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Timely and well-informed syndromic surveillance is essential for effective
public health policy. The monitoring of traditional epidemiological
indicators can be lagged and misleading, which hampers efforts to

identify hotspot locations. The increasing predominance of digitalized
healthcare-seeking behaviour necessitates that it is fully exploited
for the public benefit of effective pandemic management. Using the

highest-resolution spatial data for Google Trends relative search volumes,
Google mobility, telecoms mobility, National Health Service Pathways calls
and website testing journeys, we have developed a machine learning early
indicator modelling approach of SARS-CoV-2 transmission and clinical risk
atsmall geographic scales. We trained shallow learning algorithms as the
baseline against a geospatial neural network architecture that we termed
the spatio-integrated long short-term memory (SI-LSTM) algorithm.

The SI-LSTM algorithm was able to—for the assessed temporal periods—
accurately identify hotspot locations over time horizons of amonth or more
with an accuracy in excess of 99%, and an improved performance of up to
15% against the shallow learning algorithms. Furthermore, in public health
operational use, this model highlighted the localized exponential growth
ofthe Alphavariantinlate 2020, the Delta variant in April 2021 and the
Omicron variantin November 2021 within the United Kingdom prior to their

spatial dispersion and growth being confirmed by clinical data.

The COVID-19 pandemic has precipitated unprecedented global
public health policy interventions and population-level behavioural
change. Understanding localized outbreaks of SARS-CoV-2 can be
exceedingly difficult due to the inevitable ascertainment bias that
occurs through a test-by-request strategy'. Furthermore, case, hos-
pitalization and mortality data are lagged indicators due to the delay
between infection and the report and clinical outcome date?”. This
can be hampered by the tendency for outbreaks to initially cluster
in younger-aged demographics where, due to decreased infection

severity and a higher proportion of asymptomatic infections, their
representation in clinical data can be more limited®. Based on the
strength of assortative mixing, it typically takes several weeks or
months for infections to bleed into older-aged demographics, the
pointat which healthcareindicators candetect asubstantial outbreak.
Itis therefore requisite for effective syndromic surveillance to look
atdatathatareauxiliary to clinical outcomes for the early detection
and identification of outbreaks so that adequate public healthinter-
ventions may be able to limit transmission.
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For arespiratory disease such as COVID-19, understanding the
mobility patterns of individuals is central to calculating the trans-
mission rate () and the force of the infection (1) by more accurately
trackingthe effective contacts betweenindividuals. The COVID-19 pan-
demic has allowed for mobility data to be used by telecoms providers’,
web-based companies®’ and public transport organizations® to help
understand contact patterns and adherence to non-pharmaceutical
interventions (NPIs). Jeffrey et al.” used mobility data from O, and the
Facebook applicationasa proxy for the actual mobility patternsin the
United Kingdom to monitor the adherence to the March 2020 national
lockdown. This type of data has been further employed effectively
to model dynamic mobility networks to enable the simulation of the
SARS-CoV-2 epidemic'®. There are, however, issues with relying on
mobility data as a proxy for effective contacts” because increased
mobility in itself may not correlate with increased transmission. This
is most palpable around the exponential phase of a novel SARS-CoV-2
variant and any analyses employing these data must contextualize
changes as only a component of behaviours that can be associated
withincreases or reductions in transmission'. The use of mobility data
seems to have had the greatest utility when used for nations or localities
where there has been a policy of NPIs and the associated behavioural
change can be more effectively interpreted’; such data continues to
be used for transmission modelling by the Scientific Advisory Group
for Emergencies (SAGE)™" for the UK Government.

The use of digital searching and reporting may offer insights for
syndromic surveillance that cannot be found from conventional epi-
demiological indicators. Platforms such as Google Trends offer an
interface to analyse relative search volumes (RSVs) for a given local-
ity, providing real-time monitoring of morbidity within populations.
Internet reporting behaviour has been explored for emerging patho-
genssuch as Ebola®, and found to be of analogous utility to traditional
surveillance for monitoring clusters and outbreaks. Google Trends
has demonstrated the potential for the monitoring of the respira-
tory virus HIN1 and the vector-based West Nile virus'®. Furthermore,
Google Trends data have been used to assess adherence to NPIs for the
COVID-19 pandemicin Taiwan by looking at, for instance, the demand
for face masks". Past research'® has discussed Google Trends as a
data source for identifying early increases in national incidence of
COVID-19in much the same way as Google Flu Trends. The Google Flu
Trends* surveillance experience” illustrated the need for secondary
datasources, intelligently designed algorithms and constant recalibra-
tionasanepidemic evolvesto account for temporal changesinsearch-
ing behaviour. The fusion of Google Trends with multiple data sources
(Twitter, hospitalizations and Google Flu Trends) as a surveillance
system for influenza** showed improved model performance over using
Google Trends alone andillustrated the promise for the application of
thisapproachto detect changes in the transmission of SARS-CoV-2.

The interpretation of testing data at local scales is obfuscated®
by ascertainment bias, where key groups of interest can be excluded
through: the geographic impracticality of testing centres, financial
implicationsif compelled toisolate, asymptomaticinfection, and test
availability at the time of infection or symptom onset. International
research has highlighted the increased positivity and lowest testing
rates for COVID-19 in the most deprived areas** %, This has been shown
tobeexacerbatedin deprived rural areas with less connectivity to local
testing centres, and in minority groups that can be excluded from
effective public health messaging. Further work has emphasized the
lack of synchronicity that can be observed between testing data and
clinical outcomes, whichis compounded by the stochasticity of smaller
numbers at finer spatial scales®. This can be a consequence of spatially
clustered testing, which is particularly affected by targeted testing
strategies®®and spatially heterogenous institutional testing. However,
the age-severity infection gradient could alsolead to anexpected diver-
gencebetweenthelevels of test positivity and the number of observed
clinical outcomes due to the temporally varying case composition.

This emphasizes the importance of using epidemiological outcomes
that are relevant to the public health policy context and the require-
ment for early intervention on the basis of the characteristics of novel
variantsincirculation.

Impactful syndromic surveillance of SARS-CoV-2 requires sympto-
matic prevalence, healthcare-seeking behaviour, mobility patterns and
testing demand to be monitored to map and understand awidespread
communicable disease. The interaction of healthcare-seeking behav-
iour through internet engagement® has been shown to be important
to understand disease transmission. However, it is the application of
this approach (specific to COVID-19 symptomatology) to small spatial
scales that has yet to be explored for its potential to function as an
early indicator of an outbreak. We evaluated the suitability of Google
Trends, Google mobility, telecoms mobility, National Health Service
(NHS) Pathways 119 calls and website testing demand as predictive
features for modelling outbreaks. We have then employed multiple
machine learning models, with sensitivity analysis of temporally lagged
features, to assess their predictive performance at capturing localized
outbreaks of COVID-19. We have designed a neural network for spatial
data, whichwe have termed a spatio-integrated long short-term mem-
ory (SI-LSTM) and a spatio-integrated convolutional long short-term
memory (SI-CNN-LSTM) algorithm.

