Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting functional effect of missense variants using graph attention neural networks

Abstract

Accurate prediction of damaging missense variants is critically important for interpreting a genome sequence. Although many methods have been developed, their performance has been limited. Recent advances in machine learning and the availability of large-scale population genomic sequencing data provide new opportunities to considerably improve computational predictions. Here we describe the graphical missense variant pathogenicity predictor (gMVP), a new method based on graph attention neural networks. Its main component is a graph with nodes that capture predictive features of amino acids and edges weighted by co-evolution strength, enabling effective pooling of information from the local protein context and functionally correlated distal positions. Evaluation of deep mutational scan data shows that gMVP outperforms other published methods in identifying damaging variants in TP53, PTEN, BRCA1 and MSH2. Furthermore, it achieves the best separation of de novo missense variants in neurodevelopmental disorder cases from those in controls. Finally, the model supports transfer learning to optimize gain- and loss-of-function predictions in sodium and calcium channels. In summary, we demonstrate that gMVP can improve interpretation of missense variants in clinical testing and genetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of gMVP model.
Fig. 2: Evaluating gMVP and published methods using cancer somatic mutation hotspots and random variants in population.
Fig. 3: Evaluating gMVP and published methods in identifying damaging variants in known disease genes such as TP53, PTEN, BRCA1 and MSH2.
Fig. 4: Evaluating gMVP and published methods in distinguishing rare DNMs in cases with neurodevelopmental disorders from those in controls.
Fig. 5: Evaluating gMVP and other published methods in classifying pathogenetic and neutral variants, and in predicting GOF and LOF variants in ion-channel genes.
Fig. 6: Interpreting gMVP predictions with conservation, protein structure and genetic coding constraints.

Similar content being viewed by others

Data availability

Pre-computed gMVP scores for all possible missense variants in canonical transcripts on human hg38 can be downloaded from https://www.dropbox.com/s/nce1jhg3i7jw1hx/gMVP.2021-02-28.csv.gz?dl=0. The training data of the main model were downloaded from http://www.discovehrshare.com/downloads (DiscovEHR), http://www.hgmd.cf.ac.uk/ac/index.php (HGMD), https://www.uniprot.org/docs/humpvar (UniProt) and https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/ (ClinVar). Other datasets supporting the findings of this study are available in the paper and the Supplementary Information.

Code availability

The codes for the model design and training and testing procedure are available on GitHub (https://github.com/ShenLab/gMVP/) and Zenodo81.

References

  1. Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    Article  Google Scholar 

  2. Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370.e14 (2018).

    Article  Google Scholar 

  3. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).

    Article  Google Scholar 

  4. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).

    Article  Google Scholar 

  5. Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    Article  Google Scholar 

  6. Rehm, H. L., Berg, J. S. & Plon, S. E. ClinGen and ClinVar—enabling genomics in precision medicine. Hum. Mutat. 39, 1473–1475 (2018).

    Article  Google Scholar 

  7. He, X. et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet. 9, e1003671 (2013).

    Article  Google Scholar 

  8. Nguyen, H. T. et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med. 9, 114 (2017).

    Article  Google Scholar 

  9. Adzhubei, I., Jordan, D. M. & Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).

  10. Carter, H., Douville, C., Stenson, P. D., Cooper, D. N. & Karchin, R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genom. 14, S3 (2013).

    Article  Google Scholar 

  11. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  Google Scholar 

  12. Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Article  Google Scholar 

  13. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 (2015).

    Article  Google Scholar 

  14. Jagadeesh, K. A. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016).

    Article  Google Scholar 

  15. Ionita-Laza, I., McCallum, K., Xu, B. & Buxbaum, J. D. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet. 48, 214–220 (2016).

    Article  Google Scholar 

  16. Qi, H. et al. MVP predicts the pathogenicity of missense variants by deep learning. Nat. Commun. 12, 510 (2021).

    Article  Google Scholar 

  17. Sundaram, L. et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161 (2018).

    Article  Google Scholar 

  18. Samocha, K.E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at bioRxiv https://doi.org/10.1101/148353 (2017).

  19. Havrilla, J. M., Pedersen, B. S., Layer, R. M. & Quinlan, A. R. A map of constrained coding regions in the human genome. Nat. Genet. 51, 88–95 (2019).

    Article  Google Scholar 

  20. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP plus. PLoS Comput. Biol. 6, e1001025 (2010).

