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A fast blind zero-shot denoiser

Jason Lequyer1,2, Reuben Philip1,2, Amit Sharma    1, Wen-Hsin Hsu    1 and 
Laurence Pelletier    1,2 

Image noise is a common problem in light microscopy. This is particularly 
true in real-time live-cell imaging applications in which long-term cell 
viability necessitates low-light conditions. Modern denoisers are typically 
trained on a representative dataset, sometimes consisting of just unpaired 
noisy shots. However, when data are acquired in real time to track dynamic 
cellular processes, it is not always practical nor economical to generate these 
training sets. Recently, denoisers have emerged that allow us to denoise 
single images without a training set or knowledge about the underlying 
noise. But such methods are currently too slow to be integrated into imaging 
pipelines that require rapid, real-time hardware feedback. Here we present 
Noise2Fast, which can overcome these limitations. Noise2Fast uses a novel 
downsampling technique we refer to as ‘chequerboard downsampling’. This 
allows us to train on a discrete 4-image training set, while convergence can 
be monitored using the original noisy image. We show that Noise2Fast is 
faster than all similar methods with only a small drop in accuracy compared 
to the gold standard. We integrate Noise2Fast into real-time multi-modal 
imaging applications and demonstrate its broad applicability to diverse 
imaging and analysis pipelines.

Image noise is the random fluctuation of colour or intensity values that 
is inherent to image acquisition. It usually presents as a hazy shroud that 
obscures an otherwise clear visual signal. Image denoising methods 
try to fix this by removing noise after the fact, usually by exploiting the 
innate structure and pattern of the underlying signal and leveraging 
it against the apparent stochasticity of the noise1. Denoising is par-
ticularly important in live-cell imaging applications, where a balance 
between the conflicting considerations of resolution, phototoxicity 
and throughput can force the acceptance of a considerable amount 
of noise to achieve experimental goals.

Many techniques focus on modelling noise by understanding its 
origin; for example, confocal microscopy is mainly subject to a combi-
nation of Gaussian- and Poisson-distributed noise2. However, with deep 
learning, such explicit models are avoidable by instead training a neural 
network to learn to map noisy images to their clean counterparts, such 
as in DnCNN3, or even by training it to map noisy pairs of images to one 
another, such as in Noise2Noise4, both are essential components of 
the CARE toolbox5.

However, these methods cannot perform effectively on data that 
were not well represented in the training set, and hence the training 
set itself can become a source of bias and variation. Moreover, it is not 
always practical to acquire representative training data. One example 
of this is live automated microscopy where real-time image analysis is 
used to alter the behaviour of the imaging system. Such pipelines are 
usually confronted with single, noisy images and no additional context. 
While representative training data could be collected in a separate run, 
this is time consuming, resource intensive and requires expertise that 
is not always available. For these reasons, blind zero-shot denoisers 
have been developed.

Blind zero-shot denoisers train themselves on the very image 
they are trying to denoise, appealing to no other outside information 
or knowledge about the distribution and/or variance of the noise in 
the underlying image. Noise2Void6 is one of the earliest methods that 
can be tailored to achieve this. Noise2Void denoises images by using 
a masking procedure wherein the neural network learns to fill in pixel 
gaps in the noisy image. The failure of the network to learn the noise 
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faster than all compared methods, and is more accurate than all tested 
methods except for Self2Self.

Consider a 2D image x ∈ ℝm×n composed of both signal and noise 
s,n ∈ ℝm×n. That is to say

x = s + n. (1)

Denoising is concerned with the inverse problem of inferring s from x 
(or equivalently inferring n and then solving for s). A neural network 
attempts to solve this problem by finding a function fθ ∶ ℝm×n → ℝm×n 
(parameterized by the network weights θ) such that

fθ(x) ≈ s. (2)

The most intuitive way to train such a network is by using pairs 
of noisy/clean images and having the network learn a mapping from 
one to the other. Noise2Noise trains the network to learn a mapping 
from different noisy shots of the same image, allowing for training in 
the absence of clean ground truth data. Specifically, given two noisy 
realizations of the same underlying signal s + n1 and s + n2 Noise2Noise 
attempts to learn the mapping

fθ(s + n1) → s + n2. (3)

causes it to denoise the underlying image. Although it was trained 
on entire datasets of images with similar noise levels, Noise2Void 
can be adapted to denoise single noisy images by restricting the 
training set to just that image (and virtually every other ‘single-shot 
denoiser’ including Recorrupted-to-Recorrupted, Noise2Void and 
Noise2Self, can be adapted in a similar way). The basic idea of Noi-
se2Void was improved and generalized in Noise2Self7 and further 
refined in Self2Self8 to achieve single image denoising results that 
are competitive with traditional fully trained methods. However, 
all viable blind zero-shot denoisers to date require a considerable 
amount of time to run (for example, Self2Self takes 4 hours to denoise 
a single 512×512 confocal image), making them impractical for use in 
real-time situations.

To alleviate this, we propose Noise2Fast. Our method is inspired by 
a recently published approach called Neighbor2Neighbor9 where the 
neural network learns a mapping between adjacent pixels. We tune our 
method to speed by using a discrete four-image training set obtained 
by an unusual form of downsampling we refer to as ‘chequerboard 
downsampling’ and train a small neural network on this discrete train-
ing set. Although such a method inevitably overfits, we can accurately 
validate using the original full-sized noisy image since our distorted 
downsamplings do not locally resemble it, giving us a method that has 
a natural cut-off time unlike blind-spot-based denoisers. Noise2Fast is 
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Fig. 1 | An overview of how Noise2Fast trains itself. a, Chequerboard 
downsampling illustrated. We take our initial image, remove one half of all pixels 
in a chequerboard pattern, and shift the remaining pixels to fill in the gaps left 
behind. b, Our simple neural network architecture. Inputs can be multi-channel, 

however, for best results outputs are always single channel (for colour images we 
predict each channel separately). c, Overview of our training scheme. Our neural 
network learns mappings between pairs of chequerboard downsampled images, 
each generated from different group of pixels.
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However, if we assume mean-zero noise and choose a sensible loss 
function4, the network may fail to actually learn the noise n2, and we 
will be left with

fθ(s + n1) ≈ s, (4)

denoising the image as a result. Although elegant, this method still 
requires pairs of noisy images to train on.

