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Autonomous vehicles (AVs) have recently attracted consid-
erable attention from academia, industry and the general 
public due to their potential to revolutionize transportation, 

accelerated by advances in artificial intelligence. The deployment of 
AVs in our environmental landscape has the potential to decrease 
road accidents and traffic congestion, as well as improve our mobil-
ity in overcrowded cities. Despite extraordinary efforts from many 
of the leading names in the AV industry and research, AVs are still 
out of reach except in limited trial programs due to key concerns 
on their reliability and safety1 (see Supplementary Note 1 for details 
on AV safety levels). Apart from the technical problems, adverse 
weather conditions such as rain, fog and snow pose substantial chal-
lenges for safe and reliable driverless technology2,3.

Autonomous vehicles are equipped with different types of sen-
sors such as cameras, lidars, radars, ultrasound and GPS to achieve 
a higher level of awareness of the surroundings, leading to increased 
safety, efficiency and capabilities2,4. Along with multiple sensors, 
artificial intelligence methodologies, machine learning, deep learn-
ing and large datasets play major roles in the development of AVs 
with higher levels of intelligence and mobility5,6. Artificial intelli-
gence systems efficiently process the vast amount of multisensory 
data to train and validate the family of machine learning models 
that underpin the perception, localization, prediction and motion 
planning capabilities of autonomous driving systems7,8. These sys-
tems make sense of the world and the objects in the environment 
and dictate the paths that the vehicles ultimately take.

The localization capability is responsible for precisely predict-
ing the AV’s position on a map. Most of the core components of 
AVs such as prediction and planning rely on precise localization 
to, for example, within a few centimetres. Although AVs heavily 
rely on signals from space-based global navigation satellite systems 
such as GPS for localization, radio signals can be lost or degraded 
in many environments due to obstacles or reflections. In particular,  

AV operation in urban areas surrounded by high-rise buildings 
remains highly challenging. In addition, GPS merely provides 
metre-level location accuracy without orientation information, 
which is potentially fatal for passengers of AVs or those in the sur-
roundings. For example, an AV might detect itself in the wrong lane 
before a turn, or might stop too late at an intersection due to impre-
cise localization. Ego-motion estimation (also called odometry) 
with onboard sensors provides a complementary localization solu-
tion in challenging environments, predicting the accurate relative 
self-position of AVs. It is therefore an essential component that lies 
at the core of an autonomous driving algorithmic stack and serves 
as the basis for numerous algorithms such as localization, predic-
tion and motion planning. A robust and reliable ego-motion esti-
mation system should address the sensor vulnerabilities that might 
be caused by various factors such as poor environmental conditions 
and sensor imperfections.

Artificial intelligence in AV research and development relies 
heavily on the use of public datasets in the computer vision and 
robotics communities9. Although the datasets are ever-increasingly 
massive, the acquisition of accurate ground-truth data to supervise 
the artificial intelligence systems is limited due to the need for man-
ual labelling and deficiencies of the existing sensors. Cameras and 
lidars constitute the two primary perception sensors that are com-
monly adopted in AV research; however, as these sensors operate in 
the visible and infrared spectrum, inclement weather dramatically 
disrupts their sensory data, causing attenuation, multiple scattering 
and absorption10 (Supplementary Note 2). Millimetre-wave radars 
provide a key advantage over visible spectrum sensors in their 
immunity to adverse conditions, for example, they are agnostic to 
scene illumination and airborne obscurants10,11. The wavelength of 
millimetre-wave radars is much larger than the tiny airborne parti-
cles that form fog, rain and snow, and hence easily penetrates or dif-
fracts around them. Furthermore, as they are radiofrequency-based 
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sensors, radars do not require optical lenses and can be integrated 
into plastic housings, making them highly resilient to water and 
dust ingress. We therefore believe that odometry approaches utiliz-
ing millimetre-wave radars will allow robust ego-motion estimation 
under diverse settings such as day, night, rain, fog and snow, and 
address the challenges in implementing radars (which are described 
in Supplementary Note 3). The introduction of a high-resolution 
radar in AV datasets created new opportunities for ego-motion 
estimation under challenging conditions. Despite the improved 
measurements, the radar measurements are still much coarser and 
noisier than those of lidars and cameras. As a result, ego-motion 
techniques developed for lidars cause large motion errors. Although 
further information in the full AV software stack from passive sen-
sors (for example, wheel encoders and inertial measurement units) 
and intermediate predictions of software modules (for example, loop 
closure and bundle adjustment) can supplement the ego-motion 
estimation module, perception sensors such as the camera, lidar 
and radar play a pivotal role in the performance12. Ego-motion esti-
mation methods should therefore exploit the advantages of cam-
eras (rich, dense visual information), lidars (fine granularity within 
visible range) and radars (immunity to inclement weather) while 
addressing their relative shortcomings. Although deep learning 
models offer state-of-the-art solutions for ego-motion estimation 
tasks (Supplementary Note 4), adverse weather conditions pose a 
host of substantial challenges such as reduced sensing capability (for 
example, due to the occlusions caused by precipitation) and a wide 
range of domain shifts (for example, due to the discrepancy between 
a training dataset and the data encountered during deployment).

Here we propose a novel self-supervised deep learning frame-
work, geometry-aware multimodal ego-motion estimation 
(GRAMME; Fig. 1) that addresses the key ego-motion estimation 
challenges for AVs outlined above. Our novel multimodal geo-
metric reconstruction algorithm and reciprocal training technique 
create a supervisory signal for the self-supervised neural network. 
Under five diverse settings (day, night, rain, fog and snow) using 
publicly available independent datasets, we show that our multi-
modal approach provides robustness to unfavourable weather con-
ditions and outperforms state-of-the-art ego-motion estimation 
approaches. Following a challenging experimental protocol, we 
show that the proposed modular design improves the performance 
of individual modalities even if the other modalities are unavailable 
at test time, providing robustness to sensor failures. Furthermore, 
we demonstrate the generalization capability of GRAMME by 
showing that models trained on regular sequences typically targeted 
by self-supervised studies can directly be applied to challenging 
sequences. We employ different sensors with various resolutions 
and beamwidths in the experiments and show that GRAMME is 
sensor agnostic. Furthermore, we use game-theoretic approach to 
visualize the learnt feature space and illustrate the independent 
and uncorrelated failure modes of the proposed multimodal sys-
tem, and show that GRAMME focuses on the relevant details in 
the environment. GRAMME is publicly available as an easy-to-use  
Python package13.

Self-supervised artificial intelligence for all-weather 
ego-motion estimation
GRAMME is a deep learning-based self-supervised method that 
uses multiple sensors such as cameras, lidars and radars to estimate 
the ego-motion of AVs by reconstructing the three-dimensional 
scene geometry under diverse settings such as day, night, rain, fog 
and snow. GRAMME is sensor agnostic and designed to support 
sensors with various configurations in terms of resolution, beam-
width and field-of-view (Supplementary Note 5). GRAMME uses 
a novel differentiable view-reconstruction algorithm to incorpo-
rate the measurements of range sensors (for example, lidars and 
radars), mitigating the limitations of cameras (both monocular and 

stereo) under challenging conditions. The key supervision signal 
to train the neural networks for depth and pose prediction comes 
from the new view-reconstruction algorithm: given a multimodal 
input view of a scene, it reconstructs a new view of the scene cap-
tured from a different position. The visual-reconstruction algo-
rithm uses the predicted per-pixel depth and ego-motion, whereas 
the range-reconstruction algorithm uses the predicted ego-motion 
and range measurements, both making use of multimodal masks. 
The spatial transformer module of GRAMME implements the view 
reconstruction in a fully differentiable manner compatible with the 
ego-motion, depth and mask prediction neural networks.

At a high level, GRAMME has a modular design to enable inde-
pendent operation for each modality during both training and 
inference, which improves the robustness of the system to achieve a 
minimal risk condition14. Although we train the modules for depth, 
pose and mask predictions jointly, they can directly operate on the 
input frames separately from each other during test time, lead-
ing to independent and uncorrelated failure modes for the mod-
ules. Moreover, the modular design enables the performance gains 
achieved during multimodal training to be maintained at inference 
time even when the complementary modalities are partially or 
entirely unavailable. We use a reciprocal multimodal training tech-
nique to enhance the predictions on individual modalities, provid-
ing information flow across submodules. Furthermore, the range 
measurements of radar can directly capture strong patterns related 
to the geometry of the scene, whereas a simple colour value of 
camera pixels is associated with the geometry through an accurate 
depth estimation of the pixel. As the camera and radar measure-
ments are perceptually different, we exploit a late multimodal deep 
fusion technique, which also facilitates the modular design. The 
multilayer perceptron-based late fusion layer uses the unaligned 
ego-motion predictions from multiple modalities to predict the 
ultimate motion. Due to the tight formulation of ego-motion and 
depth prediction, the multimodal fusion technique substantially 
improves the depth predictions as well. The fusion consists of two 
stages: first, the individual ego-motion predictions are used to 
reconstruct the corresponding camera and range views; second, 
the predictions of each modality are interchangeably used in the 
counterpart view-reconstruction algorithms for both visual and  
range reconstructions.

In the proceeding sections, we demonstrate the generalizability, 
data efficiency and interpretability of GRAMME in five different 
diverse settings such as day, night, rain, fog and snow. We quali-
tatively and quantitatively evaluate the state-of-the-art ego-motion 
estimation and depth prediction performance on multiple datasets, 
emphasizing the effect of modular design on individual modalities.

results
Evaluation of model performance. We evaluated the depth and 
ego-motion prediction performance of GRAMME in five adverse 
settings such as day, night, rain, fog and snow using fivefold 
cross-validation. To quantitatively measure the generalization per-
formance of GRAMME, we conducted an effective and reliable—
yet rather challenging—cross-condition evaluation on the Robotcar 
dataset, enabled by the modular design of GRAMME. We trained 
the models on typical day sequences15 (training dataset) and directly 
evaluated them on more challenging conditions (night, rain, fog and 
snow)16 (test dataset). For each cross-validated fold, we randomly 
partitioned each public AV training dataset into a training set (80% 
of sequences), a validation set (10% of sequences) and a test set (10% 
of sequences). Each set contains the time-synchronized matching 
frames from each modality used for the training. The proportions of 
different settings (in terms of the number of frames) were kept con-
stant in each set during partitioning. In each fold, we monitored the 
model’s performance on the validation set during training and used 
the validation set for model selection while the test set was held-out 
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and referred to just once after training was complete to evaluate the 
performance of the model on day sequences. The final models are 
directly evaluated on the test datasets that contain adverse condi-
tions never observed by the models during training.

Multimodal, modular and generalizable depth prediction. In 
the first set of experiments we analyse the depth prediction perfor-
mance, which is a critical component of the self-supervision signal. 
GRAMME formulates multimodal ego-motion using a tight con-
nection between depth prediction and ego-motion estimation to 
eliminate the need for the labelled data. The geometry-aware mul-
timodal self-supervised architecture improves the generalization 
performance of the model to diverse conditions. Figure 2 shows 
the depth prediction performance for the model trained using:  
(1) a monocular camera, (2) a stereo camera, (3) a lidar–camera 
(stereo) and (4) a radar–camera (stereo). Note that we use only the 
day sequences in the training set for each training experiment on the 
modalities. Also, for each experiment, we use only the modalities 
labelled on the training modality column. Owing to GRAMME's 
modular design, the vision and range modules can make predic-
tions directly and separately on the camera, lidar and radar inputs. 
To evaluate the generalizability of the depth module, we use the 
monocular sequences to test the depth prediction performance of 
the DepthNet module. The camera-only experiments also demon-
strate the robustness of the system to sensor deficiencies. We also 
demonstrate the effect of external supervision by training the model 

with ground-truth pose information (as explained in the 'Datasets' 
section) following the same evaluation protocol. As shown in Fig. 2,  
ground-truth supervision reduces the generalization capability 
compared with self-supervision. Moreover, the relative multimodal 
performance of the supervised models is even worse than the 
self-supervised models. Although the camera-only self-supervised 
models are trained, validated and tested on day sequences and 
lead to overall performance improvement, challenging conditions 
involving glare and non-Lambertian surfaces still suffer from a 
considerable performance loss; however, the models trained on 
additional range sensors (that is, lidar and radar) are much more 
immune to such effects. Although stereo camera-based models are 
slightly better than their monocular counterparts, we have a similar 
observation on the other test conditions that the models trained only 
on camera are dramatically prone to failure. Moreover, although 
lidar- and radar-based models provide qualitatively similar results 
and generally improve the overall performance, the model trained 
with radar data provides greater immunity to precipitation. Under 
foggy conditions, the lidar measurements contribute relatively less 
to the generalization performance than to the other test conditions 
with higher error variance; this is caused by poorer measurements 
due to water droplets condensed on the sensor surface. On the other 
hand, the depth prediction of the model trained with lidar–camera 
fusion achieves better performance than the radar–camera model. 
As the lidar measurements are invulnerable to the lighting condi-
tions and provide dense measurements, the model has an advantage 
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over the radar-based version. GRAMME exploits the multimodal 
system design effectively, unlike the past work focusing mainly on 
either deep network architecture or objective function. The results 
show the benefits of multimodal fusion on depth prediction as an 
additional supervision signal, improving the generalization ability 
of the model under diverse settings. Moreover, we test the gener-
alization performance of GRAMME to different datasets, repeat-
ing the same training, validation and test protocol on the publicly 
available RADIATE dataset17. We exhibit both the depth predic-
tion and ego-motion estimation performance in Extended Data 
Fig. 1. Although the dataset contains shorter sequences with high 
variations in scene appearance and structure, GRAMME achieves 
remarkable domain adaptation performance on this challenging 
dataset (the observations on the RADIATE dataset is provided in 
Supplementary Note 6).

Sensor-dependent masking, multisensory fusion and generaliz-
able ego-motion estimation. View reconstruction provides the 
key supervision signal for the model training. In this set of experi-
ments we investigate the effectiveness of the masking system as the 
major geometrically consistent element in the reconstruction. We 
then provide the overall generalization performance of the mul-
tisensor ego-motion estimation coupled with the masking system. 
As the view reconstruction is based on sampling from the adjacent 
frames, and occluded areas cannot be sampled by definition, recon-
structed occlusion areas might corrupt the supervisory signal. The 
inherent heterogeneous radar artefacts such as ghost objects, phase 
and amplitude stability, speckle and saturation are other sources of 
inconsistency for view reconstruction (see Supplementary Note 3).  
Furthermore, the adverse weather conditions pose further challenges 
for camera and lidar that inhibit the underlying scene consistency 
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assumptions. Poor weather introduces sharp intensity fluctuations 
in camera images, which degrade the consistency across frames. It 
is therefore important to detect the imperfect and unreliable regions 
in measurements and exclude them from the view reconstruction. 
GRAMME predicts a mask that is a combination of learnt and geo-
metric masks to remove the invalid parts. The former is predicted 
by GRAMME's mask module, whereas the latter is based on the 
geometric inconsistency between consecutive multimodal frames 
that accounts for motion explanation, the nearly identical frames, 
and dynamic objects. We show that the predicted masks improve 
the performance of GRAMME by eliminating the imperfections on 
each modality. Figure 3 shows example frames and the correspond-
ing mask predictions for each modality under challenging condi-
tions. We use the stereo setting for the camera fusion models, which 
provides additional information due to binocular vision. To show 
that the masks eliminate the effect of unfavourable weather on each 
sensor, we trained the model using the individual modalities only.  

For example, intense glare caused by direct exposure to sunlight sat-
urates most of the camera pixels and restrains the frame matching. 
The predicted camera mask captures the glaring regions and excludes 
them from the view reconstruction to prevent an incorrect consis-
tency calculation that might corrupt the loss values computed during 
training. Similarly, although stereo camera provides binocular vision 
and is marginally less susceptible to occlusions than the monocu-
lar one, both camera types are still considerably prone to occlusions 
and poor visibility due to precipitation and weak illumination. For 
lidar, the reflections from the ground cause unreliable regions in the 
measurements that cannot be consistently matched across consecu-
tive frames, which are detected and eliminated by the lidar masks. 
The mask also identifies false detections caused by fog droplets. On 
the other hand, although radar is more resistant to weather condi-
tions, the radar measurements still suffer from the inherent artefacts 
discussed above. The radar masks seamlessly detect the imperfect 
measurements and filter them from the radar frames.
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Following the same experimental protocol described above, we 
evaluate the generalization performance of the overall ego-motion 
estimation system. We show an ablation study of GRAMME in terms 
of the contribution of the fusion module to individual modalities 
and contribution of different sensors under unique test conditions. 
Figure 3 shows the translational and rotational errors of different 
ablation schemes, averaged over the day, night, rain, fog and snow 
test conditions. To evaluate the benefits of multisensor fusion, we 
train camera-only models in monocular and stereo settings. In sep-
arate training experiments, we fuse lidar and radar modalities with 
the stereo camera. As shown in Fig. 3, lidar–camera and radar–cam-
era fusion significantly improves both the translational and rota-
tional motion prediction performance compared with camera-only 
models. The GRAMME modal trained with lidar has notably higher 
errors in fog, showing the negative impact of fog on lidar data.

Interpretability and dataset size-dependent performance. Human  
interpretability of the trained self-supervised deep learning AV 
model not only serves to validate that the predictive basis of the 
model aligns with the intuitive geometry perception for depth and 
ego-motion prediction, but also promotes trust for end-users and 
liability for regulatory bodies18,19. We use a game-theoretic approach 
to visualize the contribution scores of each pixel by decomposing 
the output prediction of the DepthNet module on a specific input 
by back-propagating the contributions of all neurons in the network 
to every feature of the input frame. The visualization is based on 
Shapley additive explanations (SHAP)20 that assigns each feature 
an importance value based on SHAP values for a particular predic-
tion. GRAMME models make the multimodal predictions by first 
identifying and aggregating regions in the vision and range sensor 
measurements that are of high predictive importance (high SHAP 
values, red) while ignoring regions of low relevance (low SHAP val-
ues, blue); see Fig. 4 for the visualization of SHAP values on sample 
multimodal inputs for different training modalities. Although the 
higher SHAP values on the camera-only models are concentrated 
around static objects, they are usually scattered across input images. 
Besides, the lower SHAP values are more frequent than the higher 
values and concentrate around the imperfections on the input such 
as glare and occlusions. However, when the model is trained with 
lidar and radar sensors, the SHAP values focus on the object region 
with geometric structures (for example, cars and static objects), 
and the layout (house silhouette and road boundaries). The fusion 
model focuses on the structural representations that reflect essential 
information for depth estimation, which is semantically more con-
sistent between various unfavourable conditions such as night, rain, 
fog and snow. Note that the fusion models are trained with mul-
tiple modalities, but the tests are conducted on the camera depth 
prediction without access to the data from the additional sensors. 
The camera fusion models refer to the stereo setting. Although the 
DepthNet module trained with the camera struggles to find consis-
tent and depth-related points, the fusion of additional sensors that 
are more resistant to environmental changes helps the DepthNet 
focus on geometric structure and object boundaries even when it 
does not have access to the lidar and radar data at test time.

Motivated by the inadequacy of accurate ground-truth data in 
diverse, multimodal datasets at scale, we evaluated the performance 
of GRAMME with sequentially sampled subsets of training data 
under different test conditions (25%, 50%, 75% and 100%) while 
keeping the validation and test sets the same to investigate the 
dependency of the model’s performance on the amount of training 
data available. Figure 4 shows the relative absolute error for multi-
modal depth prediction in diverse settings, visualizing the median, 
first and third quartile of errors. When supervising GRAMME mod-
els with the smaller, sampled subsets of training data, we observed 
that the number of frames required to achieve satisfactory perfor-
mance (with respect to the baseline monocular performance of 

MonoDepth2; ref. 21) varies depending on the modality and the test 
condition. For example, fusion models achieve good performance 
with a dataset size of at least 50% in all test conditions. However, the 
model trained with cameras needs at least 75% of the training data-
set. Notably, the performance of fusion models might deteriorate 
with access to very limited data (for example, with only 25% of the 
dataset). The increased complexity needed to implement the mul-
timodal architecture makes the model more data-dependent than 
those with single modalities. Furthermore, although radar–camera 
fusion provides more immunity to adverse weather than lidar–cam-
era fusion, the latter performs relatively well under the poor illu-
mination in the night sequences. Both lidar and radar modalities 
are not affected by the illumination, but the lidar model utilizes the 
dense measurements of the lidar sensor and achieves better perfor-
mances, accordingly.

Discussion
We showed that GRAMME addresses five key challenges in autono-
mous driving. The first is multimodal self-supervision: we trained 
models with self-supervision using only the sensor measurements 
captured by the camera, lidar and radar sensors. We formulated a 
differentiable view-reconstruction algorithm to create a supervi-
sory signal from range scanning sensors (that is, lidar and radar). 
We demonstrated that multimodality improves the robustness 
of the model to poor illumination and adverse weather, while 
self-supervision eliminates the need for cumbersome ground-truth 
collection and improves the generalization capability compared with 
supervised approaches. A possible explanation for the poor general-
ization performance of the supervised models is that they are opti-
mized to learn the relationship between the input frames and the 
ground truth rather than the underlying geometry. We also dem-
onstrated that multimodal self-supervision achieves state-of-the-art 
depth reconstruction and ego-motion estimation results compared 
with the established self-supervised approaches. Although radars 
provide a reliable complementary perception, the imaging radars 
are still sparse and the resolutions are limited. We argue that the 
development of higher resolution radars in three-dimensions will 
be a milestone enabler for all-weather AVs. The second challenge is 
modularity: we trained models using different modalities in various 
settings. We showed that the modules could be trained and validated 
with partial availability of the intermediate outcomes and the other 
modules, resulting in a more robust system under diverse settings. 
We further showed that the modules could transfer the improved 
capabilities acquired during multimodal training to test time even 
when the other modalities are partially or completely unavailable at 
test time, leading to independent and uncorrelated failure modes. 
We argue that modularity is an essential capability to achieve a min-
imal risk condition, improving the safety of AVs in case of hardware 
or software failures of the components. Although a unitary design 
with tight connections might result in performance gains, it should 
not come at the cost of safety. The third challenge is generalizability: 
unlike most past self-supervised studies, we also focused on gen-
eralization to all of the weather conditions. We trained the model 
using only day sequences in the training set and directly evaluated 
it against the other conditions. Camera-only models showed poor 
generalization due to the degraded performance of cameras under 
challenging conditions; however, we showed that models trained 
with multiple modalities (that is, lidar and radar) achieve a substan-
tial performance boost in terms of generalizability to unseen condi-
tions during training. Although we use a diverse dataset including 
several difficult conditions that AVs might commonly face during 
regular operation, it is beyond feasible to cover all kinds of adverse 
conditions in an AV dataset. Research on generalization perfor-
mance under unfavourable weather conditions is thus particularly 
crucial for the development of AVs. Furthermore, the existing pub-
lic AV datasets in the literature cover a wide range of conditions,  

NATure MAchiNe iNTelligeNce | VOL 4 | SEpTEmBEr 2022 | 749–760 | www.nature.com/natmachintell754

http://www.nature.com/natmachintell


ArticlesNATurE MAcHINE INTEllIgENcE

but they do not extensively cover extreme conditions such as heavy 
downpours and large snowfalls, which is a limiting factor in eval-
uating the generalization capability. Fourth, interpretability: we 
demonstrated that our models are interpretable and capable of 
capturing semantically and geometrically consistent regions. We 
visualized the extracted features using SHAP values and observed 
that the camera-only model struggles to focus on consistent regions 
across frames. On the other hand, multimodal training helps the 
model to capture more consistent areas that are interpretable by 
humans. Although deep learning models are heavily deployed in an 
AV software stack, interpretability remains a considerable challenge 
due to the lack of insightful and lucid interpretability approaches 
to analyse the complex deep learning architectures. Finally, data 
efficiency: our quantitative experiments and comparative analysis 
demonstrated that GRAMME models trained with multiple modal-
ities achieve satisfactory results compared with baseline methods, 
even with dataset sizes limited by up to 50%, despite the increased 

complexity. However, the specific inherent vulnerability of sensors  
(such as lidar in fog) might deteriorate the performance with mini-
mal data availability (for example, 25% of a dataset). For depth 
and ego-motion estimation in adverse weather, we believe that the 
diversity and accuracy of ground truth in the existing public datas-
ets are still insufficient, which is likely to constitute a limiting factor; 
data-efficiency analysis is therefore important to understand how 
sensitive is the performance of a deep learning model to the avail-
ability of additional data.

The key aspects discussed above address a critical issue of AVs: 
the ability to know precisely where they are on the map. Core AV 
components such as prediction and planning rely on this local-
ization ability. In this study we showed that robust and accurate 
ego-motion estimation provides a complementary solution to local-
ization and is a critical component of autonomous driving to achieve 
safety and reliability under adverse conditions. The high level of 
location accuracy provided by GRAMME enables AVs to reliably 
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Fig. 4 | interpretability and dataset size-dependent performance. a, A game-theoretic visualization of GrAmmE to interpret the depth predictions based 
on the SHAp values for sample frames16. pixels annotated by red points increase the depth prediction accuracy, whereas blue points lower the accuracy. 
The challenging conditions such as glare, poor illumination and adverse weather lead to concentrated blue regions around the occluded pixels. However, 
the training with lidar and radar data helps the model focus on more semantically invariant pixels across diverse test conditions, as visualized by the red 
points around static objects and road edges. The distribution of the values illustrates the independent and uncorrelated failure modes of the proposed 
multimodal system. b, Dataset size-dependent performance of GrAmmE in terms of mean depth prediction error, with standard deviation with respect 
to the depth ground truth. Although the lidar–camera (stereo) and radar–camera (stereo) fusions improve the overall performance, access to minimal 
data (for example, only 25%) causes a worse performance than the camera due to the increased complexity of the model required for the multimodal 
architecture. On the other hand, despite the model complexity, the lidar and radar-based models achieve good performances (compared with the baseline 
approaches) with a dataset size of at least 50% in all test conditions.

NATure MAchiNe iNTelligeNce | VOL 4 | SEpTEmBEr 2022 | 749–760 | www.nature.com/natmachintell 755

http://www.nature.com/natmachintell


Articles NATurE MAcHINE INTEllIgENcE

understand their environment and make safer decisions. We dem-
onstrated that the complementary and redundant perception that 
AVs gain from multiple sensors improves the reliability of vehicles 
in challenging situations, especially in unfavourable weather condi-
tions. Furthermore, the self-supervised aspect of GRAMME enables 
artificial intelligence systems deployed on AVs to learn localization 
from orders of magnitude more data, which is important to quickly 
recognize and understand new driving conditions. We believe 
AV technologies should meticulously involve these fundamental 
aspects to achieve safe and reliable autonomous driving.

In terms of future directions, the presented technology can be fur-
ther improved in several directions. For example, the signal-to-noise 
ratio of range sensors can be integrated into the masking component 
of GRAMME, providing an additional physical source of confidence 
for the measurements. Moreover, the Doppler measurements from 
radars can help the model better distinguish dynamic and static 
objects in the scene, enabling a more consistent geometric and 
semantic understanding of the environment. Moreover, GRAMME 
as a learning-based approach can be extended to higher level learn-
ing schemes of autonomous driving such as lifelong and continual 
learning, resulting in AVs that continuously and collaboratively 
improve autonomous driving artificial intelligence.

Methods
GRAMME. GRAMME is a self-supervised deep learning framework designed to 
robustly estimate the ego-motion and depth map for an AV under diverse settings. 
GRAMME follows an end-to-end design and leverages data-driven learning to 
combat the inherent limitations of conventional and state-of-the-art ego-motion 
estimation methods. GRAMME demonstrates the feasibility of multimodal 
odometry under adverse weather conditions and proposes a multisensor fusion 
framework, resulting in a robust ego-motion estimation system. The standard 
self-supervised ego-motion prediction is based on monocular camera, and it 
consists of two joint stages22,23. The first stage predicts a depth map for a given 
camera frame, whereas the second stage predicts ego-motion between two 
consecutive camera frames. Given the ego-motion and depth predictions, a 
spatial transformer algorithm reconstructs the target camera frame from the 
source frames. The spatial transformer module builds on the idea presented by 
Jaderberg et al.24, explicitly allowing the spatial manipulation of multimodal data 
within the network. The reconstruction quality establishes the supervisory signal 
to optimize the neural network. GRAMME builds on the self-supervised training 
idea and describes a multimodal architecture to promote complementary sensor 
behaviours, yielding a robust ego-motion estimation for AVs under diverse settings 
such as day, night, rain, fog and snow. GRAMME introduces a novel differentiable 
range-reconstruction algorithm for range frames (that is, lidar and radar) as part 
of its multimodal spatial transformer that is adaptable to the back-propagation 
during training of the deep learning architecture. The RangeNet module uses 
two consecutive range frames to predict the ego-motion of AV, whereas MaskNet 
predicts the reliable regions in individual frames. Given the ego-motion and 
mask predictions, the spatial transformer algorithm uses the source frames to 
reconstruct the target range frames. To exploit the complementary information 
obtained from different sensors, GRAMME proposes a fusion method that consists 
of the FusionNet layer and cross-modal training technique. The novel fusion 
method enables information flow across different modalities due to the joint 
training technique, improving the robustness of individual modalities. Extended 
Data Fig. 2 shows the details of the architecture.

Problem definition. Each loosely time-synchronized triplet of consecutive camera 
(< Ics,i−1, Ict,i , Ics,i+1 >), lidar (< Ils,i−1, Ilt,i , Ils,i+1 >) and radar (< Irs,i−1, Irt,i , Irs,i+1 >) 
frames in the training set (I = Ic ∪ Il ∪ Ir) represents a single data point at 
time index i with unknown ego-motion and depth map of the camera source Is 
and target It frames. Our goal is to estimate T, where the pose Tt→s = [R∣t] ∈ SE(3) 
is a transformation between the target (t) and source (s) frames with rotation 
matrix R and translation vector t. Although the standard commercial radars 
are two-dimensional sensors, we formulate our problem in SE(3) to enable 
compatibility with other three-dimensional sensor modalities. Unlike existing 
self-supervised radar approaches25, GRAMME directly predicts the pose between 
the consecutive frames without imposing strong motion prior factors.

Camera module. The camera module consists of two networks. DepthNet uses 
UNet style skip connections26 to predict per-pixel depth map D of a given RGB 
image. In parallel, VisionNet follows ResNet18 architecture to predict the relative 
pose Tt→s between source and target RGB images < Ics , Ict >. We use the predicted 
depth and pose values in the spatial transformer algorithm to create a supervisory 
signal based on perspective projection. However, photometric error supervision 

alone is ambiguous, especially in low-textured regions due to the multiple matches 
with one pixel. To prevent depth ambiguity due to incorrect pixel matches in 
low-textured and occluded areas, we apply a regularization:

Ls(D, 2) =

∑

xt

∑

d∈x,y

|∇
2
dD(xt)|e

−α|∇dI(xt)| (1)

Ls(D, 2) is a second-order spatial depth smoothness term that penalizes the 
divergence of the depth prediction gradients along both the x and y directions22. 
The regularization encourages the alignment of the depth values in the planar 
surface in the absence image gradients. For multiview projection between multiple 
camera views, let D(xt) denote the depth value of the target image at coordinate 
xt, and K be the camera intrinsics matrix. Assume a rigid transformation Tt→s is 
the relative pose from the target view to source view, and h(x) is the homogeneous 
coordinates given x. The perspective projection to find corresponding pixels in the 
source view can be formulated as,

D(xs)h(xs) = KTtarget→sourceD(xt)K−1h(xt) (2)

and the image coordinate xs can be obtained by de-homogenization of D(xs)h(xs); xs 
and xt are therefore a pair of matching coordinates in the source and target views, 
and the similarity between the two can be compared to validate the correctness of 
structure. Given the pixel-wise matching pairs in Ict  and Ics, we can reconstruct a 
target view ˆIsc from the given source view as described in ref. 27, and calculate the 
final camera objective using the photometric error Lc = Lp(M,ˆIcs ,ˆIct) + λsLs(D) 
following the camera masking method offered in ref. 22. The camera module 
is applicable to monocular and stereo cameras by exploiting the left–right 
consistency21.

Range module. The range module is designed to predict ego-motion from radar 
and lidar measurements that are represented by a bird’s-eye view in Cartesian 
coordinates, consisting of two feature extractor networks based on ResNet18 
followed by two fully connected layers to regress the relative pose. RangeNet 
predicts the relative pose Tt→s between source and target frames <Is, It>, whereas 
MaskNet individually predicts a mask M in parallel to detect the consistent regions 
in the frames. Finally, our view synthesis algorithm reconstructs the target view 
using the predicted pose and mask.

View synthesis for range sensors. Given a source Is and target It views in Cartesian 
coordinates for radar and lidar measurements, we use the relative predicted 
pose Tt→s between the views to reconstruct a target view ˆIsc through bilinear 
interpolation. To reconstruct the value of ˆIs(xt) from the value of Is(xs), we 
use a differentiable bilinear sampling mechanism similar to the photometric 
approaches24, linearly interpolating the values of the four-pixel neighbours  
N = (top-left, top-right, bottom-left and bottom-right) of xs to approximate Is(xs), 
that is, ˆIs(xt) = Is(xs) =

∑
i,j∈N

wijIs(xijs ), where wij ∝ ∣xs − xt∣, and ∑i,jwij = 1;  
then, given the Lambertian and a static rigid scene assumptions, we can  
calculate the average intensity error to refine the predicted relative pose. However, 
this assumption is not always true because of dynamic objects and sensor 
deficiencies, which might be further violated under adverse weather. We introduce 
a consistency mask M to compensate for the regions violating the assumption. 
Formally, the masked intensity loss for lidar (Ll) and radar (Lr) is,

Ll,r(M,ˆIs,ˆIt) =

S∑
s=1

∑
xt

Ms(xt)|It(xt) − ˆIs(xt)|,

such that ∀xt, s Ms(xt) ∈ [0, 1]
(3)

where {ˆIs}Ss=1 is the set of reconstructed source views, {Ms} is a set of consistency 
masks, and Ms(xt) ∈ [0, 1] provides a weight on the error at xt from source view s. 
The range-reconstruction algorithm is summarized in Algorithm 1. Moreover, the 
explainability mask has a trivial solution in this formulation, assigning all mask 
values to zero. We apply a regularization term to encourage non-zero masks to 
prevent the saturation in the network activation, using a cross-entropy loss for the 
predicted masks:

Lm(M) = −

∑

s

∑

xt

log P(Ms(xt) = 1). (4)

In the bird’s-eye view, vehicles and large objects occupy smaller areas 
compared with the front-view. For example, a vehicle with an average size of 
2.5 × 5.1 m occupies only a 13 × 26 pixels area with an input resolution of 0.2 m. 
Downsampling the bird’s-eye view map through the encoder makes the region-wise 
features vulnerable to quantization errors in the subsequent mask generator; thus, 
GRAMME upsamples the coarse-grained feature map via a transposed convolution 
layer (decoder) and concatenates the output with the fine-grained feature map with 
skip links, following the UNet design26.

Multimodal fusion. GRAMME introduces a self-supervised fusion approach 
that involves an attention module, a fusion network and a training technique. 
The features extracted from range and camera modules are used in an attention 
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module to create weighted features. Lidar and radar features are not always equally 
important, and their contributions to final pose prediction should be weighted 
accordingly. We extract a weight vector from the concatenated features through 
a ResNet18-based encoder followed by a fully connected layer and a SoftMax 
layer to predict the importance weights between [0, 1] for each input feature. 
The pose regressors then use the weighted features to predict the relative pose. 
FusionNet uses the unaligned relative pose values predicted by VisionNet and 
RangeNet, and predicts the ultimate ego-motion without any correction using 
the extrinsic calibration among the sensors. Furthermore, during multimodal 
training, we impose a cross-modal fusion loss Lf, in which we use the fused pose 
in the range-reconstruction algorithm and calculate the reconstruction error. The 
cross-modal training technique not only increases the robustness of ego-motion 
prediction but also improves the predictions from the other modalities, such as 
depth prediction.

Training details. During training, the triplet frames in the training set are randomly 
sampled and provided to the model using a batch size of 16. We augment the  
lidar and radar scans with a random rotation around the vehicle centre by an  
angle in [−10, 10]∘ because a large fraction of the AV datasets consists of either 
driving straight or waiting in traffic. The total loss for a given sequence L is the 
sum of the individual modality losses and masking loss with optional scaling 
factors λc for the camera component and λm for the mask component of the loss. 
The final learning objective is given by:

L(D,T,M) = Ll,r(M,ˆIs,ˆIt) + λcLc(D,T,M)

+ λmLm(M)

(5)

Given the objective functional, the photometric and intensity error is 
back-propagated to depth, pose and mask networks by applying the spatial 
transform operation to supervise the learning process. We used λc = 30 and λm = 1 
for all experiments. Our models are implemented in PyTorch28, trained for  
at least 50 epochs until 200 epochs using Adam29 unless an early stopping  
criterion is met, which was chosen using the validation set explained in Section 
Results. The validation loss is monitored each epoch, and early stopping is 
triggered when it has not decreased from the previous low for over five consecutive 
epochs. The saved model with the lowest validation loss is then evaluated  
on the test set. We use Adam optimizer using a learning rate of 1 × 10−4 with  
an L2 weight decay of 1 × 10−5.

Algorithm 1. View reconstruction for range sensors

 m, n ← Height, Width ⊳Input dimensions
 C ← Stack((1, 2, ... , m), (1, 2, ... , n)) ⊳ Pixel coordinates in homogenous form
 function InverseWarp(Is, ps, Ms)
 Tt→s = Rodrigues2TransformationMatrix(ps)
 ˜C = Tt→sC ⊳ Transformed points
 ˜C = Normalize(˜C) ⊳ Normalized pixel coordinates in [−1, 1]
 ˆIs = BilinearSample(˜C, Is) ⊳ Reconstructed frame
 if Ms! = None then
  ˜Ms = BilinearSample(˜C,Ms) ⊳ Reconstructed mask
 else
  ˜Ms = 1
 return ˆIs, ˜Ms

Datasets. We design GRAMME for multiple modalities such as camera, lidar 
and radar, exploiting the complementary features of each sensor under diverse 
settings. Although there are several publicly available AV datasets, they typically 
employ sparse lidar and radar sensors, useful for object detection, but not for 
three-dimensional perception. Moreover, they mostly consist of common daytime 
conditions only, which is not enough to evaluate the performance of an AV module 
under diverse conditions. Under these requirements, we conduct our experiments 
on the Oxford Robotcar16 and the RADIATE17 datasets. Figure 1 shows samples 
from the RADIATE dataset, whereas Figs. 2–4 show samples from the Robotcar 
dataset. We follow the same coordinate reference systems as suggested by the 
authors of these datasets to achieve a standard evaluation setup for comparisons. 
The Oxford Radar Robotcar (ORR) dataset is collected by a vehicle equipped with 
a NavTech CTS350-X radar, and two co-located Velodyne HDL-32E lidars at the 
roof centre. The dataset contains the merged point clouds of the lidars, providing 
the ground truth for depth maps. The authors of the Oxford Radar Robotcar 
Dataset15 include visual odometry and loop closures into a large-scale optimization 
of their GPS/INS system to provide the ground-truth trajectory. The ORR radar 
scans the 360° field of view at an angular step of 0.9° every 0.25 s, and the lidar 
at a step of 0.33° every 0.05 s. The dataset provides the radar and lidar scanning 
results transformed into a two-dimensional intensity map and three-dimensional 
point cloud, respectively. Both sensors share the same coordinate origin. The 
ORR dataset contains 8,862 samples, which are split into 7,090 for training, 886 
for validation and 886 for testing, without geographic overlapping. The dataset 
includes thirty-two traversals around 280 km of driving in total. We also evaluate 
our model on an earlier version of the ORR dataset, Oxford Robotcar dataset16 that 
contains the same lidar and camera sensors except for the radar. This version  

is collected in a period of one year in Oxford, and around 1,000 km in total.  
We use several sensors attached to the Oxford RobotCar: a Bumblebee XB3 stereo 
camera, and a SICK LD-MRS three-dimensional lidar with a drastically limited 
field of view, unlike the lidar on the newer version of the dataset. Within this 
configuration, the lidar and stereo camera yield a data stream on 11 fps and 16 fps, 
respectively. On the other hand, although the RADIATE dataset17 is collected 
mainly for object detection, it is still an interesting dataset as it contains shorter 
sequences with high variation in scene appearance compared to the Robotcar 
dataset. The RADIATE dataset involves a ZED stereo camera at 15 fps, which is 
protected by a waterproof housing under extreme weather conditions. The images 
might have severe blur, haze or might be obstructed due to raindrops, dense fog or 
snow flakes. A 32 channel, 10 Hz, Velodyne HDL-32e LiDAR gives 360° coverage. 
The lidar data can be missing and noisy since the signal can be severely attenuated 
and back-scattered by intervening fog or snow. The RADIATE dataset adopts the 
same radar as the Robotcar dataset: the Navtech CTS350-X radar that is a scanning 
radar providing 360° high-resolution range-azimuth images without Doppler 
information. The radar is set to 100 m maximum operating range with 0.175 m 
range resolution, 1.8° azimuth resolution. For both datasets, we follow the original 
implementation of the authors for the conversion of radar frames from polar to 
Cartesian coordinates and bird’s eye view projection of lidar frames. Figures 2–4 
illustrate the large differences in weather conditions. Between the day and snow 
conditions, there was significant dissimilarity in visual appearance. For example, 
most of the lane lines are barely visible during the snow.

Comparative analysis and ablation study. Ego-motion estimation. We compare the 
ego-motion estimation performance of GRAMME with baseline methods, shown 
in Extended Data Table 1. In accordance with the baselines, we use the same spatial 
cross-validation setting suggested by Barnes et al.30, and report our results using 
the KITTI odometry metrics 31, which average the relative position and orientation 
errors over every sub-sequence of length (100 m, 200 m, … , 800 m). Evaluation of 
ego-motion estimation techniques based on full global trajectory end-points is 
misleading because a large motion error in the earlier trajectory points leads to 
substantial errors in the end-points. We thus use trajectory segments to analyse 
rotation and translation errors, following the standard evaluation benchmarks 
described in ref. 31 to allow for deeper insights into the qualities and failure 
modes of motion prediction. To provide a comprehensive analysis, we evaluate 
the competing approaches using the camera, lidar and radar modalities. To 
provide a fair comparison, we report both the individual and fused modalities for 
GRAMME. We evaluate the proposed approaches in three different settings as 
grouped in Extended Data Table 1: camera, lidar and radar ego-motion estimation. 
GRAMME models trained with additional data are indicated in parentheses, 
where the camera fusion refers to the stereo setting. Regardless of the training 
strategy of each method, each competing approach receives the same input without 
additional data at test time. Although we use exactly the same GRAMME camera 
model for each experiment, the model trained with additional data outperforms 
the competing approaches by a considerable margin, proving the effectiveness 
of the proposed multimodal approach. Besides, we independently report the 
performance of the competing approaches from Adolfsson and colleagues32. For 
camera-based evaluation, we compare GRAMME in monocular and stereo settings 
with the visual odometry method used in the Robotcar dataset, which employs 
an extensive number of features at the cost of a high computational burden33. We 
also compare our method with ORB-SLAM234, which loses the track and fails on 
the sequences shown in Extended Data Table 1. On the other hand, GRAMME 
in stereo setting successfully completes all of the test sequences and substantially 
outperforms the baselines. Similar to ORB-SLAM2, the lidar-based approaches 
LOAM35, Lego-LOAM36 and SuMa37 fail to finish the whole sequences or rapidly 
deviate due to the challenging dynamics. Similar to LOAM, Lego-LOAM is tightly 
linked to the mapping and failed to perform odometry without the mapping 
module. We therefore report the results for Lego-LOAM with the mapping module 
enabled. The GRAMME lidar model outperformed the proposed approach on 
the full field-of-view lidar setting. Hence we report their results up to the point 
where they lose tracking. Note that we project the six degrees-of-freedom pose 
predictions provided by the vision and lidar approaches onto the XY plane for 
evaluation. It can be seen that the proposed GRAMME can achieve comparable 
or better localization accuracy with enhanced robustness. On the other hand, 
although the GRAMME model trained on a low-cost lidar (for example, SICK 
LD-MRS 3D LIDAR 85∘ HFoV) and labelled as narrow in the table shows worse 
performance than the full field-of-view alternative, it successfully completes all 
the test sequences. The poor performance is caused by the limited measurement 
capability of the sensor that is mainly designed for obstacle detection at a short 
range within a limited view. SuMa achieves similar performance to GRAMME 
in terms of odometry accuracy. The main reason is that GRAMME is designed 
for bird’s-eye-view images, whereas SuMa specializes in front-view lidar inputs. 
Specifically, SuMa constructs and reserves a surfel-based map of the environment, 
which embodies dense information for front-view lidar input, but sparse and 
isolated information for bird’s eye view images. However, the GRAMME model 
based on lidar and camera shows a better performance with a noticeable margin, 
demonstrating the effectiveness of the fusion approach. Moreover, we compare 
our radar-based GRAMME model with state-of-the-art radar odometry methods 
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provided by Cen et al.38, Barnes et al.30 and Hong et al.39. The results show that 
GRAMME radar-only model surpasses the performance of both geometry- and 
learning-based approaches. Besides, GRAMME exceeds the performance of 
the supervised radar odometry approach30 without any need for ground-truth 
supervision, which indicates the advantage of GRAMME deployment in regions 
where a source of high-quality location information is unavailable such as a  
GPS/INS system.

Depth prediction. We comparatively evaluate the depth prediction performance of 
GRAMME using the error and accuracy metrics that were initially proposed by 
ref. 40 and widely adopted in the literature. Also, as a convention in the competing 
approaches, we evaluate the performance of depth prediction capped at 60 m as 
the measures without threshold can be sensitive to the great errors in depth caused 
by prediction errors at small disparity values. Although DepthNet predicts the 
dept maps within [0 − 1 km] range for better visualization, the reported errors are 
capped to achieve a common evaluation criteria. Note that the range of the depth 
prediction formulated in equation (2) is theoretically not limited. The error and 
accuracy metrics used in the evaluations are defined as:

AbsRel ≡ 1
|Ω|

∑
(x,y)∈Ω

|D(x,y)−Dgt(x,y)|
Dgt(x,y)

SqRel ≡ 1
|Ω|

∑
(x,y)∈Ω

|D(x,y)−Dgt(x,y)|2
Dgt(x,y)

RMSE ≡

√
1

|Ω|

∑
(x,y)∈Ω

|D(x, y) − Dgt
(x, y)|2

RMSElog ≡

√
1

|Ω|

∑
(x,y)∈Ω

| logD(x, y) − logDgt
(x, y)|2

log10 ≡
1

|Ω|

∑
(x,y)∈Ω

| logD(x, y) − logDgt
(x, y)|

Accuracy ≡ % ofD(x, y) s.t. δ .
= max

(
D(x,y)
Dgt(x,y) ,

Dgt(x,y)
D(x,y)

)
< τ

D(x, y) is the predicted depth at (x, y) ∈ Ω and Dgt(z, y) is the corresponding ground 
truth. We use the most common three different thresholds τ (1.25, 1.252 and 1.253) 
in the accuracy metric. Since the monocular camera lacks the absolute scale, we 
multiply the monocular depth predictions by a scaling factor, s, that matches the 
median with the ground-truth depth map to solve the scale ambiguity issue, that is, 
s = median(Dgt)/median(D). The depth prediction results in terms of those metrics 
are shown in Extended Data Table 2. We evaluate the depth prediction performance 
of the competing approaches under diverse settings such as day, night, rain, fog, 
and snow, following the same training and test protocol. We use Monodepth2 
(ref. 21) as a baseline, which is the most similar architecture to the camera module 
of GRAMME. We train, validate and test it using the same dataset split as 
GRAMME. Although Monodepth2 achieves comparable results in day sequences, 
it performs poorly in reduced visibility conditions due to the occlusions and low 
lighting. Since the camera module of GRAMME is most similar to Monodepth2, 
we provide the performance evaluation for GRAMME models trained using 
range sensors (for example, lidar and radar), emphasizing the effectiveness of the 
multimodal approach. Note that none of the models has access to additional sensor 
measurements at test time other than camera images. The results indicate that 
GRAMME models distinctly and consistently outperform the other approaches 
thanks to the fusion model design, and reiterate the robustness of GRAMME to the 
lack of modalities. The results indicate that exploiting the cross-modal relations is 
crucial for robust all-weather ego-motion estimation for AVs.

Ablation study on the deep network. Deep learning models might benefit from 
larger and more complex networks to improve the prediction accuracy41, which 
comes at a run-time cost. The encoders in GRAMME are based on ResNet1842 
architecture. We replace the encoder with commonly used networks such as 
MobileNet43 and VGG16 to analyse the performance and latency of the models44, 
which is shown in Extended Data Fig. 1b. We benchmark the models in terms of 
depth prediction performance and inference time for a minibatch size of four on 
an NVIDIA GTX 1080Ti consumer-grade GPU. The inference time is evaluated 
for the total of pose and depth predictions with an additional pose fusion for the 
multimodal tests. While the networks have the same inference time for different 
test conditions, the networks in fusion models have higher latency than the models 
for single-modality. The multimodal input and parallel network branches for 
multiple modalities cause a higher latency in fusion models. Although overall 
run-time for ResNet is higher than MobileNet, ResNet achieves a significant 
performance boost. On the other hand, despite the slight performance gain of VGG 
in the monocular setting at the cost of four-times the inference time of ResNet, 
VGG falls behind ResNet in the other test settings. ResNet efficiently trades  
off between accuracy and latency, and has a noticeably lower GPU run-time.  
We, therefore, select ResNet as our encoder.

Interpretability. We visualize the feature space of the depth prediction module 
with respect to the camera, lidar, and radar inputs to better understand the 

multimodal aspect of GRAMME. Figure 4a compares the SHAP values of 
multimodal depth predictions under different test conditions, and explains the 
output of GRAMME trained on the Robotcar dataset. While the pixels marked 
with red points increase the prediction accuracy, blue points decrease it. The input 
RGB images are shown on the left, and we also place the transparent grey-scale 
versions of them in the background of each explanation. The sum of the SHAP 
values for each explanation equals the difference between the current model output 
and the expected model output that is averaged over the background dataset.  
Note that the red points for camera predictions are highly scattered, and the blue 
points are usually concentrated around the occluded and the glaring regions. 
However, when the same DepthNet model is trained using multiple modalities 
that are more immune to adverse conditions, the red points are focused more on 
geometrically meaningful and semantically consistent regions. For example,  
lidar and radar fusion enables the model features to capture road boundaries, 
traffic signs, and static objects. Another notable difference is that although the  
road markings are not clearly visible in the snow, the range sensors attract the 
model focus to road boundaries. On the other hand, the lidar-based model suffers 
from the water droplets in fog, visualized by the dense blue points around it.  
The results validate the effectiveness of GRAMME in exploiting the cross-domain 
complementary features.

Visualizing feature space with SHAP values. SHAP20 approximates an interpretable, 
explanation model g of the original, complex model f, to explain a prediction  
made by the model f(x). SHAP provides post-hoc model explanations for  
an individual output of f and is model-agnostic. SHAP is a game-theoretic 
approach based on Shapley values45, which calculates the contribution  
of each feature in the final prediction performance. We use a special 
implementation of the SHAP approach, Deep SHAP method introduced  
by Lundberg and colleagues20, which combines SHAP values computed for  
smaller components of the network into SHAP values for the whole network.  
It defines DeepLIFT’s multipliers46 in terms of SHAP values, and recursively  
passes the values backwards through the network. Deep SHAP exploits the 
composition rule and the efficient analytical SHAP solutions for simple  
networks components such as linear, max pooling, or an activation function  
with just one input, enabling a fast approximation of values for the whole  
model. This approach helps us derive an effective linearisation from the  
SHAP values computed for each component instead of heuristically choosing  
ways to linearize components.

Computational hardware and software. We stored the raw dataset files on 
multiple hard drives. We performed the demosaicing of camera images, the 
projection of lidar frames, and Cartesian conversion of radar measurements on 
Intel Xeon CPUs, which are then stored on a fast local SSD. We used two local 
NVIDIA RTX 3090 GPUs for each training experiment accelerated through  
batch parallelization and a local NVIDIA GTX 1080Ti GPU to evaluate  
run-time performance. We implement our multimodal processing pipeline in 
Python and employ imaging processing libraries such as colour-demosaicing 
(v.0.1.6), and pillow (v.8.4.0). To train the deep learning models, and augment 
the datasets, we used machine learning libraries such as PyTorch (version 1.8.0), 
torchvision (v.0.9.1). We generated all plots using matplotlib (v3.5.0) and  
seaborn (v.0.11.2). The Robotcar dataset is processed using Robotcar dataset 
SDK (v.3.1), and the RADIATE dataset is processed with RADIATE dataset SDK 
(commit dca2270).

Data availability
The Oxford Robotcar Dataset16 and the Oxford Robotcar Radar15 datasets 
are available from the University of Oxford under a Creative Commons 
Attribution-NonCommercial-ShareAlike 4.0 International License (https://
robotcar-dataset.robots.ox.ac.uk/). The RADIATE dataset17 is available from 
the Edinburgh Centre for Robotics, Heriot-Watt University, under a Creative 
Commons Attribution-NonCommercial-ShareAlike 4.0 International License 
(http://pro.hw.ac.uk/radiate/). The references involve the minimum datasets that 
are necessary to interpret, verify and extend the research in the article, transparent 
to readers.

code availability
All code was implemented in Python using the deep learning framework PyTorch. 
Code, trained models and scripts reproducing the experiments of this paper are 
available at https://github.com/yasinalm/gramme (refs. 47–49). All source code is 
provided under the MIT license.
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Extended Data Fig. 1 | Performance on the rADiATe dataset, ablation study on the deep network, and run-time performance. (a) To evaluate the 
generalization of GrAmmE to new datasets, we train, validate and test models on the publicly available rADIATE dataset17 that contains shorter 
sequences for ego-motion estimation with high variation in scene and structure appearance. We report the mean depth predictions errors with standard 
deviations and the distribution of motion prediction errors with quartiles. Although GrAmmE performs well in terms of depth prediction and ego-motion 
estimation performance, we observe on this dataset that due to dense fog and heavy precipitation, the performance of the lidar&camera-based 
GrAmmE model drops significantly compared to the day sequences. (b) As an additional ablation study, we replace the UNet network in the GrAmmE 
modules with commonly used networks. The results show the basis for our choice of resNet in the GrAmmE architecture. We also report the run-time 
requirements in milliseconds, indicating the real-time capability of GrAmmE on a consumer-grade GpU.
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Extended Data Fig. 2 | Detailed architecture design of the proposed geometry-aware, multimodal, modular, interpretable, and self-supervised 
ego-motion estimation. The modules consisting of encoder and decoder networks are based UNet architecture with skip connections. Feature extractors 
with an encoder are based on the resNet18 network visualized on sample input17. FC layers represent fully connected layers. pose fusion network 
is a multilayer-perceptron. As part of the spatial transformer module, the inverse warp algorithm re-uses the input target frames to calculate the 
reconstruction loss. Camera input can be set to contain more frames than the range sensor due to the higher fps rate. The fused pose is the final output, 
optimized in a self-supervised manner without ground-truth with respect to the intermediate pose and depth predictions.
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Extended Data Table 1 | comparative evaluation with different sensor modalities. results on the Oxford radar robotcar dataset15 
are given in tuples of (% translation error) / (deg/100m). The column ‘Mean’ shows the mean spatial cross-validation error over the 
test sequences, ensuring that test and training data are not correlated. Failed sequences are marked with ‘x’. Although grAMMe 
models with individual modalities slightly outperform the baselines in most sequences, the fusion models significantly improve upon 
the most related state-of-the-art due to the effective use of additional data
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Extended Data Table 2 | Quantitative comparison with state-of-the-art methods in terms of depth prediction error and accuracy. 
A higher value is better for the accuracy columns, and a lower value is better for the others. The methods are trained on the 
daytime data of the Oxford robotcar dataset15 and directly tested under the weather conditions labelled in the test column. The 
modalities used to train the models are represented by: Monocular (M), stereo (S), lidar (l), and radar (r). The models are tested 
with monocular images only without access to any additional sensor. Notably, the fusion grAMMe models significantly improve 
the generalization performance against adverse conditions compared to Monodepth2 that is the most similar architecture to the 
camera-only grAMMe model
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