    Article  Google Scholar 

  21. Iqbal, S. et al. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc. Natl Acad. Sci. USA 117, 28201–28211 (2020).

    Article  Google Scholar 

  22. Hicks, M., Bartha, I., di Iulio, J., Venter, J. C. & Telenti, A. Functional characterization of 3D protein structures informed by human genetic diversity. Proc. Natl Acad. Sci. USA 116, 8960–8965 (2019).

    Article  Google Scholar 

  23. Sivley, R. M., Dou, X. Y., Meiler, J., Bush, W. S. & Capra, J. A. Comprehensive analysis of constraint on the spatial distribution of missense variants in human protein structures. Am. J. Hum. Genet. 102, 415–426 (2018).

    Article  Google Scholar 

  24. Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35, 128–135 (2017).

    Article  Google Scholar 

  25. Liang, S., Mort, M., Stenson, P.D., Cooper, D.N. & Yu, H. PIVOTAL: prioritizing variants of uncertain significance with spatial genomic patterns in the 3D proteome. Preprint at bioRxiv https://doi.org/10.1101/2020.06.04.135103 (2021).

  26. Chang, M. T. et al. Accelerating discovery of functional mutant alleles in cancer. Cancer Discov. 8, 174–183 (2018).

    Article  Google Scholar 

  27. Jia, X. et al. Massively parallel functional testing of MSH2 missense variants conferring Lynch syndrome risk. Am. J. Hum. Genet. 108, 163–175 (2021).

    Article  Google Scholar 

  28. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  Google Scholar 

  29. Mighell, T. L., Evans-Dutson, S. & O’Roak, B. J. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype–phenotype relationships. Am. J. Hum. Genet. 102, 943–955 (2018).

    Article  Google Scholar 

  30. Kotler, E. et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018).

    Article  Google Scholar 

  31. de Juan, D., Pazos, F. & Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 14, 249–261 (2013).

    Article  Google Scholar 

  32. Morcos, F. et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl Acad. Sci. USA 108, E1293–E1301 (2011).

    Article  Google Scholar 

  33. Vaswani, A. et al. Attention is all you need. In 31st Conference on Neural Information Processing Systems 5998–6008 (NeurIPS, 2017).

  34. Veličković, P. et al. Graph attention networks. In 6th International Conference on Learning Representations (Univ. Cambridge, 2018).

  35. Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (Association for Computational Linguistics, 2014).

  36. Stenson, P. D. et al. Human gene mutation database (HGMD (R)): 2003 update. Hum. Mutat. 21, 577–581 (2003).

    Article  Google Scholar 

  37. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucl. Acids Res. 42, D980–D985 (2014).

    Article  Google Scholar 

  38. Mottaz, A., David, F. P., Veuthey, A. L. & Yip, Y. L. Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics 26, 851–852 (2010).

    Article  Google Scholar 

  39. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 2015 International Conference on Learning Representations (ICLR, 2015).

  40. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. Preprint at https://arxiv.org/abs/1603.04467 (2016).

  41. Alirezaie, N., Kernohan, K. D., Hartley, T., Majewski, J. & Hocking, T. D. ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants. Am. J. Hum. Genet. 103, 474–483 (2018).

    Article  Google Scholar 

  42. Feng, B. J. PERCH: a unified framework for disease gene prioritization. Hum. Mutat. 38, 243–251 (2017).

    Article  Google Scholar 

  43. Dewey, F. E. et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR Study. Science 354, aaf6814 (2016).

    Article  Google Scholar 

  44. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  Google Scholar 

  45. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  Google Scholar 

  46. Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).

    Article  Google Scholar 

  47. Heyne, H. O. et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. 12, eaay6848 (2020).

    Article  Google Scholar 

  48. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  Google Scholar 

  49. Abrusán, G. & Marsh, J. A. Alpha helices are more robust to mutations than beta strands. PLoS Comput. Biol. 12, e1005242 (2016).

    Article  Google Scholar 

  50. Gao, M., Zhou, H. & Skolnick, J. Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure 23, 1362–1369 (2015).

    Article  Google Scholar 

  51. Li, S.-C., Goto, N. K., Williams, K. A. & Deber, C. M. Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc. Natl Acad. Sci. USA 93, 6676–6681 (1996).