Recently, interest has grown in methods that can denoise single 
noisy images, without this added requirement. To fully understand 
these methods, we need to adopt a different perspective of how neural 
networks denoise images.

Here we take the view of Krull et al.6, based on the concept of recep-
tive fields. The receptive field of a fully convolutional neural network 
(FCN) is the set of input pixels that were taken into consideration for a 
given output pixel prediction. For example, in our above scenario sup-
pose (i, j) ∈ ℕ≤m × ℕ≤n are the co-ordinates of some pixel in the output 
image fθ(x). Then the receptive field (RF) of that pixel is the set of indices 
RF(i, j) ⊆ ℕ≤m × ℕ≤n such that fθ(x)(i,j) depends only upon the value of 
x|RF(i,j) (typically this will be a small square patch of the image x). We 
can then view the neural network as a mapping from the input image 
along some receptive field to its corresponding output pixel, with the 
goal of finding θ such that

fθ (x|RF(i,j)) ≈ s (i, j) , (5)

for every (i, j) ∈ ℕ≤m × ℕ≤n. The question though, is how to train these 
networks without any actual training data other than the noisy image 
itself. Blind-spot methods approach this by excluding the centre pixel 
from the receptive field (either by removing/replacing it6,7 or ignoring 
it altogether using partial convolutions8), and training the network to 
recover this centre pixel from its surroundings. More specifically, they 
train the network to learn the mapping.

fθ (x|RF(i,j)⧵(i,j)) → x (i, j) . (6)

However, just as in Noise2Noise, the network fails to learn the noise, 
leaving us with

fθ (x|RF(i,j)⧵(i,j)) ≈ s (i, j) . (7)

Excluding the centre pixel is crucial and ensures that the net-
work does not just learn the identity. However, a side effect of this 
is that the neural network does not give proper weight to the pixel 
itself when computing the output, which is unfortunate, because 

the pixel itself is always going to be the best individual predictor of 
its denoised value.

Our method takes a related, but slightly different approach. 
Instead of masking the input image, we explicitly divide the input image 
in two, by using a simple downsampling method that we refer to as 
chequerboard downsampling. This process is easier to visualize than 
explain (see Fig. 1a), however we take our input image x and split it into 
two smaller images composed of the even pixels (where i + j is even) 
and odd pixels (where i + j is odd) respectively, and compress them into 
the two following m × 1

2
n images

xeven(i, j) = x(i, 2j + (imod2)), (8)

xodd(i, j) = x(i, 2j + (imod2) + 1). (9)

We can call these the ‘up’ chequerboard downsamples, since they 
involve shifting everything up one pixel to close the image.

Now suppose we train our neural network (Fig. 1b) to learn the 
mapping

fθ(xeven) → xodd. (10)

We can rewrite this as

fθ(seven + neven) → seven + nodd + (sodd − seven). (11)

Notice that this is analogous to Noise2Noise (equation (3)), except for 
the addition of the (sodd − seven) term. However, for every (i, j) ∈ ℕ≤m × ℕ≤n, 
we have that sodd(i, j) and seven(i, j) are adjacent pixels in the original 
image signal, it is therefore reasonable to think this term would be very 
small in all but the most highly dynamic regions. Indeed, in our testing, 
we found that even if we cheat and subtract out the term using known 
ground truth values, there was no measurable gain in denoising per-
formance. We therefore claim that for most natural images,

seven + nodd + (sodd − seven) ≈ seven + nodd. (12)

Then, analogous with Noise2Noise (equations (3) and (4)), training our 
network as outlined in equation (10) should, in effect, find weights θ 
such that

fθ(xeven) ≈ seven. (13)

However, in our experiments we have witnessed a much stronger result 
than this. In particular, we observe that a network trained as in equation 

Table 1 | Accuracy and speed of Noise2Fast

Dataset σ Noise2Self (single) Noise2Void (single) DIP3000 Neighbor2Neighbor 
(single)

Self2Self Noise2Fast

PSNR/SSIM Time 
per 
image

PSNR/SSIM Time 
per 
image

PSNR/SSIM Time 
per 
image

PSNR/SSIM Time 
per 
image

PSNR/SSIM Time per 
image

PSNR/SSIM Time 
per 
image

Set12 15 30.69/8.71 2,161 s 30.04/8.47 2,682 s 28.51/8.04 70 s 27.97/7.87 198 s 32.17/8.89 9,484 s 31.10/8.71 22 s

25 28.35/7.76 2,161 s 28.41/7.80 2,682 s 26.47/7.07 70 s 26.23/6.87 198 s 29.88/8.42 9,484 s 29.05/8.22 18 s

35 26.59/7.27 2,161 s 27.29/7.71 2,682 s 24.25/5.96 71 s 25.09/6.32 198 s 28.24/7.99 9,484 s 27.57/7.81 19 s

50 25.04/6.87 2,161 s 25.70/7.20 2,682 s 21.19/4.39 70 s 23.43/5.32 198 s 26.34/7.34 9,484 s 25.82/7.23 21 s

BSD68 25 27.50/7.73 1,619 s 26.66/7.31 2,682 s 25.74/6.85 69 s 25.68/6.92 231 s 28.70/8.03 7,962 s 28.12/7.89 29 s