Leadingindicator analysis

We conducted an appraisal of the leading indicators for
population-normalized polymerase chain reaction (PCR)-positive
tests, hospitalizations and deaths from COVID-19 at local authority
district (LAD) in the UK. Our preliminarily investigation assessed the
feasibility of primary healthcare, social care and secondary healthcare
data sources. This included general practitioner calls, clinical staff
absences, care home incidence reports and school absences. We further
explored 1,108 COVID-19-related Google Trends web search terms, the
NHS COVID-19 mobile application®?, Google mobility, telecoms mobil-
ity, COVID-19 test request website journeys and NHS Pathways 119 calls.
Leading indicators were assessed using generalized additive models
with a negative binomial error structure and dynamic time warping.
Data sources were excluded if they did have full geographic cover-
age, could not be sourced in a timely fashion (that would be relevant
for an operational public health response), or were found to lag or be
concurrent with the clinical target variables. Resultsindicated that the
most consistent leading indicators across the epidemic phases were
94 Google Trends terms, telecoms mobility, Google mobility, website
test request journeys and NHS Pathways 119 calls.

The Google Trends datawere collected hourly for all four nations
ofthe United Kingdom, resulting in data for 4,013 locations; they were
scaledto LAD geography using the latitude and longitude coordinates
provided by Google to map to the Office of National Statistics (ONS)
boundaries®. Mobility data were collected from Google® and telecoms
operators’, whereitis reported at the LAD and middle layer super output
area (MSOA)*, respectively. The data are prepared by mapping to the
LAD level using the ONS lookups®* by extracting, among other things,
demographicand person category (resident, worker, visitor) informa-
tion. Website journey test request datawere sourced from the Test and
Trace Adobe Analytics platform, which measures both symptomaticand
asymptomaticjourneys throughthetestbooking system. The dataare
further broken down by whether the journey was complete or incom-
plete at the final stage. Testing availability was defined as individuals
that complete the online journey until the final stage at which they are
offered a test and could not proceed relative to individuals that com-
pleted the website journey. Adobe geolocates requestors on the basis
of their internet protocol and a lookup table was created to aggregate
the AdobelocationstoLAD level. The 119 number was established as the
contact number for the NHS Test and Trace service in May 2020%, and
provides away to book a COVID-19 test and enquire about a test result;
its scope has since expanded to process vaccination appointments.

Nature Machine Intelligence | Volume 4 | October 2022 | 814-827

815


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-022-00538-9

1_input 2_input

1_LSTM.A 2_LSTM.A

..._input 363_input

.._LSTM.A

363_LSTM.1

1_TimeDistributed.1(1_Dropout.1) 2_TimeDistributed.1(2_Dropout.1)

..._TimeDistributed.1(..._Dropout.1)

363_TimeDistributed.1(363_Dropout.1)

1_LSTM.2 2_LSTM.2

.._LSTM.2 363_LSTM.2

1_TimeDistributed.2(1_Dropout.2) 2_TimeDistributed.2(2_Dropout.2)

..._TimeDistributed.2(..._Dropout.2)

363_TimeDistributed.2(363_Dropout.2)

N

1_LSTM.3

l

2_LSTM.3

—

/

363_LSTM.3

._LSTM.3

=

1_side_output 2_side_output

Concatenate_1

..._side_output 363_side_output

Dense_1

[ AN

1_output 2_output

..._output

363_output

Fig.1| The architecture of the SI-LSTM algorithm. The features from each location are fed in as inputs along network branches that contain LSTM layers, time-
distributed dropout layers and a dense layer, producing a side output. The tensors are further concatenated to produce the main model output for each area.

Aswiththe othersources mentioned above, the dataset was aggregated
to LAD geography using an ONS lookup table**. Only two types of call
were selected: calls in which ‘Test enquiry—request a test’ was given as
the callreason, and all calls, regardless of reason.

Modelling outbreak risk

An outbreak risk scoring system was developed for
population-normalized COVID-19-positive PCR cases, hospitalizations
and mortalities. The PCR-positive case data were sourced through the
anonymized combined list collected by the UK Health Security Agency
(UKHSA), whichis derived from the National Pathology Exchange data-
set*. The hospitalization data were obtained from the admitted patient
care (APC) dataset”, which include individuals that tested positive
for COVID-19 fifteen days prior to and eight days post admission, and
was aggregated from the lower super output areas to the LAD level.
Mortality data were obtained from the UKHSA COVID-19 death linelist
for England, and the public dashboards for Scotland®® and Northern
Ireland® (note that we did not have access to mortality data at LAD
geography for Wales). The PCR testing and mortality data that were
included for analysis had been evaluated for backfilling (that is, how
long it takes before the last complete day of data) over the most recent
sevenday period prior toinclusion as a target. The hospitalization APC
data have defined monthly periods when hospital trusts must declare
their admission activity data and the last complete day was included.
The daily PCR tests, hospitalizations and mortality data for each LAD
were normalized per million and smoothed over arolling seven day
window. The defined thresholds represent equal proportions of these
distributions at LAD for adefined temporal window of the epidemicin

the UK. Therisk score criteriaare dynamic and determined by changes
tothedaily proportionsin cases, hospitalizations and deaths, which are
influenced by variant severity, availability of testing within a country,
the ascertainmentrate and the rate of disease prevalence to be informa-
tive indicators of inter-location heterogeneity.

Preliminary univariate analysis was conducted for the risk score
targets of COVID-19, using an autoregressive integrated moving average
(ARIMA) model fit using a modified Hyndman-Khandakar algorithm at
epidemic phase change points. Shallow learning algorithms (Random
Forest*°, XGBoost*, GBM* and Naive Bayes*?) were trained on the lead-
ingindicator features, whichwere lagged from 15to 40 daysrelative to
risk score target. We did not forecast for greater than these periods as
preliminary analysis indicated that model performance quickly dete-
riorated after 40 days. Random holdouts of up to 40 days were excluded
across the epidemic phases to assess the performance of the models.
K-fold cross-validation wasincluded for each model (k =10) in addition
toaprimary model that was trained onthe entire training dataset. Eleven
models were thus trained on the data: ten on each cross-validation split
and the primary model on all of the training data. The trained models
were then stacked to create an ensemble model using the XGBoost
algorithm*, The stacking comprises training a second-level learner
calledameta-learner to optimize the performance of the base learners.

We developed deep learning algorithms to enhance the algorithm
learning from the geospatial data, which have been termed an SI-LSTM
(Fig.1) and SI-CNN-LSTM (Fig. 2) algorithm (please see the Methods
for further details). The SI-CNN-LSTM architecture takes advantage
of the feature amplification ability of convolutional neural network
layers to use a type of weight sharing with local perception to refine
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Fig.2|Thearchitecture of the SI-CNN-LSTM algorithm. The features from
eachlocation are fed in as inputs along network branches that contain time-
distributed one-dimensional convolution layers, a time-distributed max pooling

layer, atime-distributed flatten layer, LSTM layers, and dense and dropout layers,
producing aside output. The tensors are further concatenated to produce the
main model output for each area.

and condense the number of parameters that helps to improve the
learning efficiency for the LSTM layers**. These models were devel-
oped using bespoke generator functions® for the LAD time-series
in the UK and yielded lagged batches of the features for the target
variables. The model features were pre-processed using a log trans-
formationto stabilize the variance, and subsequently normalized so
that the mean was zero and the standard deviation was one. Due to

the mobility data containing negative values, we employed an offset
value before log transformation to ensure that the step produced
areal value. This is conducted to speed the process to the global
minima of the error surface and mitigate the chance of getting stuck
atlocal optima. The model targets were one-hot encoded to convert
the categorical input data into a vector required for the categorical
cross-entropy loss function*.
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combining thelist of tensors, from the final LSTM layer for each location, on a single concatenation axis.

The final model architecture included a seven day lookback to
capturethe weekly trend in the features, ashufflingin the order of the
training data, and adecrease inthe learning rate for subsequent epochs
ifanincrease in the validation loss was detected. In the final layers of
the SI-LSTM and SI-CNN-LSTM, we introduced a connection network
between all of the geographiclocations so that the model performance
canbeoptimized throughintra- andinter-location feature weighting.
The 363 independentinput branches are merged through combining
thelist of tensors from the final LSTM layer for each location onasingle
concatenation axis, whichproduces asingle tensor as described inFig. 3.
The final LSTM layer produces a rank-2 tensor of shape (b, u), where b
is the batch size and u is the number of units in the LSTM layer. After
concatenation of tensors from L locations, the resulting tensor has
shape (b, Lu). The final dense layer has a softmax activation function
to ensure that the output vector y, .. g over C classes is normalized,
andthat y;canbeinterpreted as the probability that the target is class
i. The cross-entropy loss functionis then defined as:

c
Lut)=—. t;logy

i=1

wheret;is the one-hot encoded target vector. We then used RMSprop
as the optimization function in the back-propagation stage.

Results

Univariate forecasting

Univariate ARIMA modelling, using amodified Hyndman-Khandakar
algorithm* for step wise performance tuning, was conducted using
PCR-positive cases, hospitalizations and mortalities from COVID-19
(Extended Data Fig. 1). We can observe that the ARIMA models strug-
gle, particularly at change points in the epidemic wave, to reliably
predict the growth trajectory. This is particularly pronounced in the
pre-exponential phase, exponential phase and at the turning point
of an epidemic peak, which is evidenced by the LAD model results in
Extended DataTablel,in which the models struggled toreachanaccu-
racy of 50% across the Alpha wave.

Featureimportance

To assess feature importance, we used a Random Forest algorithm,
with random temporal holdouts, across the different feature groups
included (Extended Data Table 2). The most important feature group
for all tasks was Google Trends, followed by Telecoms Mobility, Google
Mobility, Website Testing Demand and 119 Calls. A full statistical
description of the included model features can be found in Supple-
mentary Table 1. This performanceisindicative of the periods assessed
in this paper, feature importance has evolved across the COVID-19
epidemic in the UK and has been influenced by extrinsic pressures
such as NPIs, changes in testing behaviour/policy, and novel variant
patterns of growth (the feature importance for each epidemic phase
and variant can be seen in Supplementary Figs.1-3).

Google Trends at LAD

The search terms thatreceived highest relative volumes scores across
the research period can be seen in Fig. 4. Variations on requests for
COVID-19 tests have the highest overall volume observed at LAD level
inthe United Kingdom. The highest-volume entity terms observed for
COVID-19 are ‘sore throat’, ‘cough’, ‘fatigue’, ‘fever’, and ‘shortness of
breath’. Although absolute volume is of interest to maintain relevant
and timely search terms, it is not necessarily reflective of their overall
featureimportance inthe model spatially and temporally. Itis how the
termsinteractand the auxiliary data that determine theirimportance
for outbreak detection.

Spatio-temporal modelling

The SI-CNN-LSTM and SI-LSTM algorithms performed better across
all temporal periods and for every target relative to shallow learning
algorithms assessed (Fig. 5). The greatest performance differential
was observed for the mortality risk scores, where the SI-LSTM saw an
improvement of up to 15% relative to the best shallow learning algo-
rithm. There was a clear performance improvement from the geospa-
tial concatenation that can be observed in the main-output accuracy
relative to the side-output accuracy seen in Extended Data Fig. 2. The
peak temporal performance across the modelled targets was observed
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in the SI-LSTM: 99.4% accuracy for the case risk score (feature lag of
25days), 96.3% for the hospitalizationrisk score (feature lag of 40 days)
and 84.8% for the mortality risk score (feature lag of 25 days).

In the deep learning models, training and validation loss con-
vergence was observed after around 20 epochs for case risk scores,
15epochs for hospitalization risk scores, and 30 epochs for mortality
risk scores. The SI-LSTM overall performs slightly better on the test
datathan SI-CNN-LSTM, and convergenceis reached after fewer epochs
(Extended DataFig.3). Earlier model architectures encountered volatil-
ityinthe validation loss, whichwasresolved by decreasing the learning
rate and increasing the batch size. Moreover, by providing a dynamic
learning rate during training, we found a smaller value of around 0.001
generally produced optimal model convergence. Sensitivity analysis
found that the optimizer function RMSprop performed better than
stochasticgradient descentand Adamax, as seenin Extended Data Fig.
4. We also found that a larger tensor shape for each LSTM layer—cor-
responding to128-160 units—produced higher validation accuracies.

Analysis of the shallow learning models found the highest over-
all performance of 95.3% on the case risk score for the XGBoost fol-
lowed by the Ensemble, Random Forest and GBM, which had only
slightly reduced accuracy on the test data. The Naive Bayes model,
by contrast, did not perform well for longer projection periods and
mortality risk. The log loss across each temporal period and shallow

learning algorithm canbe seenin Extended DataFig. 5. The distinction
in performance between the XGBoost, Random Forest and Ensemble
relative to the GBM is slightly more pronounced. The shallow and
deeplearningmodels performed better on the case risk score and the
hospitalizationrisk score targets. However, allmodels saw diminished
performance on the mortality risk score, which may be related to
the increased relevance of the features for capturing transmission in
younger demographic groups.

Sensitivity analysis was conducted on the hyperparameters of
the XGBoost, Random Forest and GBM algorithms. The number of
trees, tree depth and learning rate were varied to establish whether
performance could be further optimized. The outcome of this analy-
sis established that for the GBM and XGBoost (Extended Data Fig. 6),
providing that the number of trees exceeded 1,000, the tree depth 10
and the learning rate 0.01, the performance was relatively insensitive
to the hyperparameters. Moreover, that the Random Forest model
performed optimally withamax tree depth of 5and when the number
of trees exceeded 500.

Public health operational model outputs

For the purpose of epidemic management, the early spatial identifica-
tion of the pre-exponential and exponential change points—prior to
theiridentificationthrough traditional epidemiological surveillance—is
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Fig. 5| The performance of the SI-CNN-LSTM and SI-LSTM algorithms across all temporal periods. A line graph of the model accuracy for confirmed SARS-CoV-2
case, hospitalization and mortality risk scores for the shallow- and deep-learning algorithms across the temporal delay periods.

important for an effective response to outbreaks of novel variants
of concern.

In December 2020* the outbreak of the Alpha variant in England
began by clustering around the county of Kent. During this period
England was also experiencing substantial growthin COVID-19 (D614G
mutant of SARS-CoV-2), which had precipitated alockdown in Novem-
ber 2020*. On the 1st of November 2020, the modelling identified
the exponential growth of the Alpha variant in Kent (Fig. 6) prior to
the identification through sequenced PCR tests. The observed lack
of testing availability identified through website test requests in the
Alpha wave is noteworthy and may have masked the identification of
increased case rates in some local authorities.

Therecent outbreak of the Omicron BA.1variant wasinitially iden-
tified in late November 2021 in England™. The clustering of this variant
around Londonand the South East region was detected through the mod-
elling of leading indicator features from 20th November 2021 (Fig. 6).

This was identified in the background of a high prevalence rate for
the Delta variant and at this time there had been only eight confirmed
sequenced PCR cases of Omicron BA.1in England. The unprecedented
wave of incidence that was observed in December 2021 necessitated a
higher tieringin the case data, which can be seen in Supplementary Fig. 4.

Discussion

The heterogeneous nature of the COVID-19 epidemic, being character-
ized by localized outbreaks, presents challenges for public health policy
in that certain areas may warrant more substantial interventions to
containthe spread of SARS-CoV-2. The aim of this modelling approachis
to provide policy-makers with an early indicator syndromic surveillance
framework for local areas which, when combined with other lines of
reporting, can aid in pandemic management. This localized focus has
become increasingly more important asimportations of SARS-CoV-2
variants of concern become the focus of outbreak response’*>. We have
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Fig. 6 | Maps of England showing confirmed case risk predictions, sequenced
cases and test availability data for the Alpha and Omicron variants. Inthe
top panel: sequenced Alpha cases population-normalized per 100,000 averaged
from the 20th of November to the 10th of December 2020; confirmed case risk
predictions from features on the 1st of November 2020 trained to forecast for

SARS-CoV-2 website test availability
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up to 30 days; testing availability over the training period. In the bottom panel:
sequenced Omicron cases population-normalized per 100,000 averaged from
the 5th to the 10th of December 2021; confirmed case risk predictions from
features on the 20th of November 2021 trained to forecast for up to 20 days;
testing availability over the training period.

illustrated, akin to the literature on other communicable diseases™, that
RSV data canbe of utility in understanding transmission hotspots when
the terms are carefully selected, and further clinical and non-clinical
dataareincluded in model development.

The SI-LSTM geospatial architecture design allowed for specific
intra-location learning while also benefitting from inter-location
information sharing. This model architecture achieved the highest
overall performance of above 99% accuracy on the unseen data for
the case risk score at the local authority level in the UK. We found that
asmallerlearning rate and larger batch size wereimportantinreducing

validation loss volatility, despite research that LSTMs work well with
larger learning rates®’, because they push the output gate to zero. The
inclusion of convolutional neural network (CNN) layers and regulariza-
tion in the dense layers produced comparable performance for each
temporal delay period assessed in this paper. We discovered in early
model development that the performance of the SI-CNN-LSTM and
SI-LSTM models were more improved relative to the shallow learning
algorithms with alonger time-series of training data; therefore, when
dealing with a shorter time-series there may be a preference towards
ashallow learning algorithm approach.
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The willingness or ability to opt into the testing system®* sub-
stantially impacts insights from conventional epidemiological data
for epidemic surveillance. The motivation to seek or report a test has
beenfoundtoberelated to symptomseverity and alack of understand-
ing with regards to the main symptoms of COVID-19, which has been
observed to a greater extent in older age groups™. This will be further
impacted by socio-economic vulnerabilities, the ability to acquire a
testand location feasibility. Due to the vulnerability of the confirmed
caserisk score model target to this ascertainment bias, we normalized
positive test counts and defined epidemiologically important ranges
that would be more robust to these fluctuations. We further adjusted
the model target ranges to reflect the spatio-temporal variationin test-
ing availability and observed that the inclusion of testing availability
asamodel feature improved performance for some local authorities.
Inlocations that have limited testing coverage, particularly relevant as
public health policy evolves in response to the pandemic, the model-
ling framework proposed may be better suited to the further clinical
targets of COVID-19 infectionincluded in this study.

The study found mobile and telecoms mobility data to be arobust
predictive feature of the increased transmission of SARS-CoV-2. The
novelapplication of this datato disease modelling in the COVID-19 pan-
demic has allowed for agreater understanding of movement patterns
that can help to identify locations of concern, importations between
local authorities and behavioural responses to the easing of NPIs’.
However, the importance of the mobility data as a leading indicator
evolves with the temporal epidemic phases and extrinsic factors. In
later periods when NPIs were more limited, the mobility data, inisola-
tion, were a better predictor of transmission when the virus showed
patterns of endemicity. Models that have been developed™ to primarily
focus on mobility proxies may therefore be limited in their ability to
accurately capture novel variant growth. This can be explained by fluc-
tuationsintransmission being determined by mobility patternswhen
avariant is more established and growth is more stable, but this data
independently will have less utility at recognizing the pre-exponential
and exponential phase growth from the introduction of anew variant,
particularly if pre-pandemic contact patterns have returned. However,
this study finds that—in combination with proxies of symptomatic
prevalence—mobility data canbe an effective leading indicator across
the epidemic phases.

For the use of Google RSV data in an operationally relevant envi-
ronment, it is essential to monitor the relative frequency of the terms
(see Extended Data Fig. 7) as behaviours®** and worldwide government
directives evolve over the course of the pandemic. Thisis to preclude
monitoring terms that are no longer relevant as healthcare-seeking
habits change*® or those that are likely to be unduly driven by extrinsic
pressures such as mediareporting®®, and to capture novel behaviours
that may be important. Novel variants have presented diverse symp-
tomology profiles® and therefore itisimportant to keep abroad spec-
trumof symptomsincluded inthe data collection. Further research of
Google RSV dataat the local authority level should investigate locations
for post-acute COVID-19 (long COVID®?) in areas disproportionately
impacted and that have had stubbornly high transmission of COVID-
19. Moreover, there may be further insight gleaned from the use of this
datatoassess theimpact on mental health betweenlocations that have
been under longer-term local lockdowns®.

Digitalized web-based data sources (Google Trends, and Test and
Trace website test requests) included in the analysis have abias towards
younger-aged demographics. However, these groups were the focus of
the analysis, because an epidemic wave of arespiratory infection such
as COVID-19is predominantly driven by younger age groups (<65 years
old), which have higher effective contact rates®**. Moreover, fur-
ther research has identified that resurgent epidemic waves of the
SARS-CoV-2virus have been driven largely by working-age adults®® and
that the18-39 age group led the replacement of Deltaby Omicron BA.1
(ref.®”)inthe UK. A preliminary assessment of leading indicators from

primary health and social care datasources that exclusively target the
oldest age groups were found to have limited geographic coverage in
the UK, were difficult to source in an operationally useful manner, and
found to lag community transmission. The 119 telephonic requests
for PCR and lateral flow tests included in the modelling were found to
have aslightly older age composition relative to online test requests,
which may have aided in the identification of increased transmission
for these ages.

The difficulty of identifying change points in an epidemic curve
has been a consistent modelling challenge across the pandemic®®.
This has been frequently observed for widely developed transmis-
sion models®*’°7? that are reliant on historical data to fit the model
and transmission simulations of prescribed parameters (which are
difficult to quantify’®) to develop projections. The parameter space
for transmission models evolves for each new variant, with the collec-
tion of data required to update these parameters too lagged for early
epidemic management. For instance, the estimates required for the
generation time, serial interval, incubation period and the time to a
clinical event>” have required usually, at minimum, amonth or longer
foranadequate sample to be collected from contact tracing. Different
choicesinthese parameter spacesleadtoagreat divergence in the mod-
elling projections fit to the same data. Machine learning approaches™ 7
and statistical forecasting models” that are univariately trained on
confirmed cases are limited in an operationally responsive space to
provide a meaningful window for interventions as they will struggle
to identify a signal until incidence is in clear exponential growth or
decay. This will be further compounded by confirmed tests being a
lagged indicator of increased incidence, whichis exacerbated by times
of heightened ascertainment bias. Moreover, at a small spatial scale,
models trained solely on case data will suffer with a great deal of false
signals especially if confirmed cases are not adjusted for some measure
of testing availability or the rate of ascertainment.

We propose anovel modelling approach that has been developed
for public health response organizations that has wider relevance for
modelling outbreaks of COVID-19 outside of the United Kingdom. This
studyis designed to provide amodelling framework and datasources
that can be effectively employed to create early warning indicators of
changesintransmission and to project the hospital and mortality bur-
denatsmallspatial scales. The defined modelling approachis designed
tobeadaptable to different stagesin the pandemic and the risk scoring
system should be tailored to the current rate of prevalence and the
severity profile of a variant for a specific population. This approach
focuses on trends and changes in those trends that would provide
spatial insights on a novel outbreak and the epidemic trajectory.

Conclusion

Timely and well-informed syndromic surveillance is essential to inform
effective public health policy over the SARS-CoV-2 pandemic. The moni-
toring of traditional clinical indicators can be lagged and misleading,
which hampers efforts to identify hotspot localities. We have coalesced
the most meaningful leading indicator data currently available in the UK
toidentifylocal authorities of concern. The models described are used
as part of the UK’s coordinated response to the COVID-19 pandemic
with a suite of other data sources to inform public health policy and
identify areas with concerning levels of transmission.

This study found that the SI-LSTM algorithm design was able to, for
the assessed temporal periods, accurately predict hotspot locations
over time horizons of amonth or more with ahigh degree of accuracy.
Thenovel architecture described in this paper provides aframework for
modelling temporally variable geospatial data. We anticipate that this
model architecture has uses beyond the epidemiological application
described in this paper.

In public health operational use, the models accurately forecast
the exponential increase in the Alpha variant in December 2020, the
Delta Variantin April 2021 and the Omicron Variantin November 2021
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withinlocal authorities in the UK. The evolution of the pandemic may
render certaindatasourcesless important for modelling purposes and,
due to extrinsic pressures, modelling RSV trends must be conducted
with careful design, relevant auxiliary features and meaningful clini-
cal targets.

Methods

The section will first outline the steps taken to collect and prepare
the data sources for modelling. The development of the models is
described at the end of this section.

Data collection and preparation

Google Trends. Google Trends data provides RSV by search term
and location over time which can be accessed via the public website
trends.google.com. The data are normalized by total search volume’®,
andreflect therelativeimportance of terms over time and space. Both
national- and highly localized city-level data were analysed for this
work. The city-level data can be found under the 'Interest by city' panel
within the user interface. We collected hourly RSVs for all four nations
of the United Kingdom, resulting in data for 4,013 locations.

The project had the support of Google Trends’ editorial team
throughout the project, whom facilitated data acquisition and pro-
vided a Google Health Trends APl key. A preliminary analysis was con-
ducted on the daily relative values provided by Google for each city
location. The daily relative value was found to be of limited utility due
to the high proportion of zero values reported. Further exploration
discovered that data collected at an hourly frequency resolved this
issue. We therefore executed hourly requests to collect the Google
search trends data.

At the outset of the project, the collection included 108 terms
to capture the most frequently observed symptoms of COVID-197,
NHS medical advice seeking behaviour, COVID-19 testing, and com-
mon over-the-counter treatments for COVID-19. These terms were
supplemented withafurther1,000 searchitems found to be the most
commonly employed phrases used in NHS Pathways 111 telephonic
COVID-19 triages®°. We excluded certain words and phrases for their
lack of overall relevance in the context of a search term and their rela-
tive occurrence atanational level inthe Google Trends user interface.
Preliminary analysis conducted ata national level involved generalized
additive models with anegative binomial error structure and dynamic
time warping to assess the selected terms’ relevance as a predictive
feature of COVID-19 incidence and clinical outcomes. The analysis
highlighted 94 important terms that were relevant for further analysis
and seven primary symptoms of COVID-19 were included as Google
entity terms.

The Google data were then processed to match geographically,
by date, the recorded SARS-CoV-2 case, hospitalization and mortality
dataat LAD. Google estimates searchlocations using sourcesincluding
the GeolP and, where available, the GPS coordinates of the device®..
Lookups were therefore developed using the latitude and longitude
provided by Google to map the data to the ONS* designated LAD
geographies. This was not possible for central London and as aresult
agroup of LADs was created to match Google’s London location.

Mobility data. Mobility data were collected from Google® and telecoms
operators® where it is reported at LAD and MSOA*, respectively. The
Google mobility datameasures changein the visits and length of stay at
six different place categories compared with abaseline period between
the 3rd of January and the 6th February 2020°. The categories are
grocery and pharmacy, parks, transit stations, retail and recreation,
residential, and workplaces. Locations provided—based on the ISO 3166
standard—are ‘country_region_code’, ‘sub_region_1’and ‘sub_region_2’.
The telecoms mobility data contain counts of the number of people and
their number of journeys over time at MSOA geography. The data are
prepared by mapping to LAD using the ONS lookups®* by extracting,

among other things, demographic and person category (resident,
worker, visitor) information. The absolute numbersin this dataset are
challenging to interpret, but, as with other sources presented in this
paper, itisthe trendsrather than absolute numbers thatare important.

Website COVID-19 testing journey data. Website COVID-19 testing
journey data were sourced from the Test and Trace Adobe Analyt-
ics platform, which measures both symptomatic and asymptomatic
journeysthrough the test booking system. The data are further broken
down by whether the journey was complete orincomplete. Anincom-
plete bookingjourney is oneinwhich a person does not proceed at the
final stage of the online journey to book the test. Adobe geolocates
requestors on the basis of their internet protocol and a lookup table
was created to aggregate the Adobe locations to LAD level.

NHS Pathways 119 Data. The 119 number was established as the contact
number for the NHS Test and Trace service in May 2020* and provides a
way tobook acoronavirus testand enquire about a test result; its scope
hassince expanded to process vaccinationappointments. The dataset
includes the call date and reason along with the geographic location
of the caller. As with the other sources mentioned above, the dataset
was aggregated to LAD geography using an ONS lookup table**. Only
two types of call were selected: calls in which ‘Test enquiry—request
atest’was given as the call reason and all calls, regardless of reason.

Testing availability. The greatest quantity of diagnostic tests con-
ducted for COVID-19 are through website requests. Testing availability
was defined as individuals that complete the online journey until the
final stage at which they are offered a test and could not proceed rela-
tivetoindividuals that completed the website journey. This may be due
to lack of available RT-PCR tests, because the testing centre location
was not accessible, or the requestor chose not to proceed.

Due to the temporal and geographic disparity over testing avail-
ability throughout the pandemic we calculated testing availability, as
afunctionoflocation/and time t. Acompletion denotes anindividual
that finished the website test request journey and that a test was con-
ducted. Itis defined by the following equation:

Availability ([, ¢)

Symptomatic completions (/,£)+Asymptomatic completions (/)

Symptomatic final stage users(L,t)+Asymptomatic final stage users (1,t)

Availability (/,t) =1corresponds to anarea where all of those who
request atest receive one,

Availability (/, £) = O corresponds to an area where testing is entirely
unavailable onrequest

Testing availability was employed as afeature when modelling the
case rates for a locality. Testing data coverage is heterogeneous, and
the ascertainment bias is time varying therefore, for the operational
presentation of modelling results that were trained on case data we
included testing availability scores to understand gaps in local cover-
age that the model may not identify.

Outbreak risk score. The primary purpose of this modelling approach
is to highlight areas of concern before a substantial outbreak occurs
withinaLAD. Anoutbreak risk score was therefore developed for con-
firmed SARS-CoV-2 PCR-positive cases, hospitalizations and mortali-
ties (Supplementary Fig. 5). The PCR-positive case data were sourced
through the anonymized combined list collected by the UKHSA, which
is derived from the National Pathology Exchange dataset®. The hos-
pitalization data were obtained from the APC dataset”, including
individuals that tested positive for COVID-19fifteeen days prior toand
eight days post admission, and was aggregated from the lower super
output area to the LAD level. Mortality data were obtained from the
UKHSA COVID-19 death linelist for England, and the public dashboards
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for Scotland*® and NorthernIreland® (we did not have access to mortal-
ity dataat LAD geography for Wales).

The PCRtesting and mortality data that were included for analysis
had been evaluated for ‘backfilling’ (how long it takes before the last
complete day of data) over the most recent seven day period prior to
inclusionas atarget. The hospitalization APC data has defined monthly
periods when hospital trusts must declare their admission activity data
andthelast complete day was included. The daily PCR tests, hospitaliza-
tions and mortality data for each LAD was normalized per millionand
smoothed over arolling seven-day window.

The thresholds for the risk scores were determined by analysis
of the population-normalized daily distribution of cases, hospitali-
zations, and mortalities, at LAD. The defined thresholds represent
equal proportions of these distributions at LAD for a defined temporal
window of the epidemic in the UK. These thresholds were, in a public
health operational response setting, initially informed by the localized
interventionsin the United Kingdom through the tiering system*. The
risk score criteriaare dynamic and determined by changes to the daily
proportionsin cases, hospitalizations and deaths, which are influenced
by variant severity, availability of testing within a country, the ascer-
tainment rate, and the rate of disease prevalence to be informative
indicators of inter-location heterogeneity.

Model development
The data used for analysis in this work were collected from the 1st of
October 2020 and the model performance was measured up to July
2021. The software used for model development included Python
v.3.10.0 and Rv.4.2.0. The targets for the machine learning modelling
were defined as the daily confirmed case risk score, hospitalization risk
score and the mortality risk score. The features used for the machine
learning modelling included Google Trends search data, Google
mobility, telecoms mobility, NHS Pathways 119 call categories, test-
ingavailability, location, and asymptomatic and symptomatic website
testing requestjourneys. The features, analogous to the targets, were
smoothed over arolling seven-day window due to the erratic nature of
this time-series datawhen analysed daily. For our modelling purposes,
and its operational use case, we sought to identify trends and not the
precise value on a given day to highlight an area of concern.
Time-series analyses of the data was conducted using shallow
learning and deep learning algorithms and the features were lagged rel-
ativetothetarget from15to40 daysto assess their predictive temporal
relationship withthe clinicalindicators. Forecasting was not attempted
forlonger than these periods as preliminary analysis found that model
performance quickly deteriorated after 40 days. This projectranatotal
of2,057 modelsincluding the sensitivity analysis of hyperparameters.

Univariate forecasting

To understand the difficulty of the predictive task and where the pro-
posed models are likely to struggle, a univariate forecasting approach
was developed for population-normalized cases, hospitalizations and
mortalities at the LAD level. An ARIMA model was fit using a modified
Hyndman-Khandakar algorithm?®? for step wise performance tuning
using unit root tests and the Akaike information criterion. Model per-
formance was further measured by the risk scoring criteria developed
for cases, mortalities and hospitalizations.

Shallow learning

Model design. Withthefeatureslagged from15to40days, we trained Ran-
dom Forest*’, XGBoost", GBM* and Naive Bayes** algorithms on the risk
score target. Logloss was the defined loss metric for the Random Forest,
XGBoostand GBMwithastoppingtolerance of 0.001 (fullmodel hyperpa-
rameter specifications canbe foundin Supplementary Table 2). Random
holdout outs of up to 40 days of data were excluded from the training
sampleand used to assess model performance. K-fold cross-validation was
alsoincluded for each model (k=10) in addition to a primary model that

was trained on the entire training dataset. Eleven models were therefore
trained on the data: ten on each cross-validation split, and the primary
model on all of the training data. The trained models were then stacked
tocreatean ensemble model using the XGBoost algorithm®, The stacking
comprises of training asecond-level learner called ameta-learner, which
combines the base learners to optimize performance.

Feature importance and sensitivity analysis. Sensitivity analysis was
conducted to find the optimal hyperparameter combinations for each
shallow learning algorithm across the assessed temporal periods. This
included thetree depth, number of trees and the learning rate. Toillustrate
the relative importance of each data source at predicting the risk score
targets,aRandom Forest algorithmwastrained oneach source’s features
inturnand the performance was evaluated. We measured the performance
atal5daylaginthefeatures for the PCR-positive case, 20 day lag for hos-
pitalization and a 25 day lag for mortalities. The delays were selected as
the optimal performance periods of the Random Forest algorithm. The
results provided are the overall performance across the assessed periods
however, these relationships change across epidemic phases. Therefore,
feature inportance was assessed across every epidemic phase for each
replacing variant of SARS-CoV-2 using an XGBoost algorithm.

Deep learning

Inthe following section we discuss the data pre-processing for the deep
learning algorithms, the preliminary sensitivity analysis, and the final
model architectures.

Data pre-processing. The model features were pre-processed using a
log transformation to stabilize the variance and subsequently normal-
ized, sothat the meanwas zero and the standard deviation was one. Due
to the mobility data containing negative values we employed an offset
value priortologtransformationto ensure that the step producedareal
value. Thisis conducted tospeedthe process tothe global minimaofthe
error surface and mitigate the chance of getting stuck atlocal optima. The
modeltargets were one-hot encoded to convert the categorical input data
into a vector required for the categorical cross-entropy loss function*.

The model utilized a generator function® for every LAD and
yielded lagged batches of the features for the target variables. The
arguments of the generator functionincluded:

« Lookback (how many time steps of features to include for each
target)

« Lag(how many time steps in the past are the features relative to
the target)

« Shuffle (whether to shuffle the order of the training data)

« Batchsize (how many samples are used per batch)

e Minimum and maximum indices (the portion of the overall
time-series to use for each location)

Preliminary analysis. Preliminary exploratory analysis was conducted
on the defined lookback period, shuffling of the training order, the
number of LSTM and CNN layers, L1 and L2 regularization on dense
layers, the shape of the tensor for each layer, and the use of dropout
layers. We also assessed the relative impact of different optimization
functions: RMSprop®, stochastic gradient descent®* and Adamax®.

Model design. The final model designincluded a seven day lookback
on the delay periods 15, 20, 25, 30, 35 and 40 days. This determined
that the algorithm would, for a target on a given day, utilize the past
seven days of features. This was included to capture the weekly trend
inthe features foradefined risk score of confirmed SARS-CoV-2 cases,
hospitalizations or mortalities. Following the sensitivity analysis, we
included a shuffling in the order of the training data and developed a
model structure that allowed the learning rate to decrease for subse-
quent epochsifanincrease in the validation loss was detected, which
is a proxy metric for overfitting.
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Atthe finallayers of the SI-LSTM and SI-CNN-LSTMwe introduced a
connectionnetwork between all geographiclocations so that the model
canlearnfromtheintraandinter-location feature weighting. We merge
the363 independentinput branches by combining the list of tensors,
fromthe final LSTM layer for each location, on a single concatenation
axisandto produce asingle tensor as describedin Fig.3. The final LSTM
layer produces a rank-2 tensor of shape (b, u) where b is the batch size
and uis the number of units in the LSTM layer. After concatenation of
tensors fromthe L locations, the resulting tensor has shape (b, Lu).

The final dense layer has a softmax activation function, which
thaty,canbeinterpreted asthe probability that the targetis classi. The
cross-entropy loss function is then defined as:

c
Lt =— t;logy;
=1

where t;is the one-hot encoded target vector. We then used RMSprop
as the optimization function in the back-propagation stage.

SI-LSTM. The model has an initial input layer for each location fol-
lowed by two LSTM layers with atime distributed dropout layer, which
helpedto prevent overfittingin the early model epochs. Thereis afinal
LSTM layer before the model forks, as seenin Fig. 1, to produce a dense
side-outputlayer for eachlocationand a concatenation layer followed
by adense layer. The final output layers have asoftmaxactivation func-
tion due to the probabilistic categorical cross-entropy loss function.

SI-CNN-LSTM. The SI-CNN-LSTM architecture takes advantage of the
feature amplification ability of CNN layers to use a type of weight shar-
ingwith local perceptionto refine and condense the number of param-
etersthat helpstoimprove thelearning efficiency for the LSTM layers**.
Due to the dimensional size of the features after the one-dimensional
CNN layers, a time-distributed dropout layer, a one-dimensional max
pooling layer and a flatten layer are included. The model structure
thenincludes three LSTM layers, with the first LSTM layer followed by
adropout layer and a dense layer, with a further dropout layer on the
second LSTM Iayer. The model thenbranches out toadenseside-output
layer and a concatenation layer before the final dense layer.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Google mobility data are available from https://www.google.com/
covid19/mobility and Google Trends data can be queried at https://
www.google.com/covid19/mobility. SARS-CoV-2 cases and deaths
data can be found at the required spatial scales on the UK’s corona-
virus dashboard at https://coronavirus.data.gov.uk, as well as on the
devolved administration dashboards (https://www.health-ni.gov.
uk/articles/covid-19-daily-dashboard-updates, https://www2.nphs.
wales.nhs.uk/CommunitySurveillanceDocs.nsf/61c1e930f9121fd08
0256f2a004937ed/c84f742604ce56f0802586b600374b49/$FILE/
Rapid%20COVID-19%20surveillance%20data.xIsx and https:/www.
gov.scot/publications/coronavirus-covid-19-trends-in-daily-data/).
An application can be made to the UK Health Security Agency for the
PCR cases and deaths data, and all other data used in this study. Data
requests can be made to the Office for Data Release (https://www.gov.
uk/government/publications/accessing-public-health-england-data/
about-the-phe-odr-and-accessing-data) and by contacting odr@phe.
gov.uk. All requests to access data are reviewed by the ODR and are
subjecttostrict confidentiality provisionsinline with the requirements
of:the common law duty of confidentiality; data protection legislation
(including the General Data Protection Regulation); the eight Caldicott

principles; the Information Commissioner’s statutory data sharing
code of practice; and the national data opt-out programme.

Code availability

Supplementary Softwareland 2 have beenincluded for the deep-and
shallow-learning modelsin R, respectively. Python and PyTorch code
for the SI-CNN-LSTM and SI-LSTM models can be made available on
reasonable request to the corresponding author.
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Extended Data Fig. 2| A line graph of the side output and main output model accuracy for SARS-CoV-2 Case, Hospitalization, and Mortality Risk Scores for the

SI-LSTM and SI-CNN-LSTM algorithms across the temporal delay periods.
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Training and Validation Curves for a 30-day Lag
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Extended Data Fig. 3| A line graph of the training and validation loss for the SI-LSTM and SI-CNN-LSTM models with a 30-day target lag for the Confirmed Case
Risk Score.
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Validation Loss by Epoch and Optimiser in the
SI-LSTM Model for SARS-CoV-2 Confirmed Cases
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Extended Data Fig. 4| Aline graph of the validation loss for the optimizer functions Adamax, RMSprop, and stochastic gradient descent for the Confirmed

CaseRisk Scores.
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Extended Data Fig. 5| A line graph of the log loss results for SARS-CoV-2 Confirmed Case, Hospitalization, and Mortality Risk Scores for the shallow learning
algorithms across the temporal delay periods.
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Sensitivity Analysis of the Accuracy of the Gradient Boosting Machine Algorithm for Confirmed Case Risk Score
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Extended Data Fig. 6 | Sensitivity analysis for the Gradient Boosting Machine (GBM) algorithm for the confirmed case risk score.
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Extended Data Fig. 7| Word Cloud of the Google Trends search terms with the highest relative volume at Local Authority District (LAD) in the UK.
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Extended Data Table 1| ARIMA risk score forecasting performance for Positive PCR tests, hospitalizations, and mortalities
from COVID-19 across the Alpha wave from 1st November 2020 - 15th February 2021

Risk Category Accuracy

PCR Positive 31.4%
Cases

Hospitalisations 50.1%

Mortalities 39.8%
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Extended Data Table 2 | A table of the overall model feature importance for Google Trends, telecoms mobility, Google
mobility, 119 calls, and website test request journeys using a Random Forest algorithm across the assessed periods

Features RF 15-day PCR  RF 20-day hospitalisations RF 25-day
confirmed cases Accuracy / % mortalities
Accuracy /% Accuracy /%
All 90.4 92.7 12.5
(Google Trends,
Google Mobility,
Telecoms
Mobility, 119
Calls, Website
Testing Demand,
Location)
Google Trends 87.4 89.9 65.4
Google Mobility 71.6 81.4 592
Telecoms 84.4 89.1 64.8
Mobility
119 Calls 354 69.3 54.2
Website Testing 49.9 74.4 54.5
Demand
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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D A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|X| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Python and AWS were used to store and collect Google RSV data. The remaining data was stored in a secure UKHSA account.

Data analysis The code was written in R and Python

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Google mobility data is available from the public website https://www.google.com/covid19/mobility and Google Trends data can be queried at https://
www.google.com/covid19/mobility. SARS-CoV-2 cases and deaths data can be found at the required spatial scales on the UK's coronavirus dashboard at https://
coronavirus.data.gov.uk and on the devolved administration dashboards (https://www.health-ni.gov.uk/articles/covid-19-daily-dashboard-updates , https://
www2.nphs.wales.nhs.uk/CommunitySurveillanceDocs.nsf/61c1e930f912 1fd080256f2a004937ed/c84f742604ce56f0802586b600374b49/SFILE/Rapid%

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<




20C0OVID-19%20surveillance%20data.xlsx , https://www.gov.scot/publications/coronavirus-covid-19-trends-in-daily-data/).

For the PCR cases and deaths data and all other data used in this study, an application can be made to the UK Health Security Agency. Data requests can be made to
the Office for Data Release (https://www.gov.uk/government/publications/accessing-public-health-england-data/about-the-phe-odr-and-accessing-data ) and
contacting odr@phe.gov.uk. All requests to access data are reviewed by the ODR and are subject to strict confidentiality provisions in line with the requirements of:

. the common law duty of confidentiality

. data protection legislation (including the General Data Protection Regulation)
. 8 Caldicott principles

. the Information Commissioner’s statutory data sharing code of practice

. the national data opt-out programme

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for
sharing of individual-level data, provide overall numbers in this Reporting Summary. Please state if this information has not
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 82264 rows of data. Each row corresponding to one day in each Local Authority District in the United Kingdom.

Data exclusions  The Isles of Scilly were excluded from the UK analysis due to poor quality data for NHS pathways, mobility and Google relative search volume.
Mortality risk did not include Wales as the data at the time was not available at Local Authority District.

Replication The model runs for each algorithm were replicated during sensitivity analysis of the hyperparameters.
Randomization  The model accuracy was measured at randomly selected time series (not included in the training of the algorithm).

Blinding Not relevant to this study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).
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Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? [] ves [Ino

Field work, collection and transport

Field conditions

Location

Access & import/export

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
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Access & import/export [compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
L
C
=
(D
5,
o)
=
o
=
-
@
S,
o)
=
>
@
wv
e
3
=
QO
=
A

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies & |:| ChIP-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XX NXXNXNX s
OooOood

Dual use research of concern

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems

XXX XX &

|:| Any other significant area
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Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities
Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChiIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.




Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]used [ ] Notused

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).




Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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