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Recent single-cell multiomics tools are revolutionizing tissue 
characterization at unprecedented resolutions. The large-scale 
Human Cell Atlas1 and Tabula Muris Atlas2 are approaching 

the multimillion scale. Computational pipelines such as Seurat3, 
SCANPY4 and Pegasus5 have been developed and benchmarked6–8. 
Single-cell analysis has some unique features. First, the overabun-
dance of zero counts can either be due to technical drop-outs or 
biological signals. Debate continues regarding the underlying dis-
tribution9. Mainstream packages rely on feature selection (highly 
variable genes, HVGs) and linear dimension reduction (principal 
component analysis, PCA10) to extract major variations, which 
might cause information loss. The deep learning approach offers 
a promising solution to model nonlinear relationships among all 
genes. Variational autoencoders (VAEs) apply encoder–decoder 
structures with reconstruction functions to learn low-dimensional 
cell embeddings (scVI11, scETM12). However, forcing the model to 
reconstruct ambiguous zeroes deserves further discussion. Second, 
batch effects widely exist across technologies, conditions and 
donors. Disentangling biological signals from confounding effects 
is important for data integration. Seurat v.3 (ref. 13) identifies anchor 
cell pairs across batches using mutual nearest neighbours14,15, which 
only allows integration of two batches at a time and incurs expo-
nentially boosted memory consumption when processing more 
cells. Harmony16 iteratively uses fuzzy clustering and linear cor-
rection, whereas trVAE17 leverages a conditional VAE to correct 
batch effects. The ideal method should be scaled to a million-scale, 
integrate multiple batches simultaneously and avoid mixing 
non-overlapping populations. Finally, query-to-reference map-
ping has become popular to enable quick interpretation of newly 
generated datasets without laborious de novo clustering or manual 
annotation18. Unlike rigid supervised classification, we consider 
query-to-reference mapping as an unsupervised transfer learning 

problem to derive voting-based annotations based on learned query 
embeddings. Seurat v.4 uses19 supervised PCA on mutual nearest 
neighbours to transfer reference annotations. Symphony20 uses a 
mixture modelling framework to localize queries onto the stable 
reference. ScArches18 uses a conditional autoencoder to map query 
cells through fine-tuning.

Contrastive learning has recently achieved great success in com-
puter vision domains such as SimCLR21 and MoCo22. This type of 
method defines a pretext task for unlabelled images and conducts 
self-supervised learning by minimizing contrastive loss between 
augmented views in hypersphere space23. Learned embeddings can 
be used for image classification through fine-tuning, considerably 
outperforming previous approaches24. Inspired by contrastive learn-
ing’s superiority in modelling unlabelled data, we anticipate that 
high-quality representations can be obtained simply by discrimi-
nating between each cell in a self-supervised manner. Distillation 
schemes have also been used to transfer knowledge between asym-
metric neural networks (that is, teacher–student networks), evolv-
ing from model compression25 and online co-distillation26 in a 
supervised setting, to self-training in a semi-supervised setting 
(for example, noisy student27), to self-supervised distillation for 
better representations (for example, SEED28, DINO29). Exploiting 
a distillation-like scheme to share knowledge between augmented 
views provides a concise solution to generate self-consistent but 
unique embeddings in a typical contrastive learning framework.

Here we propose a self-distillation contrastive learning frame-
work for single-cell analysis, Concerto. Through a comprehensive 
benchmark on real and simulated datasets, learned embeddings can 
be fine-tuned for various downstream needs, covering automatic 
cell type classification, clustering, data integration for batch-effect 
correction, and query-to-reference mapping. Concerto can flex-
ibly handle multiomics datasets and achieve superior performance 
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to competing methods in each task. We also show that Concerto’s 
attention weights offer model interpretability by extracting molec-
ular signatures at single-cell resolution. Moreover, we leverage 
Concerto to query a COVID-19 immune cell dataset against an inte-
grated reference atlas containing both healthy and infected samples, 
recapitulating several differential immune features among patients 
with diverse disease statuses. Concerto is a robust, accurate, scal-
able representation learning framework for single-cell multimodal 
analysis at the 10-million-cell scale.

Results
Overview of Concerto architecture. Concerto leverages a 
self-distillation contrastive learning framework configured as an 
asymmetric teacher–student architecture (Fig. 1a and Methods). The 
asymmetric design injects imbalanced model complexity, where a 
larger teacher network aggregates gene embeddings into cell embed-
dings via an attention mechanism30,31 and a smaller student network 
simply transforms discrete inputs into cell embeddings using a dense 
operation. Representational knowledge is transferred in between by 
self-distillation. By defining an instance discrimination pretext task 
for each unlabelled cell, Concerto learns semantic-invariant embed-
dings by maximizing the agreement between each cell’s teacher 
and student views. A random dropout mask32 is added right before 
the output layer to generate minimal data augmentations at the 
model level, motivated by SimCSE’s33 sentence-processing scheme. 
A domain-specific batch normalization layer is added to correct 
for batch effects34. When processing a multiomics dataset, simple 
element-wise summation for each modality can generate unified cell 
embeddings (Fig. 1b and Methods). By projecting onto unit hyper-
sphere space23, Concerto discriminates between cells by pulling 
together teacher–student views of the same cell as positive pairs while 
pushing apart other cells within a batch. Learned embeddings can be 
fine-tuned for various downstream tasks, including automatic cell 
type classification, clustering, data integration for batch-effect cor-
rection, and query-to-reference mapping (Fig. 1c; see the Methods 
for details). The rationale for choosing different components is dis-
cussed in the Supplementary Notes.

Contrastively learned embeddings notably boost the perfor-
mance of automatic cell classification via fine-tuning and sup-
port novel cell type discovery across tissues. To demonstrate that 
contrastively learned embeddings satisfy rigid cell classification, we 
use existing annotations as training labels to implement supervised 
fine-tuning on Concerto. First, we use a classical human periph-
eral blood mononuclear cell dataset (PBMC45k, n = 31,021, seven 
protocols)35 to compare different classifiers (Methods), including 
likelihood-based SciBet36, neural network-based Cell BLAST37, 
correlation-based SingleR38, support vector machine-based 
Moana39, and a meta-learning approach, MARS40. Concerto is a 
two-step approach (pretraining and fine-tuning) whereas others 
are trained end-to-end. We also implement an end-to-end version 
of Concerto (Concerto-E2E) by discarding the contrastive loss and 
training it in a fully supervised manner. For intra-dataset evalua-
tion, we apply fivefold cross-validation within each batch (n = 9) 
and evaluate the median F1-score across all cell types. Concerto 
achieves the highest score (0.926) with the most stable performance 
across each fold (Fig. 2a), whereas Concerto-E2E obtains a lower 
score (0.867), demonstrating the utility brought by pretraining (see 
Supplementary Fig. 1 for details). For inter-dataset assessment, we 
use one protocol as the test set and the other protocols as the train-
ing set (bootstrapping five times). Concerto substantially outper-
forms other methods on almost all train–test splits (Fig. 2b). When 
the Seq-well dataset is held-out, all methods report a decline in per-
formance, probably because the microwell-based protocol markedly 
contrasts with droplet-based methods, posing greater challenges to 
model transferability (see Supplementary Fig. 2 for details).

A good classifier should label none-of-the-above (NOTA) cells 
as a rejection option if the test set contains cell types that do not 
exist in the training samples. We download the PBMC CITE-seq 
dataset (PBMC160k, n = 161,764 cells, RNA-only in the NOTA 
study) annotated at three levels and remove different T cell 
granularities from the training set to evaluate the NOTA setting 
(Methods). Figure 2d shows that Concerto can clearly separate the 
confidence curves of the validation and test sets for level-1 and 
level-2 masking. Even for the most challenging level-3 scenario, 
Concerto obtains a bimodal curve with partial overlap with the 
validation curve; nevertheless, SciBet misassigns CD4 Mem T cells 
as other types (see Supplementary Fig. 4–6 for details). We use 
Splatter41 to conduct robustness analysis on simulated datasets 
(Methods). Concerto obtains the highest accuracy (ACC) value 
when decreasing intensities of differential expression at a fixed 
dropout rate or increasing dropout rate at a fixed expression vari-
ance (Supplementary Fig. 8).

To benchmark on finer-grained classification, we combined the 
Thymus scRNA-seq atlas42 (n = 107,969 cells) with PBMC45k to 
construct a multihierarchical immune cell dataset. Incorporating 
a high-resolution thymus dataset poses a greater challenge in dis-
tinguishing subtle state discrepancies along the T cell development 
trajectory. Concerto still reaches the highest median F1-score 
of 0.830 (mean value for fivefold cross-validation), substan-
tially outperforming SingleR (0.705) and SciBet (0.667) (Fig. 2c). 
Concerto can well discriminate between different developmental 
stages, including double-negative T cells, double-positive T cells 
and single-positive T cells. We also use the heterogenous Tabula 
Muris Senis (TMS) atlas (n = 101,045 cells, 23 mouse tissues) 
to train a tissue-wise classifier (intra-tissue prediction, fivefold 
cross-validation). Concerto outperforms SciBet on all tissues by a 
large margin (Fig. 2f), achieving the top mean ACC for the blad-
der (0.999), brain myeloid (0.999) and mammary gland (0.996). 
The largest absolute gain over SciBet is for the tongue (+7.85%), 
large intestine (+7.69%) and brown adipose tissue (+7.26%) (see 
Supplementary Fig. 3 for details).

For cross-tissue annotations, we adopt a similar experimental 
design to MARS40 by leaving one tissue out as an unannotated test 
set and training Concerto on all of the other tissues (TMS dataset). 
By adding a domain adaptation module43 (Methods), Concerto 
achieves a superior adjusted Rand index (ARI) to MARS on 22 
hold-out tissues, ranging from the largest absolute gain of ARI 
for the spleen (+89.4%) to the smallest for the bladder (+0.613%) 
(mean value, bootstrapping three times; Fig. 2g). The hold-out tis-
sue often contains several cell types that do not exist in training tis-
sues. Similar to MARS, Concerto effectively transfers knowledge 
to discover novel cell types across tissues (see the spleen and brain 
non-myeloid results in Supplementary Fig. 7). In particular, when 
the limb muscle is held-out, Concerto places functionally similar 
cell types from other tissues closer to the limb muscle’s six major 
annotations (Fig. 2h). The Sankey plot (Fig. 2i) shows that general 
B cells, T cells, endothelial cells and macrophages from other tissues 
are correctly transferred to the limb muscle. Skeletal muscle satellite 
cells and mesenchymal stem cells from the limb muscle correctly 
map to their counterparts in other muscles and adipose tissues, 
whereas MARS erroneously uses T cells to annotate some satellite 
cells in the limb muscle.

To assess Concerto’s capability to process multiomics data,  
we use PBMC160k19 to train Concerto in three settings: with  
RNA, with protein, or with both, as input. Concerto achieves a 
median F1-score of 0.805, 0.770 and 0.819, respectively (mean  
value of fivefold cross-validation, intra-dataset prediction),  
implying that unifying multimodalities enable more accurate 
classification (Fig. 2e). Concerto outperforms Azimuth in all 
cases, obtaining an absolute improvement of 4.8% when using 
dual-modality as input.
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Concerto enables effective unsupervised clustering over multi-
modal dataset and can automatically extract molecular signatures 
from attention weights at single-cell resolution. A new single-cell 
study often starts with unsupervised clustering; however, discrete 

