average window length for time-averaged 
odour concentrations (seven time steps or 0.3 s on average across all 
five agents) is substantially shorter than that for time-averaged odour 
encounters (47 time steps or 1.9 s on average across all five agents). 
Time-averaged odour concentrations are also better encoded (R2 = 0.91 
on average across five agents) than time-averaged odour encounters 
(R2 = 0.59 on average across five agents). See Extended Data Table 2 for 
data on each of the five RNN agents.

RNN connectivity analysis
The update rule for a vanilla RNN with hidden state vector ht is given by

ht = F(ht−1,xt) = tanh (Whht−1 +Wxxt + b) ,
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where Wh is the recurrence (connectivity) matrix of the hidden layer, 
xt are the network’s inputs, Wx is the input-to-hidden layer matrix and 
b is a bias term39. Next, we consider a linearization of this nonlinear 
system around arbitrary expansion points. The RNN update equation 
can be linearized around an arbitrary expansion point (he, xe) to obtain 
a linear dynamical system approximated by

ht ≈ F (he,xe) + Jrec|(he ,xe)Δht−1 + Jinp||(he ,xe)Δxt,

where Δht−1 = ht−1 − he is the state of the linearized system, Δxt = xt − xe 
is the linearized system’s input and Jinp is the input Jacobian40. To be 
explicit,

Jrecij
||(he ,xe)

= ∂F(h,x)i
∂hj

,

Jinpij
||(he ,xe)

= ∂F(h,x)i
∂xj

.

Note that Jrec|(0,0) = Wh and Jinp|(0,0) = Wx.
Previous literature has looked at the eigenvalues and eigenvectors 

of the recurrence Jacobian (and recurrence matrix) to investigate how 
connectivity affects the dynamics of the network38,40. Specifically, 
Maheswaranathan et al.40 obtain the stimulus integration timescale τi 
associated with a stable eigenvalue λi (that is, ∣λi∣ ≤ 1) by looking at the 
discrete-time iteration hi(t) = λtihi(0) that governs the integration of 
stimulus in the direction of eigenvector vi associated with λi. They then 
compare this with the equivalent continuous time equation 
hi(t) = hi(0) e−t/τi to obtain τi = |(1/ln|λi|)|. Following their approach, we 
consider the eigenvalues of the recurrence Jacobian and associated 
stimulus integration timescales along the trajectories of several epi-
sodes. This timescale governs the integration of stimuli in the direction 
of the corresponding eigenvectors. We chose at random one successful 
and one unsuccessful episode from each of three plume configurations 
(constant, switch-once and switch-many). At each time step of  
the trajectory, we computed the recurrence Jacobian assuming zero 
input Jrec|(h,0).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated during and analysed during the current study 
are publicly available in the accompanying figshare repository100.

Code availability
Animations, code, data and instructions to reproduce all figures and 
results in this paper are publicly available in the accompanying GitHub 
repository101. All code has been open-sourced under the MIT Licence.
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Extended Data Table 1 | Thresholds for defining when the lost behaviour module kicks in that is duration (in timesteps or 
seconds) since the plume was last encountered
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Extended Data Table 2 | Moving window lengths and linear regression fit R2 for two represented variables: odorEWMA and 
odorENC. (Recall that 25 timesteps = 1.0 second)
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Extended Data Table 3 | Classifier based quantification of contribution of represented features. In last two columns, 
quantity in parentheses is the difference in accuracy with respect to classifier that has all features (4 represented features 
and instantaneous egocentric sensory features). Represented features contribute to higher test accuracy
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Extended Data Table 4 | Top 5 τs (stimulus integration timescales) for each RNN seed
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Extended Data Table 5 | Parameters for simulator, environment, agent/model, and training
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