50 24.53/6.46 1,619 s 24.50/6.05 2,682 s 21.29/4.42 69 s 23.59/5.45 231 s 25.92/6.99 7,962 s 25.23/6.70 26 s

Confocal – 36.45/9.31 4,015 s 36.45/9.31 2,682 s 35.16/9.05 102 s 14.78/3.01 400 s 36.99/9.38 18,016 s 36.61/9.33 56 s

PSNR and per-image time required to denoise on an RTX 5000 mobile GPU, for each dataset using each method.
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(10) will not just learn to denoise the downsampled image, but the entire 
image as a whole. That is

fθ(x) ≈ s. (14)

To explain this phenomenon, we return to the receptive field-based 
perspective of equation (6). In this case, our network is trained to learn 
the mapping

fθ (xeven|RF(i,j)) → xodd (i, j) . (15)

It is known, and is often exploited by denoising algorithms, 
that single images contain significant internal redundancy in the 
form of recurrent patches10. It is also known, and is crucial to some 
super-resolution methods, that single images have a certain degree of 
self-similarity, and hence these patches also recur across scales11–14. This 
across-scale patch recurrence implies similarity between the patches 
in the chequerboard downsampled images and the original full-sized 
image. We demonstrate this in Extended Data Fig. 1, by comparing the 
patch-wise similarity between an image and its chequerboard down-
samplings. Hence, a neural network trained to learn as in equation (10) 
may be applicable to the overarching denoising task.

Our method uses this basic principle to generate a small training 
set of four-image pairs (Fig. 1c). This compact training set allows for 
rapid network convergence and hence quick single image denoising 
results that were previously unattainable with such a high degree of 
accuracy.

Contribution and significance
Our main contributions are as follows:

•	 A novel denoising method that combines an unusual down-
sampling method with Neighbor2Neighbor. Our method uses 
chequerboard downsampling to generate a small four-image fixed 
dataset out of one single image. We then apply our network trained 

on this smaller dataset to denoise the larger input image, which 
also serves as our validation set.

•	 High accuracy and substantial speed gains over existing meth-
ods. Our method is tailored specifically for speed; using a small 
four-image dataset ensures rapid convergence, and our validation 
strategy avoids overfitting. Our method is also quite accurate, in 
terms of PSNR (peak signal-to-noise ratio) and SSIM (Structural 
Similarity Index Measure), the only tested method more accurate 
than the one we propose here is Self2Self, which is an average of 
200 times slower (Table 1 and Fig. 2).

•	 The first blind single image denoiser that can viably be inserted 
into live automated microscopy pipelines. We specifically dem-
onstrate that our method can be seamlessly inserted into ‘smart’ 
imaging pipeline where the microscope monitors a large field of 
view containing dozens of cells, detects when a cell enters mitosis, 
and then zooms in on that cell for the duration of mitosis. Since the 
window to perform these analyses is only 5 minutes and denois-
ing is just the first step in the pipeline, no other blind zero-shot 
denoiser could be feasibly placed here.

Related work
Methods that require a training set
The first attempt to apply convolutional neural networks (CNNs) to 
the task of denoising was in ref. 15. This was heavily refined in refs. 3,16 
(DnCNN) to achieve performance that is still competitive today. Zhang 
et al. later released FFDNet17, a denoising CNN designed with speed in 
mind which, similar to our method, also uses downsampling, although 
in a different manner and to an entirely different end (see ref. 18).

The main benefit of using trained methods, outside of their out-
standing performance, is that they do not require assumptions about 
the type and structure of the noise, they can simply be trained on noisy/
clean pairs of images. However, their reliance on noisy/clean image 
pairs can be considered a limitation in situations where we do not have 
access to ground truth images to train on.
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To overcome this limitation, Noise2Noise was developed4. Noise-
2Noise can be trained exclusively on pairs of noisy images without any 
access to ground truth data. It is especially useful in biological imaging 
where, often, imaging trade-offs dictate that ground truth data cannot 
ever be obtained.

However, paired noisy images are not always easy to obtain, 
so there was interest in developing methods that could denoise on 
unpaired training sets of noisy images from some desired domain. The 
first method capable of this without having sensitive hyperparameters 
was Noise2Void6. Noise2Void works by training the network to learn 
a mapping from the noisy image back to itself, masking the centre of 
each receptive field so as to avoid learning the identity.

This basic model of masking the input is known as a blind-spot 
network, and was heavily refined and expanded upon in ref. 19 and much 
more recently applied in BP-AIDE20 in a manner that is specifically tai-
lored to Gaussian–Poisson noise. In ref. 21 they demonstrate a retooled 
version of BP-AIDE with much faster inference time.

A recently developed alternative to blind-spot networks is Neigh-
bor2Neighbor9 which underlies the method we present in this paper. 
Neighbor2Neighbor learns to map adjacent pixels in the image to 
one-another, with the idea being that, except in the most highly 

dynamic regions of the image, adjacent pixels tend to have a similar 
underlying signal.

Recorrupted-to-Recorrupted22 is another recent denoiser. 
Recorrupted-to-Recorrupted attempts to corrupt single noisy images 
into noisy image pairs, and then apply a Noise2Noise-like network. 
Recorrupted-to-Recorrupted is not blind, and requires an estimate of 
the underlying noise variance and also contains a sensitive ’coefficient 
of recorruption’ parameter.

Ultimately, all methods listed in this section require a representa-
tive training set of noisy images to train on before being applied. In the 
next section we describe methods that were specifically developed for 
denoising single noisy images without a training set.

Zero-shot methods
The first method that directly applied itself to the task of blind zero-shot 
denoising is Noise2Self7. Noise2Self is a very similar method to Noi-
se2Void that achieves slightly better performance, and includes a very 
thorough mathematical justification for the principles underlying the 
success of masking-based denoising techniques.