    Article  Google Scholar 

  52. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    Article  Google Scholar 

  53. Yang, J. Y. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020).

    Article  Google Scholar 

  54. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017).

    Article  Google Scholar 

  55. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  Google Scholar 

  56. Kumar, S., Clarke, D. & Gerstein, M. B. Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures. Proc. Natl Acad. Sci. USA 116, 18962–18970 (2019).

    Article  Google Scholar 

  57. Anishchenko, I., Ovchinnikov, S., Kamisetty, H. & Baker, D. Origins of coevolution between residues distant in protein 3D structures. Proc. Natl Acad. Sci. USA 114, 9122–9127 (2017).

    Article  Google Scholar 

  58. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  Google Scholar 

  59. Rao, R. et al. MSA transformer. In Proc. 38th International Conference on Machine Learning 8844–8856 (PMLR, 2021).

  60. Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

    Article  Google Scholar 

  61. Rao, R., Meier, J., Sercu, T., Ovchinnikov, S. & Rives, A. Transformer protein language models are unsupervised structure learners. In 2015 International Conference on Learning Representations (ICLR, 2015).

  62. Lal, D. et al. Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. Genome Med. 12, 28 (2020).

    Article  Google Scholar 

  63. Zhang, X. et al. Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions. Genet. Med. 23, 69–79 (2021).

    Article  Google Scholar 

  64. Starita, L. M. et al. Variant interpretation: functional assays to the rescue. Am. J. Human Genet. 101, 315–325 (2017).

    Article  Google Scholar 

  65. Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019).

    Article  Google Scholar 

  66. Hartl, D. L. & Clark, A. G. Principles of Population Genetics 4th edn (Sinauer Associates, 1989).

  67. Cassa, C. A. et al. Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat. Genet. 49, 806–810 (2017).

    Article  Google Scholar 

  68. Charlesworth, B. & Hill, W. G. Selective effects of heterozygous protein-truncating variants. Nat. Genet. 51, 2 (2019).

    Article  Google Scholar 

  69. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  Google Scholar 

  70. Mulder, N. et al. H3Africa: current perspectives. Pharmgenomics Pers. Med. 11, 59–66 (2018).

    Google Scholar 

  71. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  Google Scholar 

  72. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks. In Proc. 14th International Conference on Artificial Intelligence and Statistics 315–323 (JMLR, 2011).

  73. Ke, G., He, D. & Liu, T.-Y. Rethinking positional encoding in language pre-training. In 2021 International Conference on Learning Representations (ICLR, 2021).

  74. Bateman, A. Uniprot: a universal hub of protein knowledge. Protein Sci. 28, 32–32 (2019).

    Google Scholar 

  75. Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    Article  Google Scholar 

  76. Herrero, J. et al. Ensembl comparative genomics resources. Database 2016, bav096 (2016).

  77. Klausen, M. S. et al. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins 87, 520–527 (2019).

    Article  Google Scholar 

  78. Armean, I. M. et al. Enhanced access to extensive phenotype and disease annotation of genes and genetic variation in Ensembl. Eur. J. Human Genet. 27, 1721–1721 (2019).

    Google Scholar 

  79. McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article  Google Scholar 

  80. Ge, R., Kakade, S. M., Kidambi, R. & Netrapalli, P. Rethinking learning rate schedules for stochastic optimization. In 2019 International Conference on Learning Representations (ICLR, 2018).

  81. Zhang, H. & Shen, Y. ShenLab/gMVP: v1.0.0-alpha. Zenodo https://doi.org/10.5281/zenodo.7134878 (2022).

Download references

Acknowledgements

This work was supported by NIH grants (nos. R01GM120609, R03HL147197, U01HG008680 and K99HG011490) and the Columbia University Precision Medicine Joint Pilot Grants Program. We thank Y. Zhao, G. Zhong, M. AlQuraishi and D. Knowles for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conceived and guided the study. H.Z. implemented the algorithms and performed the main analyses. All authors contributed to data analysis, interpretation and manuscript writing.

Corresponding author

Correspondence to Yufeng Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Xiaoming Liu, Wim Vranken, Amit R Majithia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Test, Figs. 1–15 and Tables 11–18.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, M.S., Fan, X. et al. Predicting functional effect of missense variants using graph attention neural networks. Nat Mach Intell 4, 1017–1028 (2022). https://doi.org/10.1038/s42256-022-00561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-022-00561-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing