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Technological progress in high-throughput measurement 
techniques has propelled discoveries in biotechnology and 
medicine and allowed us to integrate different data types  

into representations of cellular states and obtain insights into cel-
lular physiology. Historically, researchers have used genome-scale  
models (mathematical descriptions of cellular metabolism) to 
associate experimentally observed data with cellular phenotype1–3. 
However, traditional genome-scale models cannot predict the 
dynamic cellular responses to internal or external stimuli because 
they lack information about metabolic regulation and enzyme 
kinetics4,5. Recently, the research community has shifted focus to 
developing kinetic metabolic models to advance our understanding 
of cellular physiology5.

Kinetic models capture time-dependent behaviour of cellular 
states, providing additional information about cellular metabo-
lism compared with that obtained with steady-state methods such 
as flux balance analysis6–8. However, the difficulty of acquiring the 
knowledge of (1) the exact mechanism of each reaction and (2) the 
parameters of the said mechanisms, such as Michaelis constants or 
maximal velocities, hampers the building of kinetic models. In most 
kinetic modelling methods9–12, the unknown reaction mechanisms 
are hypothesized or modelled by approximate reaction mecha-
nisms13,14. The main challenge in obtaining the unknown parameters 
is uncertainties intrinsic to biological systems. Due to the inherently 
underdetermined nature of the mathematical equations describing 
the biological systems, the model can often reproduce the experi-
mental measurements for multiple rather than a unique set of 
parameter values. To address these challenges, the researchers fre-
quently employ frameworks based on Monte Carlo sampling15–19. In 
these approaches, we first reduce the space of admissible parameter 
values by integrating the experimental measurements and ensuring 

consistency with the physicochemical laws. The reduced solution 
space is then sampled to extract alternative parameter sets.

However, sampling-based kinetic modelling frameworks fre-
quently produce large subpopulations of kinetic models inconsis-
tent with the experimentally observed physiology. For instance, the 
constructed models can be locally unstable or display too fast or too 
slow time evolution of metabolic states compared with the experi-
mental data (Fig. 1). This entails a considerable loss of computa-
tional efficiency, especially for the low incidence of subpopulations 
with desirable properties. For example, the generation rate of locally 
stable large-scale kinetic models can be lower than 1% (ref. 20). 
Requiring other model properties such as experimentally observed 
time evolution of metabolic states further reduces the incidence of 
desired models. Indeed, just a tiny fraction of the parameter space 
satisfies all desirable model properties simultaneously, and our 
observations suggest that this subspace is not contiguous. Moreover, 
none of these methods guarantees that the sampling process, often 
implemented as unbiased samplifng, will produce the desirable 
parameter sets. These drawbacks become amplified with increas-
ing size of the kinetic models, and finding regions in the parameter 
space that satisfy the desired properties and observed physiology 
becomes challenging. Additionally, the structure of these regions is 
so complex that nonlinear function approximators such as neural 
networks are required to map them (Supplementary Notes 1 and 2).

We present REKINDLE (Reconstruction of Kinetic Models using 
Deep Learning) to address these challenges. This unsupervised 
deep-learning-based method leverages generative adversarial net-
works (GANs)21 to generate kinetic models that capture experimen-
tally observed metabolic responses. REKINDLE utilizes existing 
kinetic modelling frameworks to create the data required for the train-
ing of GANs. Efficient generation of models with desired properties  
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using these neural networks (Fig. 1a) substantially reduces the 
need for the extensive computational resources required by the 
traditional kinetic modelling methods. For example, REKINDLE 

can be used to create large synthetic datasets within a matter of 
seconds on commonly used hardware. Importantly, we showcase 
REKINDLE’s ability to navigate through the physiological states of 
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Fig. 1 | Overview of the ReKiNDLe framework and applications. a, Framework. Step 1—kinetic parameter sets are tested for prespecified conditions 
(models that describe experimentally observed data and have appropriate dynamic properties) and are labelled and partitioned into data classes. Step 2—
REKINDLE employs GANs to learn the distribution of labelled data obtained from the previous step. Step 3—a trained generator from the GAN generates 
new kinetic parameters of models that satisfy prespecified conditions. Step 4—the generated dataset is subjected to statistical and validation tests to 
determine the fulfilment of the imposed conditions. b, Applications. Left: REKINDLE uses the specifics of physiological and structural knowledge acquired 
by the GANs during training to extrapolate to other physiologies via transfer learning when training data is limited. Right: the REKINDLE-generated kinetic 
parameter sets are amenable to extensive and advanced statistical analysis, allowing further insights into studied phenotypes to be revealed. Km,1 and Km,2 
represent any two kinetic parameters.
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metabolism using transfer learning22,23 in the low-data regime, dem-
onstrating that the neural networks trained for one physiology can 
be fine-tuned for another physiology using a small amount of data 
(Fig. 1b). REKINDLE’s departure from the traditional way of creat-
ing kinetic models paves the way for more comprehensive computa-
tional studies and advanced statistical analysis of metabolism.

ReKiNDLe for generation of biologically relevant kinetic 
models
The REKINDLE framework consists of four successive steps (Fig. 1a).  
The inputs of REKINDLE are kinetic parameter sets obtained from 
traditional kinetic modelling methods—for example, via Monte 
Carlo sampling9,10,17,18,24. The procedure starts by testing the bio-
logical relevance of the kinetic parameter sets. We consider that 
a kinetic parameter set is biologically relevant if the metabolic 
responses obtained from the kinetic model with this parameter 
set have experimentally observed dynamic responses (Methods). 
We then categorize the parameter sets into two classes, biologi-
cally relevant or not relevant (for example, sets providing metabolic 
responses with too slow, too fast or unstable dynamics), and label 
them accordingly (Fig. 1a, step 1). While here we use REKINDLE 
to generate kinetic models with biologically relevant dynamics, the 
framework allows imposition of other biochemical properties or 
combinations of properties and physiological conditions to con-
struct and label the dataset. A labelled dataset is then used to train 
the conditional GANs25 (Fig. 1a, step 2).

Conditional GANs consist of two feedforward neural networks, 
the generator and the discriminator, which are conditioned on 
class labels during training. The goal of the training procedure is to 
obtain a good generator that generates kinetic models (Fig. 1a, step 
3) from a specific predefined class that are indistinguishable from 
the kinetic models of the same class in the training data (Methods).

Once the training is done, we validate the biological relevance of 
the generated kinetic models via a series of tests (Fig. 1a, step 4). We 
first test the statistical similarity of the generated and training data 
by comparing their distributions in the parameter space. We then 
check the distributions of the eigenvalues of the Jacobian (Methods) 
and their corresponding dominant time constants to verify if the 
generated parameter sets satisfy the desired dynamic responses. 
Finally, we test the models’ dynamic responses to perturbations in 
the steady-state metabolic profile to evaluate the robustness of the 
generated parameter sets.

Results
REKINDLE generates kinetic models of Escherichia coli metab-
olism. We showcase REKINDLE by generating biologically rel-
evant kinetic models of the E. coli central carbon metabolism 
(Supplementary Fig. 1). The models are parameterized with 411 
kinetic parameters (Methods). Thermodynamic-based flux analy-
sis26–28 performed on the model with the integrated experimental 
data from aerobic cultivation of wild-type E. coli29 indicated that 
two reactions, transaldolase (TALA) and isocitrate lyase (ICL), 
could operate in both forward and reverse directions, whereas the 
other reactions had unique directionalities (Table 1 and Methods). 
This means that the study of this physiological condition requires 
generation of four populations of kinetic models, with each popu-
lation corresponding to a different combination of TALA and ICL 
directionalities. We enumerated these four cases as physiologies 1–4 
(Table 1).

While REKINDLE can use parameter sets of any kinetic mod-
elling framework for the training, we employed ORACLE20,24,30–34 
implemented in the SKiMpy toolbox35 to generate a training dataset 
of 72,000 parameter sets for each physiology. The goal was to gener-
ate kinetic models that satisfy the observed steady state and have 
dynamic responses that are faster than 6–7 min (which corresponds 
to one third of the E. coli doubling time36) (Methods). The kinetic 

models satisfying these conditions can reliably reproduce experi-
mentally measured metabolic responses in E. coli.

Inspection of the training data shows that between 39% and 45% 
of models for the four physiologies have dynamics that are too slow 
(Table 1), meaning that these models cannot describe the E. coli 
metabolism. We employed REKINDLE to improve the incidence of 
kinetic models consistent with the E. coli dynamics. To this end, we 
trained conditional GANs for 1,000 epochs with five statistical rep-
licates for the four physiologies. Every 10 epochs, the generator was 
used to generate 300 biologically relevant models. We quantified the 
similarity of the REKINDLE-generated and the ORACLE-generated 
parameters (only the parameter sets corresponding to the biologi-
cally relevant dynamics) by calculating the Kullback–Leibler (KL) 
divergence between the distributions of the REKINDLE-generated 
and training (Fig. 2a) as well as the REKINDLE-generated and test 
(Methods and Supplementary Note 4) datasets. Here, we present the 
results for physiology 1 (Table 1 and Fig. 2), whereas the results for 
physiologies 2–4 can be found in Supplementary Figs. 3a–c and 4a–c.

The KL divergence decreased with training, meaning that the 
GAN learns the distribution of the kinetic parameters that corre-
spond to biologically relevant dynamics (Fig. 2a and Supplementary 
Notes 4 and 8). The decrease in the KL divergence score also indi-
cated that the GAN is not suffering from mode collapse, a common 
pathology in GANs, where the generator maps the entire latent space 
to a small region in the feature space37. Additionally, the GAN was 
not subject to overfitting (Supplementary Note 3). We also tested 
the generated models for biological relevance using linear stability 
analysis of the resulting parameterized system of ordinary differen-
tial equations (ODEs) (Methods). The incidence of relevant models 
increased with the number of training epochs, reaching as high as 
0.977 (97.7% of the generated models) for some repeats (Fig. 2b and 
Table 1). Moreover, a negative correlation of ρ = −0.691 (Spearman 
correlation coefficient) between the number of relevant models at a 
given epoch and the KL divergence (Fig. 2c) indicated that the KL 
divergence is a good measure for assessing the training quality.

The training stabilized after ~400 epochs with the discriminator 
accuracy around 50% (Supplementary Fig. 2a–d), suggesting that 
the generated models were not an artefact of a failed training pro-
cess (Methods). The peak incidence of desired models occurred at 
different numbers of epochs for different replicates (Fig. 1b).

Validation of the REKINDLE-generated models. We next per-
formed additional validation checks to determine the quality of the 
generated kinetic models. For all checks, we chose the generator 
with the highest incidence of desired models (Fig. 2b) and used it to 
generate 10,000 biologically relevant kinetic models.

We first verified how fast were the dynamics of generated mod-
els by computing the distribution of the dominant characteristic 

Table 1 | incidence of biologically relevant models generated 
with ORACLe (training data) and ReKiNDLe for four 
physiologies

Physiology 1 Physiology 
2

Physiology 
3

Physiology 
4

Directionality 
of reactions

TALA
−−−→

 ICL
−→

TALA
−−−→

 ICL
←−

TALA
←−−−

 ICL
−→

TALA
←−−−

 ICL
←−

ORACLE 
(training data)

58.8% 55.0% 61.1% 56.0%

REKINDLE 97.7% 97.3% 99.3% 100%

the physiologies differ in the directions in which tALA and ICL operate. tALA transforms 
glyceraldehyde-3-phosphate to d-fructose 6-phosphate in the pentose phosphate pathway, and ICL 
converts isocitrate to succinate and glyoxylate in the tricarboxylic acid cycle. the REKINDLE results 
represent the maximal incidence achieved for five repeats.
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time constant of the dynamic responses, τ, resulting from the gener-
ated kinetic parameter sets (Methods). The distribution of the time 
constants of the REKINDLE-generated models has shifted towards 
smaller values compared with the distribution of the time con-
stants of the models from the training set (Fig. 2d). This meant that 
REKINDLE-generated models have faster dynamical responses than 
do those from the training set (Supplementary Note 5). Indeed, most 
of the REKINDLE-generated models have a dominant time constant 

of ~1 min, indicating that the metabolic processes settle before the 
subsequent cell division (doubling time of ~21 min, ref. 36). In con-
trast, most of the models from the training set have a dominant time 
constant of 2.5 min, with the distribution having a heavy tail towards 
longer time constants (Fig. 2d). We have observed similar results for 
the three remaining physiologies (Supplementary Fig. 3a–c).

We next compared the robustness of the REKINDLE-generated 
and ORACLE-generated kinetic models by perturbing the steady 
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Fig. 2 | Generation and validation of GAN-generated kinetic models. a, the similarity between the training and generated data increases with number 
of training epochs, as indicated by the decreasing KL divergence between their distributions (black line) for five statistical replicates. the orange area 
indicates the KL divergence scores observed in five repeats. b, the mean incidence of biologically relevant models in the generated data during training 
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state and verifying if the perturbed system would evolve back to the 
steady state (Fig. 2e). For this purpose, we randomly chose 1,000 
biologically relevant parameter sets from training and generated 
datasets, and we perturbed the reference steady state, XRSS, with ran-
dom perturbations, ΔX, between 50% and 200% of the reference 
steady state (XRSS/2 ≤ ΔX ≤ 2XRSS). We repeated this procedure 100 
times for each of the 1,000 models. In most cases, the system returns 
to within 1% of the steady state at the E. coli doubling time, indicat-
ing that the kinetic models are locally stable around the reference 
steady state and satisfy the imposed dynamic constraints. Indeed, 
the fractions of models returning to the steady state are comparable 
for REKINDLE (66.85%) and ORACLE (66.31%) (Fig. 2e, right). 
For the remaining three physiologies, REKINDLE-generated mod-
els were consistently more robust than those generated by ORACLE. 
For example, for physiology 4, 83.79% of the REKINDLE-generated 
models return to the steady state, compared with 61.05% of the 
ORACLE-generated models (Supplementary Fig. 4a–c).

To visualize the time evolution of the perturbed state of the 
kinetic models, we performed principal component analysis (PCA) 
on the time-series data of the ODE solutions. The first two principal 
components explained 97.17% of the total variance in the solutions 
(component 1, 85.21%; component 2, 11.95%). We plotted these 
components for four randomly selected REKINDLE-generated 
kinetic models that returned to the reference steady state and one 
that escaped (Fig. 2e, left).

Thus, REKINDLE reliably generates kinetic models robust to 
perturbations and obeying biologically relevant time constraints.

Interpretability of the REKINDLE-generated models. We used KL 
divergence to compare the distributions of biologically relevant and 
irrelevant kinetic models (2,000 kinetic models from each category) 
for physiology 1 and identify the kinetic parameters that affect bio-
logical relevance. Only a handful of parameters substantially differed 
in the distributions between the two populations (Supplementary 
Fig. 5a,b), which is consistent with studies showing that only a few 
kinetic parameters affect specific model properties38,39, whereas 
most parameters are sloppy40. We inspected distributions of the 
top ten parameters with the highest KL divergence score (Fig. 3a). 
There was a clear bias in the distributions of the two populations, 
suggesting that these parameters are indeed affecting the biological 
relevance of the generated models (Supplementary Note 6).

On the basis of these results, we hypothesized that the values 
of the top parameter, KACS

M,atp, affect the system dynamics, quanti-
fied with the largest eigenvalue of the Jacobian (Methods). To test 
this hypothesis, we split a population of 50,000 biologically relevant 
models into ten different subsets according to the KACS

M,atp value, 
meaning that we had ten subpopulations of parameter sets with 
KACS
M,atp ranging from low to high values (Fig. 3b, left). We computed 

the eigenvalue distribution for each of the ten subpopulations. 
As hypothesized, the mean eigenvalue becomes more negative as 
KACS
M,atp increases (Fig. 3b, right), meaning that the models have faster 

dynamic responses for higher KACS
M,atp values. This is also consistent 

with the KACS
M,atp distributions showing that higher values of this 

parameter favour biological relevance (Fig. 3a). A similar analysis 
for all parameters in Fig. 3a showed no such trends for the last few 
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parameters, confirming that these parameters are indeed sloppy 
(Supplementary Fig. 7a,b).

We repeated this study for the other three physiologies and 
obtained similar results (Supplementary Note 6). These results show 
that the GANs distil important information by learning the distri-
butions of critical kinetic parameters and giving less importance to 
the parameters not affecting the desired property.

Extrapolation to other physiologies using transfer learning. 
Comprehensive analyses of metabolic networks require large popu-
lations of parameter sets. However, a trade-off exists between gen-
erating large datasets and computational requirements, which can 
limit the scope of studies depending on the efficiency of the meth-
ods employed.

REKINDLE addresses this issue by leveraging the extrapolation 
abilities of GANs via transfer learning41: we fine tune a generator 
trained for one physiology for another physiology using a consider-
ably smaller set of training models (Fig. 4a). To illustrate the benefits 
of this approach, we took the generator trained for physiology 1 and 
used it to retrain GANs for physiologies 2–4 using 10, 50, 100, 500 
and 1,000 training kinetic models from the three target physiologies. 
For each physiology, we trained GANs for 300 epochs and repeated 
the training five times with a randomly weighed discriminator 
(Methods and Supplementary Fig. 11a–c). The transfer learning 
with only ten parameter sets provided a remarkably high inci-
dence of biologically relevant models of physiologies 2–4 (Fig. 4c).  
Indeed, the incidence ranged from 72% (for the transfer from physi-
ology 1 to physiologies 3 and 4) to 82% (physiology 1 to physiol-
ogy 2). More strikingly, the transfer had already attained a very high 
incidence for all three physiologies with 50 parameter sets.

For comparison, we trained GANs from scratch for physiolo-
gies 2–4 using 10, 50, 100, 500 and 1,000 training parameter sets for 
1,000 epochs in each training. Despite the shorter training (300 ver-
sus 1,000 epochs), the transfer learning considerably outperformed 
training from scratch (Fig. 4b). Training from scratch reaches a per-
formance comparable to that of transfer learning only for around 
1,000 parameter sets. Training from scratch completely fails when 
the number of samples is below 500, as the discriminator overpow-
ers the generator42.

We also performed transfer learning from physiologies 2, 3 and 
4 to the other three physiologies (for example, from physiology 2 to 
physiologies 1, 3 and 4). As expected, the transfer learning required 
considerably fewer data and training epochs compared with training 
from scratch (Fig. 4b). The transferred generators displayed good 
extrapolation results even when provided with ten models from the 
target physiology with the average incidence of biologically relevant 
models being between 0.6 and 0.8. The GANs for physiologies 1–3 
trained by transfer learning from physiology 4 performed excep-
tionally well, with the incidence of feasible models reaching ~100% 
for 100 training sets (Fig. 4b, pink circles).

We further compared the features of the kinetic models obtained 
from the generators trained from scratch and those generated via 
transfer learning (Fig. 4c). Similarly to the study from Fig. 2e, we 
first investigated how many models evolve back to the reference 
steady state when their metabolic state is perturbed. The kinetic 
models generated via transfer learning had robustness properties 
similar to those from GANs trained from scratch despite using 
a much smaller dataset (ten parameter sets) (Fig. 4c). We then 
compared the kinetic parameter distribution of the two classes of 
models. A narrow parameter distribution could indicate that the 
generated models stem from a constrained region in the space and 
that generators are not producing diverse kinetic models. Instead 
of comparing the distributions of individual kinetic parameters, we 
used the distribution of the largest negative eigenvalue of the gener-
ated kinetic models as a meta-measure for the spread of parameter 
distributions (Fig. 4c). We observed that the models generated via 

transfer learning have a well spread distribution comparable to that 
of the models generated via learning from scratch.

We conclude that transfer learning successfully captures the 
specificities of the physiologies (Supplementary Note 7). With only 
a few kinetic parameter sets, transfer learning allows the generation 
of kinetic models that possess the desired properties of biological rel-
evance, robustness and parametric diversity. We anticipate that this 
approach could help to derive new methods for high-throughput 
analysis of metabolic networks.

Discussion and conclusions
The scarceness of experimentally verified information about intra-
cellular metabolic fluxes, metabolite concentration and kinetic 
properties of enzymes leads to an underdetermined system with 
multiple models capable of capturing the experimental data. Due 
to the requirement of intense computational resources aiming to 
quantify the involved uncertainties, researchers often end up using 
only one out of the many alternative solutions, leading to unreliable 
analysis and misguided predictions about metabolic behaviour of 
cells. This is one of the reasons for the limited use of kinetic mod-
els in studies of metabolism, despite their widely acknowledged 
capabilities. REKINDLE offers a highly efficient way of sampling 
the parameter space and creating kinetic models, thus enabling an 
unprecedented level of comprehensiveness for analysing these net-
works and offering a much broader scope of applicability of kinetic 
models. In general, sampling of nonlinear parameter spaces has 
emerged as a standard method in addressing underdeterminedness 
in computational physics, biology and chemistry43,44.

The proof-of-concept applications presented here demonstrate 
REKINDLE’s ability to learn the mechanistic structure of the meta-
bolic networks and stratify kinetic parameter subspaces corre-
sponding to relevant model properties. By learning a map between 
the complex high-dimensional space of kinetic parameters and 
relevant model properties, the GANs augment (1) the efficiency of 
creating models corresponding to our specified criteria and (2) the 
information for partitioning the parameter space according to our 
criteria. Consequently, REKINDLE is several orders of magnitude 
faster than traditional methods in generating models. For GANs 
trained from scratch, REKINDLE requires ~1,000 data points to 
reliably reach a high incidence of relevant models (Fig. 4b), cor-
responding to a training time of ~15-20 min (Table 2). A trained 
REKINDLE generator generates 1 million models in ~18 s. In com-
parison, ORACLE, currently one of the most efficient kinetic mod-
elling frameworks, accomplishes the same task in 18–24 h on the 

Table 2 | Comparison of computational time between 
ORACLe, ReKiNDLe, and ReKiNDLe with transfer learning 
(ReKiNDLe-tL)

Generation of 
training data

training 
time

Generation 
of 1 million 
kinetic 
models

Generation 
of 1 million 
relevant 
kinetic 
models

ORACLE — — ~18–24 h ~36–48 h

REKINDLE ~15–20 min 
(1,000 models)

~15 min 
(1,000 
models)

~15–20 s ~15–20 s

REKINDLE-tL ~5 s (10 models) ~2–3 min (10 
models)

~15–20 s ~15–20 s

the generation time for 1 million biologically relevant kinetic models reduces by more than 
6,000-fold when REKINDLE is used instead of ORACLE (last column). In total, when including the 
generation of training data and training time, REKINDLE and REKINDLE-tL are more efficient than 
ORACLE by more than 60- and 600-fold, respectively, in generating 1 million relevant models.
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same hardware (Table 2). The reduction in generation time is even 
more pronounced when models are generated through transfer 
learning due to the small number of training data.

Once a generator is trained for the target physiology via transfer 
learning, it can be used to expand upon traditionally small datasets 

with newly generated synthetic datasets. Such expanded datasets are 
amenable for traditional statistical analyses to gain further knowl-
edge about the studied system. This offers a crucial advantage to 
REKINDLE in scope of applications and comprehensiveness over 
traditional methods for generating kinetic models.

Knowledge learned by generator

Structure of 
metabolic network

Nonlinearities 
of enzyme kinetics

Kinetic data
from one

physiology

Trained generator

Small number
of data from

different
physiology

Fine-tune 
network parameters

Generate relevant
kinetic models

Train GANs

Training from scratch
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a

Training
from scratch

From physiology 1 From physiology 2 From physiology 3 From physiology 4

H
ig

he
st

 in
ci

de
nc

e

Samples used from source physiology

P
ro

ba
bi

lit
y 

de
ns

ity

b

c

Real part of maximum eigenvalue

P
er

ce
nt

ag
e 

re
tu

rn
 to

 R
S

S

From 
physiology 1

(N = 10)

Training
from scratch
(N = 1,000)

From 
physiology 2

(N = 10)

From 
physiology 3

(N = 10)

From 
physiology 4

(N = 10)

Physiology 2 Physiology 3 Physiology 4Physiology 1

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

–40 –20 –30 –20 –10 –50 0 –50 –25

101 102 103 101 102 103 101 102 103 101 102 103

Fig. 4 | extrapolation to multiple physiologies via transfer learning. a, A generator trained for one physiology learns the structure of the metabolic 
network and nonlinearities of enzymatic mechanisms, allowing us to retrain it for another physiology with just a few parameter sets. b, Comparison of 
the incidence of biologically relevant models created with the generators trained from scratch and with transfer learning for four physiologies. For each 
physiology, we compare the training from scratch and the transfer from the other three physiologies using different numbers of data (10, 50, 100, 500 and 
1,000 datasets). c, Validation of transfer learning. Upper panel: fraction of the perturbed models that return to the reference steady state (RSS) for the 
models obtained from the generators trained from scratch and from the generators trained by transfer learning. Lower panel: probability density function of 
the real part of the maximum eigenvalue obtained for the populations of kinetic models obtained from the two types of generator trained from scratch and 
by transfer learning.
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REKINDLE will allow construction of highly curated libraries 
of ‘off-the-shelf ’ networks that have been pretrained using datas-
ets from standard kinetic metabolic models. Such a repository will 
enable researchers to apply this framework to different physiologies 
and types of study and applications ranging from biotechnology to 
medicine.

In summary, we present a framework to generate kinetic models 
leveraging the power of deep learning while simultaneously retain-
ing the convenience of traditional methods, where researchers can 
analyse the structural dependences, correlations and feedbacks 
within the metabolic network. The open-access code of REKINDLE 
will allow a broad population of experimentalists and modellers to 
couple this framework with experimental methods and benefit from 
synergistic approaches for the analysis and metabolic interventions 
of studied organisms.

Methods
Kinetic models of wild-type E. coli. Kinetic nonlinear models used in this study 
represent the central carbon metabolism of wild-type E. coli. They are based on the 
model published by Varma and Palsson29 and studied extensively using the SKimPy 
toolbox35 (Supplementary Fig. 1). The kinetic models consist of 64 metabolites, 
distributed over cytosol and extracellular space, and 65 reactions including 16 
transport reactions. Out of the 64 metabolites in the model, 15 metabolites are 
boundary metabolites, that is, they are localized in the extracellular space. The 
remaining 49 metabolites are localized in the cytosol and their mass balances are 
described with the ODEs. After assigning each reaction to a kinetic mechanism 
on the basis of the stoichiometry, we parameterized this system of ODEs with 411 
kinetic parameters.

ORACLE framework and generation of the training set. The ORACLE 
framework consists of a set of computational procedures that allow us to build 
a population of large-scale kinetic models accounting for the uncertain and 
scarce information about the kinetic properties of enzymes20,24,30–34,45. The 
idea behind ORACLE is to reduce the feasible space of the kinetic parameters 
through the integration of available experimental measurements, omics data and 
thermodynamic constraints, and then employ Monte Carlo sampling techniques 
to determine unknown parameters15,46. ORACLE builds the kinetic models around 
the thermodynamically consistent reference steady-state fluxes and metabolite 
concentrations30,47,48. Instead of directly sampling the kinetic parameters such 
as Michaelis–Menten constant and inhibitory constants, we sample the enzyme 
saturation in the following form41:

σij =
[Si] /Kij

M

1 + [Si] /Kij
M
.

Then, we back-calculate the values for the kinetic parameters, Kij
M, using the 

knowledge of the steady-state concentrations, [Si], and the enzyme saturation, σij. 
Once we know the Kij

M, the equilibrium constants Kj
eq obtained when calculating 

the thermodynamically consistent steady state and the steady-state flux vj, we can 
calculate the maximal velocities, Vj

max, by substituting these quantities in the rate 
expressions. This way, the kinetic model is completely parameterized.

Determining biological relevance and dataset labelling. We consider the kinetic 
models biologically relevant if these models are locally stable and all characteristic 
times of the aperiodic model response fall within physical and biological limits. To 
test the local stability and time constants of the generated models, we compute the 
Jacobian of the dynamic system46. The sign of the eigenvalues of the Jacobian gives 
us information on whether or not the generated models are locally stable. If the real 
parts of all eigenvalues are negative for a model, then the model is locally stable. 
Otherwise, if any real part of the eigenvalues is positive, the model is unstable.

Moreover, for a locally stable system, we define the characteristic time 
constants of the linearized system as the inverse of the real part of the largest 
eigenvalue of the Jacobian. The characteristic time constants allow us to 
characterize the model dynamics. Small time constants emerge from fast metabolic 
processes such as electron transport chain and glycolysis, whereas the slower 
timescale emerges from biosynthetic processes. Physical and biological limits bind 
all these timescales.

Therefore, we consider that the aperiodic model response should not exceed 
the timescale of cell division. We enforce this constraint by considering that all 
characteristic response times should be three times faster than the cell’s doubling 
time, ensuring that a perturbation of the metabolic processes settles within 5% of 
the operating steady state before the subsequent cell division. One might further 
consider other constraints on the response dynamics: for example, that the 
biochemical response should exhibit a characteristic time slower than the timescale 
of proton diffusion within the cell. Models satisfying these properties can reliably 
capture the metabolic responses observed in nature.

In this study, the dynamic responses of our models should be at least three 
times faster than E. coli’s doubling time (~21 min)36, that is, the dominant time 
constant of models’ responses should be smaller than ~7 min. Therefore, we impose 
a strict upper bound of Re(λi) < −9 (~−60/7) on the real part of the eigenvalues, 
λi, of the Jacobian. We label all kinetic parameter sets that obey this constraint as 
biologically relevant; otherwise, they are labelled irrelevant.

Data preprocessing. After labelling, the dataset was log transformed, as the kinetic 
parameters spanned several orders of magnitude. The generated dataset of 80,000 
models was then split into training and test sets with the ratio 9:1, which resulted 
in 72,000 models that were used for training the conditional GAN. Moreover, 
only the concentration-associated parameters, Kij

M, were included as the training 
features, because the scaling coefficients, Vj

max, can be calculated back once the 
Kij
M and steady-state concentration and flux profiles are already known. After 

eliminating Vj
max, the training dataset consisted of 259 features in total.

It should be noted that both classes of models in the training data, biologically 
feasible and infeasible, have statistically large overlap in the kinetic parameter 
space and cannot be independently visualized by low-order dimension reduction 
techniques such as PCA49, t-distributed stochastic neighbour embedding50 or 
Uniform Manifold Approximation and Projection51 (Supplementary Fig. 9).

During the training, the KL divergence between the test dataset and the 
GAN-generated dataset was also monitored as an additional step to verify that 
training was successful (Supplementary Note 4).

Perturbation analysis of kinetic models. We randomly choose 1,000 biologically 
relevant kinetic parameter sets from both the ORACLE-sampled dataset and the 
REKINDLE-generated dataset for any given physiology. We parameterize the 
system of ODEs describing the metabolite concentrations using REKINDLE- or 
ORACLE-generated kinetic parameter sets. Then, for each parameterized system 
we randomly perturb the reference steady-state metabolite concentration (Xref) 
and flux profile of the model up to ±50%. We next integrate the ODEs using 
this perturbed state X′ as the initial condition X(t = 0) = X0. To quantify whether 
a model has returned to the reference steady state, we monitor the L2 norm of 
the metabolite concentrations at a given point of time X(t) and the reference 
concentration X0. If the metabolite concentration at 21 min (doubling time of E. 
coli) is less than 1% of the reference steady state we classify the model as having 
returned to the steady state, that is, we test

∣

∣X (t)t=21 min − Xref
∣

∣ < 0.01 |Xref| .

We repeat this process ten times for each parameter set with a random 
perturbation each time (within ±50%).

KL divergence/relative entropy. For two separate probability distributions P(x) 
and Q(x) over the same random variable x, we can measure how different these 
distributions are using the KL divergence52 from Q(x) to P(x), formulated as

DKL(P||Q) =







ΣP (x) log
(

P(x)
Q(x)

)

if P (x) ̸= Q(x)

0 if P (x) = Q(x)
.

Spearman correlation coefficient. For two random variables X and Y, we compute 
the Spearman correlation coefficient as

ρ =
cov(R (X) , R(Y))

σR(X)σR(Y)

where R(X) and R(Y) are the ranks of X and Y, respectively, cov(R(X), R(Y)) the 
covariance of the rank variables and σR(X) and σR(Y) are the s.d. of the rank variables.

GAN training. In GANs, two neural networks, the generator that we train to 
generate new data and the discriminator that tries to distinguish generated new 
data from real data, are pitted against each other in a zero-sum game. The end goal 
of this game is to obtain the generator that generates new data of such a quality that 
the discriminator cannot distinguish it from real data (Fig. 1a, step 3). We train the 
generator and discriminator networks in turn. To train the discriminator, we freeze 
the generator by fixing its network weights. Then, we alternate the training by 
freezing the discriminator and train the generator. In the first part of each learning 
step, we provide the discriminator with (1) a random batch of kinetic parameter 
sets from the training data with labels indicating the class of models and (2) a batch 
of kinetic parameter sets that have been generated by the generator (fake data). 
The discriminator then classifies the models it is presented with as real (from the 
training set) or fake (from the generator). In the second part of a learning step, 
the discriminator is frozen and the generator generates a batch of fake kinetic 
parameter sets using as inputs (1) random Gaussian noise and (2) sampled labels. 
The discriminator and the generator improve their performance with training. The 
generator becomes better at deceiving the discriminator, and the discriminator 
becomes better at classifying between training and generated data (Fig. 1a, step 
2). The training continues until we reach equilibrium between the two neural 
networks, and no further improvement is possible.
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The minimum number of data required to train a randomly initialized GAN for 
generating relevant models depends on the sizes of the neural networks used and the 
metabolic system studied. Determining the minimal number of data for training as a 
function of the size of the studied metabolic system remains an open problem.

GAN implementation. All software programs were implemented in Python 
(v3.8.3) using Keras (https://keras.io/, v2.4.3) with a TensorFlow53 graphics 
processing unit (GPU) backend (www.tensorflow.org, v2.3.0). The GANs 
were implemented as conditional GANs. The discriminator network was 
composed of three layers that have a total of 18,319 parameters: layer 1, 
Dense with 32 units, Dropout (0.5); layer 2, Dense with 64 units, Dropout 
(0.5); layer 3, Dense with 128 units, Dropout (0.5). The generator network 
was composed of three layers that have a total of 315,779 parameters: layer 1, 
Dense with 128 units, BatchNormalization, Dropout (0.5); layer 2, Dense with 
256 units, BatchNormalization, Dropout (0.5); layer 3, Dense with 512 units, 
BatchNormalization, Dropout (0.5). We used the binary cross-entropy loss and the 
Adam optimizer54 with a learning rate of 0.0002 for training both the networks. 
We used batch sizes of 2, 5, 10, 20 and 50 when training with training set sizes of 
10, 50, 100, 500 and 1,000, respectively. We trained the GANs from scratch over 
each physiology for 1,000 epochs (one epoch is defined as one pass over all of the 
training data), which took approximately 40 min for training over 72,000 models 
on a single Nvidia Titan XP GPU with 12 GB of memory. Training was repeated 
five times for each physiological condition with randomly initialized generator and 
discriminator networks (20 total trainings).

In all studies, we consider that training has failed if the discriminator accuracy 
is consistently greater than 90% for the last 200 epochs. In some cases, extending 
training to 1,500 epochs was necessary to maximize the incidence of desired 
models. Training beyond 1,500 epochs showed negligible increase in performance. 
In some cases, training for too many epochs led to GAN collapse, that is, the 
discriminator overpowered the generator.

Finding the optimum architecture of the REKINDLE neural networks relative 
to the size of the studied metabolic network remains an open problem.

Generation of biologically irrelevant kinetic models. To study the statistical 
differences in the distributions of the biologically relevant and non-relevant 
kinetic models we generated two populations (2,000 models) of each class using a 
trained generator. As most of the trained generators do not have 100% incidence of 
biologically relevant models (Table 1), they have a small incidence of non-relevant 
kinetic models even when conditionally generating relevant models. We use this 
to create a population of non-relevant kinetic models, by continuously generating 
relevant models using the respective conditional label until we obtain a population 
of 2,000 non-relevant models. Alternatively, we can also generate non-relevant 
kinetic models by directly using the appropriate conditional label with the generator 
seed during generation. However, when we subjected the population generated 
in this manner to statistical analysis (calculating the KL divergences between the 
individual kinetic parameters) we failed to retrieve the important parameters. We 
hypothesize that this is due to the absence of important kinetic parameters that 
determine the local instability of a kinetic model (Supplementary Note 5).

Transfer learning on multiple physiologies. We trained GANs from scratch 
for each physiology using 72,000 samples, and saved the generator state for the 
generator that had the highest incidence of relevant models. Then we retrained 
this generator in a GAN setting with a randomly weighted discriminator using a 
small number of data (10, 50, 100, 500 and 1,000) from the target physiology on 
which extrapolation is desired, for 300 epochs. For the instances using 500 and 
1,000 samples the learning rate was changed from 0.0002 to 0.001. For the rest of 
the cases, we trained with the same hyperparameters as discussed in the previous 
section. During training, we generated 1,000 biologically relevant models every 10 
epochs and calculated the eigenvalues of the Jacobian, as previously, to monitor the 
quality of training and the ability of the generator to generate biologically relevant 
models from the target physiology. We repeated the training five times for each 
transfer (physiology a to physiology b) with the same pretrained generator (on 
physiology a) but with a randomly weighted discriminator each time. We noted 
the highest incidence of relevant models during training save the corresponding 
generator state for each instance of training. We repeated this entire procedure 
(transferring generator, retraining GAN, generation of relevant models and 
validation using eigenvalues of Jacobian) for different numbers of data from the 
target physiologies (10, 50, 100, 500 and 1,000 samples). Total training counts: 
4 (total physiologies) × 3 (target physiologies) × 5 (repeats) × 5 (number of data 
used) = 300. The resulting highest incidence of biologically relevant models 
from the target physiology as a function of the number of data samples used is 
summarized in Fig. 4b.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available in the Zenodo 
repository (https://zenodo.org/record/5803120 and the links therein).

Code availability
A TensorFlow implementation of the REKINDLE workflow is publicly available 
at https://github.com/EPFL-LCSB/rekindle and https://gitlab.com/EPFL-LCSB/
rekindle (ref. 55). The ORACLE framework is implemented in the SKiMpy 
(Symbolic Kinetic Models in Python)35 toolbox, available at https://github.com/
EPFL-LCSB/skimpy.
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