Self2Self8 was the first blind zero-shot method whose performance 
approaches fully trained methods. Self2Self is a blind-spot method, 
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however instead of replacing masked pixels, it ignores them altogether 
by using partial convolutions23,24. Self2Self also introduces the innova-
tive step of adding dropout and averaging across multiple runs of the 
same image. However, this comes at a high computational cost.

Non-blind zero-shot methods
BM3D25 is one of the gold standards for pure Gaussian noise. It works by 
unfolding the image into interleaved square patches, clustering those 
patches based on similarity, and then filtering them before reconstruct-
ing the image. BM3D, however, is not blind and takes, as a parameter, an 
estimate of the standard deviation of the underlying noise. Moreover, 
BM3D does not work on Poisson noise.

A much more recent learning-based method is Deep Image Prior 
(DIP)26. DIP works by taking a neural network with randomly initial-
ized weights, and training to reconstruct the noisy image. Similar to 
Noise2Noise, it will fail to learn the underlying noise (at least at first) 
and instead learn to output the signal. DIP is highly sensitive to the 
number of iterations, and will quickly overfit if trained too long, for 
this reason it is not completely practical as a blind denoiser. For our 
experiments, we force it to be blind by using a fixed iteration number, 
however, the results it attains are far below what a non-blind version 
of this algorithm can reach.

Since it is easy to confuse the various different types of unsuper-
vised denoiser, we have included a chart in Extended Data Fig. 2 to 
clarify the distinctions.

Results
Accuracy
The benchmarking of reference datasets was carried out using a single 
laptop GPU (RTX 5000 mobile GPU) to better approximate the modest 
(although still powerful) computational capabilities of the average end 
user. However, because of the massive amount of time required to test 
Self2Self on 68 images under these constraints, we rely on their previ-
ously published accuracy measurement for comparison and estimate 
time per image using a random sample of five images for this dataset 
only. On all other datasets (Set12 and Confocal), we run Self2Self on 
the entire set to obtain accuracy and speed.

On synthetic Gaussian noise our method outperforms everything 
except Self2Self, which beats us by 0.6–1.0 PSNR across Set12 and 
BSD68 (Table 1 and Fig. 2). We also tested our method on confocal 
microscopy images, where again we are slightly less accurate than Self-
2Self, but outperform everything else. Visual comparison of the results 
(Fig. 2b) indicate that Noise2Fast appears to smooth the image less than 
the other methods, creating a more textured look. But overall, every 
method performed very similarly on the confocal microscopy dataset, 
except for DIP, which likely needed more iterations to converge, and 
Neighbor2Neighbor, which seems to not really be suited to zero-shot 
denoising (nor was it ever intended to be).

For comprehensiveness, we also do pure accuracy comparisons for 
a myriad of other methods in Extended Data Fig. 3, including Noisier-
2Noise27 and SURE28,29 where compared methods have access to varying 
degrees of additional information ranging from an estimate of the noise 
level (BM3D) to a full representative noisy/clean dataset (DnCNN).

Speed
We next sought to determine how fast our method is compared to other 
algorithms. Our results show that Noise2Fast is considerably faster than 
all tested methods, an average of 200 times faster than Self2Self the 
only method that exceeds us in accuracy (Table 1 and Fig. 2).

Because ’speed’ is just a reflection of the maximum number of 
iterations we allow each method to run (a parameter we borrow from 
their published code where possible), we also compared the accuracy 
of each method if we set the maximum number of iterations so that 
each program only runs for as long as Noise2Fast takes to fully denoise 
the image (Extended Data Fig. 4). In this case, it is easy to see that no 
competitor even approaches the accuracy Noise2Fast can achieve in 
such a short amount of time.

Biological data
Next we determined the speed of Noise2Fast on larger image datasets 
of both fixed and live cells acquired on our imaging systems. For this, 
MDA-MB 231 cells were fixed and either stained for actin and DNA or 
endogenously tagged with H3-3B-mScarlet and mNeon-ACTB (Meth-
ods). The performance was compared using two different imaging 

1,000× 1× 1× + Noise2Fast

CellPose segmentation

N
uc

le
i

A
ct

in

A
ve

ra
ge

 p
re

ci
si

on
A

ve
ra

ge
 p

re
ci

si
on

Noisy Noise2Fast
0

0.2

0.4

0.6

0.8

1.0

Noisy Noise2Fast
0

0.2

0.4

0.6

0.8

1.0

Fig. 4 | We demonstrate that Noise2Fast significantly improves downstream 
segmentation with CellPose (a generalist segmentation tool) on our data. We 
show that by using Noise2Fast on low exposure 1× (0.1 milliseconds) images, we 
can achieve generalist segmentation results that nearly match that of our high 

exposure 1,000× (100 milliseconds) pseudo ground truth images. We tested on 
four crops extracted from each of three fields of view, for a total of eleven images 
in each dataset (one image was excluded because it contained nothing). All 
images were taken from the same sample. Scale bars are 10 μm.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 4 | November 2022 | 953–963 959

Article https://doi.org/10.1038/s42256-022-00547-8

modalities: epifluorescence for the fixed cells and resonance scanning 
confocal microscopy for the live cells. Based on the linearity of the 
intensity measurements of our imaging system, our results indicate 
that we can achieve relatively clear images while exposing our images 
to 400-fold less light (Fig. 3). Although Self2Self achieves similar, if not 
slightly better, results, processing time was significantly longer, more 
specifically Self2Self required 596 core days versus 0.7 for our method 
to process the video in Fig. 3b on a Tesla V100.

Effect on downstream analysis
We next sought to determine if Noise2Fast improves downstream seg-
mentation tasks. Towards this, in Fig. 4 we show how denoising impacts 
segmentation results using CellPose30. We chose CellPose for this com-
parison because it is commonly used and it pairs well with Noise2Fast 
since both are generalist. Our results show a clear improvement in seg-
mentation accuracy when the image is first denoised using Noise2Fast, 
as quantified using the average precision metric used in refs. 31,32. Our 
results highlight the need to incorporate denoising as a first step in 
image analysis pipelines when noise levels are high, and in this case we 
show that Noise2Fast can effectively serve in this role. For a more thor-
ough investigation of how denoising improves segmentation, see ref. 31.

Application
We show that our method can be integrated into time-sensitive auto-
mated microscopy pipelines. In particular, we performed an experi-
ment where the microscope monitors a large field of view (FOV) at 
20× (containing about 40 cells) over 8 hours (Fig. 5). Whenever the 
microscope detects a mitotic cell in the large FOV, it zooms in on that cell 
and images at 60×. Mitotic detection is achieved by first using CellPose 
to segment the cells, and then distinguishes mitotic from interphase 
cells by using a cut-off on the standard deviation of the pixel intensity 
value (anything over 300 is deemed mitotic). This experiment allows 

us to scrutinize phenotypes that manifest prominently during mitosis, 
such as centrosome amplification, without sacrificing throughput.

Conclusion
We presented Noise2Fast, a blind zero-shot denoiser that rapidly 
converges to accurate results using only the input image to train on. 
Our key innovation is building a small discrete training set based on 
chequerboard downsampling that enables our network to quickly 
converge. We can monitor the progress training using original noisy 
image as validation. The accuracy of our method surpasses all but one 
tested blind zero-shot denoising methods, namely Self2Self, however 
Self2Self takes an average of 200 times longer to run and is therefore 
impractical in real-time situations, such as in live-cell experiments 
where the microscope must act upon transient information.

To this end, we successfully integrated Noise2Fast into a live-cell 
analysis pipeline where the microscope detects and zooms in on any 
mitotic cells. This example shows that our speed gain is not only an 
asset, but a necessity to these kinds of analyses. Additionally, from 
a more theoretical perspective, we believe the observed superiority 
of chequerboard downsampling over traditional 2×2 downsampling 
is noteworthy, and the implications this has for full dataset-based 
denoising methods such as Neighbor2Neighbor might be a worthwhile 
subject of future research.

Methods
Noise2Fast implementation details
Here we outline the specifics of our neural network and training 
scheme, giving the implementation details of the process outlined 
earlier. We note that for all zero-shot denoisers we test, noise gen-
eration is carried out separately from denoising. That is to say, each 
method is only exposed to one single noisy instantiation of one single 
image during training.
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Low-resolution
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Phenotype detectionDenoise
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b

Every 5 minute interval

Wide FOV
20× capture

Noise2Fast 
denoise

U-net mitotic
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High resolution
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i
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(16 s) (103 s) (23 s) (16 s per cell)

Fig. 5 | Application of Noise2Fast. a, Proposed automated pipeline where the 
microscope detects a transient phenotype of interest, and both zooms in on 
and images any cells displaying that phenotype. b, Such a pipeline for detecting 
mitotic cells. Every 5 minutes, the microscope captures a wide field of view 20× 

image, denoises using Noise2Fast, scans this large field of view for any mitotic 
cells and then zooms in on them to image at 60×. Under these time constraints, 
we can detect up to eight mitoses in each 5 minute interval. Scale bars are 100 μm. 
Created with BioRender.com.
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For our neural network, we use a simple CNN architecture which 
we explain briefly here, and illustrate in Fig. 1b. We start by performing 
two 32 channel 3×3 convolutions with ReLU activation. We repeat this 
step three more times, each time doubling the number of channels. In 
the final step, we do 1×1 convolution followed by sigmoid activation.

In our initial testing we found that this much simpler architecture 
outperformed the classical U-net architecture used in the original 
Noise2Noise paper4. Although the results are not that sensitive to the 
number of hidden layers, we do find a noticeable, albeit small, drop in 
performance as we add more to our current model. A possible reason 
for this is that it causes our network to overfit the data much too quickly. 
This architecture is similar in its simplicity to DnCNN, one major dif-
ference being our lack of batch normalization.

The main novelty of our method is how we train it. Consider a 2D 
image x ∈ ℝm×n. Recall from the theoretical background that we can 
divide our image in two by using chequerboard downsampling. By 
taking the even or odd pixels and squeezing them up to fill in the spaces, 
as depicted in Fig. 1, we can generate two downsampled m × 1

2
n images

xeven(i, j) = x(i, 2j + (imod2)), (16)

xodd(i, j) = x(i, 2j + (imod2) + 1). (17)

We can call these the ‘up’ chequerboard downsamples. Notice that we 
can also squeeze the pixels left to generate two 1

2
m × n images

x′(i, j) = x(2i + (jmod2), j), (18)

x′(i, j) = x(2i + (jmod2) + 1, j). (19)

Giving us the ‘left’ chequerboard downsamples. Using these we con-
struct a four-image-pair training set (see Fig. 1c for an overview of our 
training scheme). We then feed this training data one-by-one into our 
neural network (batch size = 1). At each iteration we compute the binary 
cross-entropy (BCE) loss between the target and the output of our 
neural network, and adjust our weights using the Adam optimizer33,34 
with learning rate set to 0.001.

When we downsample our image we fundamentally distort the 
pixel lattice and the relationship between adjacent pixels. For exam-
ple, in a normal image, suppose each pixel is 1×1 μm. Then the pixel 
immediately above will be 1 μm away, and the pixel immediately to 
the right will also be 1 μm away. In the case of a chequerboard down-
sampled image, for example xeven in Fig. 1, depending on where you 
are the relationship might be something like: Up: 2 μm, Left: √2 μm. 
The relationship becomes even more complex as you move further 
away and the net effect is a serious disruption of the underlying 
relationship between a pixel and neighbours. We note that this is 
different from adopting a chequerboard masking scheme and train-
ing Noise2Void, where the relationship and adjacency between 
pixels is preserved. And even Neighbor2Neighbor at least preserves 
’ratios’ in the sense that the vertical and horizontal scale are divided 
by a common number, and these proportions do not vary from pixel 
to pixel.

This has one important effect: while blind-spot methods based 
on masking get more and more accurate over time without overfit-
ting because they are not given sufficient information to overfit the 
data, our method performs more like DIP, where accuracy reaches a 
maximum very quickly, before it starts to plummet as it ultimately 
overfits the data, this effect happens particularly quickly on our small 
four-image training set. However, since our distorted downsampled 
data looks nothing like the original noisy image at a local level, we 
observe that if we train our four-image chequerboard downsampled 
set, while we do inevitably overfit our small training set, the original 
noisy image is basically unseen data for all intents and purposes. There-
fore, we can actually use this image as a validation set.

More specifically, after each iteration we monitor how our neural 
network maps our original noisy image x to itself, that is how close f(x) 
is to the identity mapping on x. Our observation is that the optimal time 
to ‘stop’ training is quite close to the point where the output of the neural 
network, when applied to original noisy image, most resembles itself. 
We can validate in this way only because our training set images look so 
vastly different at a local level than the image we are trying to denoise. In 
Extended Data Fig. 5 we illustrate how this validation strategy works by 
comparing over time known ground truth PSNR to the validation PSNR 
determined by comparing our output to the original noisy image. As 
can be seen in this figure, the two lines move together and achieve their 
peaks at roughly the same time. Ultimately, our ability to validate in this 
way results in a method that converges both quickly and accurately.

Compared datasets
For blind Gaussian denoising we use the greyscale BSD6835 dataset, 
as was used in ref. 6 and a multitude of other denoising papers. BSD68 
consists of 68 clear 481×321 photographs to which we add synthetic 
Gaussian noise. However, to show the effect of spatial resolution on 
speed and performance, we additionally tested the methods on Set12 
which contains a mixture of 256×256 and 512×512 images.

For performance on real-world confocal microscopy, we used a 
subset of the confocal microscopy images in Fluorescent Microscopy 
Dataset (FMD)2 that we refer to as ‘Confocal’. This dataset contains, 
among other things, images of biological materials such as cells, 
zebrafish and mouse brain tissues acquired using commercial confo-
cal microscopes. As described in their paper, ground truth values are 
estimated by averaging together all 60,000 noisy images in a given set.

Compared methods
We compare denoising and speed performance against five other blind 
zero-shot denoisers: Noise2Self7, Noise2Void6, Self2Self8, Neighbor-
2Neighbor9 and DIP26. Not all of these methods were originally designed 
for zero-shot denoising. We will describe how we configured each of 
these methods in turn, we adhere to published code as much as possible.

Self2Self. For Self2Self we use the default published settings of 
150,000 iterations and a learning rate of 1 × 10–4. We standardize our 
images differently than Self2Self and some of these other methods. 
For example, we do not clip our input noisy data [0, 255] at any point. 
To account for this difference, we have rewritten the dataloaders for 
Self2Self and other methods to ensure consistency of comparison.

Noise2Self. For Noise2Self the only change we make from their pub-
lished single-shot denoising notebook is to increase the number of 
iterations from 500 to 20,000, as we found that 500 iterations were 
not nearly enough to achieve good results on these datasets.

Noise2Void. For Noise2Void we found that their ImageJ plugin worked 
much better than their GitHub code for zero-shot denoising. We there-
fore used the ImageJ version for benchmarking purposes, which is why 
our results on this method deviate so much from previous publications. 
We used a patch size of 64 with 100 epochs and 100 steps per epoch, a 
batch size of 16 per step, and a neighbourhood radius of 5.

DIP. If we fix the maximum number of iterations, DIP becomes a blind 
denoiser. However, as noted in ref. 8, it performs better as a non-blind 
denoiser. For comparison purposes however, we will set the maximum 
number of iterations at 3,000, as the authors of DIP have done in their 
example code on GitHub. This turns it into a blind single-shot denoiser, 
fully comparable in scope to our method.

Neighbor2Neighbor. For Neighbor2Neighbor we used the adap-
tation of the code found here: https://github.com/neeraj3029/
Ne2Ne-Image-Denoising. We adapted the script to zero-shot denoising 
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and attempted in good faith to optimize for the task as best we could, 
however, we found that the results were inconsistent. We believe that 
this method is probably best suited to datasets as the authors intended 
and not single images. We include these results only to illustrate the 
need to change Neighbor2Neighbor in order to achieve fast and accu-
rate zero-shot denoising results, as we have done in this paper. We do 
not believe our results are a fair illustration of the power of Neighbor-
2Neighbor when applied to the tasks it was designed for and we have 
therefore excluded it from our visual illustrations. We used a learning 
rate of 0.0003 and trained for 100 epochs, as suggested in their paper 
for synthetic datasets.

Fluorescence microscopy images
For fixed immunofluorescence microscopy, RPE-1 cells were fixed 
with 4% paraformaldehyde at room temperature for 10 min. The cells 
were then blocked with a blocking buffer (5% BSA and 0.5% Triton 
X-100 in PBS) for 30 min. Cells were washed with PBS and subsequently 
incubated with phalloidin-Alexa488 (Molecular Probes) and DAPI in 
blocking solution for 1 hour. After a final wash with PBS, the coverslips 
were mounted on glass slides by inverting them onto mounting solu-
tion (ProLong Gold antifade; Molecular Probes). For the fixed imaging 
in Fig. 3a, single Z slices of cells were imaged using Nikon Ti2E/CREST 
X-Light V2 LFOV25 spinning disk confocal microscope in widefield 
mode using a 60×/1.4 NA oil-immersion Plan-Apochromat lambda 
objective. The microscope was outfitted with a Photometrics Prime95B 
25 mm FOV ultra-high sensitivity sCMOS camera and images were cap-
tured with no binning using the full 25 mm diagonal FOV area at 1,608 px 
by 1,608 px with a bit depth of 16 bit. After capture, 500 px by 500 px 
areas were cropped and used as our input dataset. For live imaging in 
Fig. 3b, endogenously tagged MDA-MB 231 cells were seeded in Nunc 
Lab-Tek Chamber Slides and imaged on the Nikon Ti2E/AIR-HD25 scan-
ning confocal microscope with temperature and CO2 control, using a 
40×/1.15 NA water-immersion objective Apochromat lambda S objec-
tive. High-speed image acquisition was carried out with the resonance 
scan head with 2× averaging at 1,024 px by 1,024 px. Full volumes of cells 
were captured (Z total = 20 μm, Z interval = 0.5 μm) every 5 minutes 
for 24 hours. For Fig. 4, single Z slices of cells were imaged using Nikon 
Ti2E/CREST X-Light V2 LFOV25 spinning disk confocal microscope in 
widefield mode using a 60×/1.4 NA oil-immersion Plan-Apochromat 
lambda objective. The microscope was outfitted with a Photometrics 
Prime95B 25 mm FOV ultra-high sensitivity sCMOS camera and images 
were captured at two different exposures (0.1 and 100 ms) with no 
binning using the full 25 mm diagonal FOV area at 1,608 px by 1,608 px 
with a bit depth of 16 bit. After capture, 500 px by 500 px areas were 
cropped (this you specify to your cropping in this figure) and used as 
our input dataset. Images were denoised as individual Z-slices and max 
projected. All are displayed with auto scaled LUTs.

Ablation study
For our ablation study, we compare three different refinements of 
the model. First, we replace our simple neural network with a U-net 
architecture, which is the standard network used in Self2Self and Noi-
se2Void. Again, our performance drops (Extended Data Fig. 6, U-net). 
Also, using known ground truth values, we manually subtract out the 
sodd − seven term in equation (12) and show that this has virtually no 
impact on our denoising results, hence this term is not having a signifi-
cant impact on our algorithm (Extended Data Fig. 6, Exact). Finally, we 
test how well Noise2Fast works if instead of applying it to the original 
noisy image, we apply it to the chequerboard downsampled images and 
reassemble them into the full-sized image (Extended Data Fig. 6, Split).

We also investigate what happens if we replace our unusual cheq-
uerboard downsampling with a more conventional downsample where 
we divide our image into 2×2 blocks, as used in Neighbor2Neighbor and 
also 3×3 blocks for fourfold and ninefold downsampling, respectively. 
This has the advantage making our training set consist of even smaller 

images to further reduce computation time. We test this on the confo-
cal dataset, and as can be seen in Extended Data Fig. 7, fourfold down-
sampling doubles speed at only a small drop in accuracy, making this 
perhaps an attractive solution to those looking for even more speed. 
Ninefold sampling on the other hand only increases speed marginally 
and with a much steeper drop in accuracy. The diminishing returns in 
speed gain are likely a result of the neural network requiring longer to 
converge when there is less training data per iteration.

We also compare the effect our small architecture has on our results 
by adding the DIP hourglass architecture to Noise2Fast (Extended Data 
Fig. 8), and also by inserting our architecture into Self2Self (Extended 
Data Fig. 9) and running it on the parrot image from Set12.

Source of cell lines
MDA-MB 231 cell line was a gift from R. S. Kerbel (Sunnybrook Health 
Sciences Centre, Toronto, Canada) and cultured at 37 °C in a humidi-
fied environment containing 5% CO2. MDA-MB 231 cells were grown 
in Roswell Park Memorial Institute (RPMI) 1640 medium (Life Tech-
nologies) supplemented with 10% fetal bovine serum (FBS). RPE-1 
(CRL-4000) cell line was acquired from the American Type Culture 
Collection (ATCC) and grown in Dulbecco’s Modified Eagle Medium/
Nutrient Mixture F12 (DMEM/F12 1:1; Life Technologies) supplemented 
with 10% FBS.

To generate our endogenous fluorescent cell lines, CRISPR-Cas9 
was paired with a repair construct to insert sequences encoding fluo-
rescent proteins via homology-directed recombination into the N- and 
C-terminus of ACTB and H3-3B, respectively. Briefly, sgRNAs targeting 
the N-terminus of ACTB (GCCGTTGTCGACGACGAGCGCGG) and the 
C-terminus of H3-3B (CAGTTGGCTCGCCGGATACGGGG) were cloned 
into a pX330 plasmid (Addgene plasmid #42230) following the Zhang 
protocol36. To generate the repair constructs, 10,00 bp of homologous 
genomic sequence surrounding the sgRNA cut site of ACTB and H3-3B 
was amplified from the genome of RPE-1 cells and subsequently Gib-
son (M5510AA; NEB) assembled to flank a cassette containing mNeon 
or mScarlet followed by a 2A peptide into a puromycin or blasticidin 
resistance gene. Cells were co-transfected with a sgRNA-cloned pX330 
plasmid and its matching repair construct using Lipofectamin3000 
(Invitrogen) at a 1:1 ratio. An editing period of 72 hours was allotted 
prior to selection with puromycin (2 mg ml–1) or blasticidin (10 mg ml–1) 
to cull non-integrated cells. Knock-in positive cells were subsequently 
FACS sorted and inspected via fluorescence microscopy.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Benchmarking datasets along with code and reproducibility instructions 
for Fig. 2 are available on our GitHub (https://github.com/pelletierlab/
Noise2Fast). Note that all speed benchmarks were performed on an RTX 
5000 mobile GPU, and therefore results may vary according to GPU used. 
Source input and output images used to make the graphs in Fig. 4 are 
publicly available on our GitHub (Noise2Fast/Fig5Data). Source data for 
Fig. 3 is available on our GitHub as well (Noise2Fast/livecells). Figure 1 is a 
conceptual illustration and does not make use of any datasets, however 
the image we use to illustrate chequerboard downsampling is a crop of an 
image available on our GitHub (Noise2Fast/BSD68/19.tif). The minimum 
dataset for the experiment illustrated in Fig. 5 is publicly available on 
our GitHub (Noise2Fast/Fig6Data) and the full source data is available 
on Zenodo (https://doi.org/10.5281/zenodo.6949784).

Code availability
Our code, along with reproducibility instructions, is publicly available 
at https://github.com/pelletierlab/Noise2Fast. It is also available on 
codeocean, https://doi.org/10.24433/CO.7967850.v137.
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Extended Data Fig. 1 | Patch similarity in chequerboard downsamplings. We compare the number of similar patches that exist between Image 11 from Set12, its 
chequerboard downsamplings and other Set12 images.
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Extended Data Fig. 2 | Comparing different types of unsupervised denoiser. We classify the most popular unsupervised denoisers based upon how much 
information they have access to prior to inference.
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Extended Data Fig. 3 | Additional accuracy comparisons on Gaussian noise. Comparing the accuracy performance of Noise2Fast on Gaussian noise, against a 
myriad of other methods.
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Extended Data Fig. 4 | Comparing accuracy when we force methods to be fast. We show the accuracy reached by each method, by the time Noise2Fast has 
completed its denoising.
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Extended Data Fig. 5 | Illustrating our validation strategy on Set12 images. PSNR over time of Noise2Fast on images 5, 6 and 7 from Set12 with σ = 25 Gaussian noise. 
PSNR is calculated by comparing the output of Noise2Fast to both the original ground truth image (red), and to the original noisy image (blue).
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Extended Data Fig. 6 | Comparing refinements to Noise2Fast. Comparing different possible refinements to Noise2Fast on BSD68 with σ = 25 Gaussian noise.
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Extended Data Fig. 7 | Comparing alternative downsampling strategies. Comparing alternatives to chequerboard downsampling on the Confocal dataset.
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Extended Data Fig. 8 | Performance of Noise2Fast with an hourglass architecture. Performance of Noise2Fast using the same architecture as DIP architecture, both 
validated using the original noisy image and validated using ground truth image.
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Extended Data Fig. 9 | Performance of other methods using Noise2Fast Architecture. Performance over time of Self2Self and Noise2Self on the parrot image from 
Set12 with σ = 25 Gaussian noise, using both their standard architectures and the Noise2Fast architecture.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection To acquire images we used NIS elements (https://www.microscope.healthcare.nikon.com/products/software/nis-elements). To analyze, crop 
and LUT images we used ImageJ (https://imagej.nih.gov/ij/). 

Data analysis Our own denoiser along with all the methods to which we compared ourselves, our script for calculating PSNR/SSIM, and our script for adding 
synthetic Gaussian noise, and all benchmarking datasets are included on GitHub: https://github.com/pelletierlab/noise2fast. We also use 
CellPose for segmentation which is available here: https://github.com/MouseLand/cellpose.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

We have made use of BSD68 dataset, available here: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/, Set12 which is available here: https://
paperswithcode.com/dataset/set12 and the Fluorescence Microscopy Dataset (FMD) available here: https://curate.nd.edu/show/f4752f78z6t. Benchmarking 
datasets along with code and reproducibility instructions for Figure 2 are available on our GitHub (https://github.com/pelletierlab/Noise2Fast). Note that all speed 
benchmarks were performed on an RTX 5000 mobile GPU, and therefore results may vary according to GPU used. Source input and output images used to make the 
graphs in Figure 4 are publicly available on our GitHub (Noise2Fast/Fig5Data). Source data for Figure 3 is available on our GitHub as well (Noise2Fast/livecells). 
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Figure 1 is a conceptual illustration and does not make use of any datasets, however the image we use to illustrate checkerboard downsampling is a crop of an 
image available on our GitHub (Noise2Fast/BSD68/19.tif). The minimum dataset for the experiment illustrated in Figure 5 is publicly available on our GitHub 
(Noise2Fast/Fig6Data).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected to maximize comparability to other methods. For example, the BSD68 dataset contains 68 images and is widely 
used for benchmarking Gaussian denoisers, the same is true of Set12. For FMD we selected 5 diverse images because of the massive 
computational resources required to run some of our compared methods to completion on a 512x512 image. 

Data exclusions For FMD we selected 5 representative images to use as benchmark due to computational limitations, however this selection was done at the 
outset before any testing was done and our results on this dataset agree with our results on other datasets, at least in terms of how each 
method ranks.

Replication We have made our code publicly available with full reproducibility instructions. The time, technical skill, and computational resources required 
to reproduce our results are minimal.

Randomization Synthetic Gaussian noise was randomly generated using pythons build in random number generator.

Blinding Blinding is not applicable to this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) MDA-MB 231 cell line was provided by Dr. Robert S. Kerbel (Sunnybrook Health Sciences Centre, Toronto, Canada) and RPE-1 
cell line was purchased from American Type Culture Collection (ATCC)

Authentication None of the cell lines were authenticated

Mycoplasma contamination MDA-MB 231 and RPE-1 cell lines were negative for mycoplasma

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
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