clusters might ignore smooth transitions among cell states. Cell-ID44 
can extract per-cell gene signatures in a clustering-free manner. Here 
we assess the utility of Concerto embeddings for de novo cluster-
ing and show that Concerto can also extract biologically meaningful  
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Fig. 2 | Contrastively learned embeddings notably boost the performance of automatic cell classification via fine-tuning and support novel cell type 
discovery across tissues. a,b, Comparing the performance of intra-dataset (fivefold cross-validation, nine batches) (a) and inter-dataset (bootstrapping 
five times) (b) predictions, as measured by the median F1-score of cell type labels on the PBMC45k scRNA-seq dataset (n = 31,021 cells) in comparison 
with MARS, Cell BLAST, Moana, SingleR and SciBet. The box plots show the median, and the first and third quartile values. The whiskers extend to points 
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Concerto-E2E denotes end-to-end supervised training using the same model architecture without contrastive loss. c, Benchmark performance measured 
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bars represent the 95% confidence interval. d, A rejection option study comparing Concerto’s ability with SciBet’s to assign a low confidence score for 
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prediction measured by the ARI against MARS (bootstrapping three times). Error bars represent the 95% confidence interval. h, UMAP visualization of 
true labels versus Concerto predictions for hold-out limb muscle tissue (n = 3,855 cells). i, Sankey plot showing the label transfer of relevant cell types 
across tissues (using limb muscle as an example).
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signatures at single-cell resolution. We choose a subset from 
PBMC45k (n = 11,377 cells, 10X protocols, 2,000 HVGs) with 
minimal batch effect. We compare Concerto’s representations with 
Seurat’s shared nearest neighbours on different clustering algo-
rithms. scDeepCluster45 is incorporated to represent simultaneous 
learning and clustering46. Three other deep learning methods are also 
evaluated: probabilistic-VAE scVI11, graph neural network-based 
scGNN47, and generative adversarial network-based scIGANs48. We 
use the normalized mutual information (NMI), ARI and silhouette 
score as evaluation metrics. Leiden clustering49 on Concerto embed-
dings (Concerto + Leiden, mean NMI = 0.750, ARI = 0.646, silhou-
ette score = 0.332) dramatically outperforms other methods across 
five resolutions (Fig. 3a, Extended Data Fig. 1a and Supplementary 
Table 12). Concerto well aligns cluster assignments with manual 
annotations (Fig. 3b; resolution = 0.4 for Leiden, k = 9 for scDeep-
Cluster), clearly separating CD14 monocytes, CD16 monocytes 
and dendritic cells as different myeloid cells, and dividing the clear 
boundary between CD4 T cells and cytotoxic T cells. By contrast, 
other methods mix several populations (Supplementary Fig. 9–11 
and 19). Benchmark results over another small dataset of mouse 
embryonic stem cells50 (n = 2,000) can be found in Supplementary 
Table 13 and Concerto consistently performs the best.

To validate that incorporating other omics beyond the transcrip-
tome19 leads to a more precise definition of cell identity, we imple-
ment Concerto using RNAs, proteins, or both, as input and visualize 
learned embeddings coloured by hierarchical annotations (Fig. 3c). 
CD4 and CD8 T cells can be well separated by the proteins alone but 
partially mixed by RNAs alone. Natural killer (NK) cells are partially 
mixed with CD8 T cells by RNAs alone, but lie between other T cells 
and CD8 T cells for the protein-alone input. Dendritic cells are min-
gled with monocytes by proteins alone, but well separated by RNAs 
alone. These signals imply that proteins are more informative than 
RNAs for discriminating CD4 from CD8 T cells and uncovering 
subtle heterogeneity within NK cells. By contrast, the relationship 
of the monocytes and dendritic cell lineage can be better delineated 
by RNAs than proteins. Concerto displays a directional develop-
mental trajectory (Fig. 3c) for the CD4 T cell lineage (CD4 naive, 
CD4 TCM and CD4 TEM), CD8 T cell lineage (CD8 naive, CD8 
TCM and CD8 TEM) and B cell lineage (B naive, B intermediate, B 
memory and plasmablast). Furthermore, CD4+ regulatory T cells 
(Treg), MAIT cells and subpopulations of γẟ-T cells (gdT) can be 
identified using dual-modality. Concerto can address any number 
of expanded modalities simply by implementing element-wise sum-
mation of each modality to obtain a unified view (Methods). We 
also show that Concerto obtains better clustering results (measured 
by ARI and NMI) than methods specifically designed for CITE-seq, 
including Seurat (WNN)19, BREMSC51, CiteFuse52 and totalVI53 
(Extended Data Fig. 1 and Supplementary Table 11).

Concerto’s teacher module uses the attention mechanism30,31 
to aggregate gene embeddings. We hypothesize that the atten-
tion weights might provide certain model interpretability by  

reproducing molecular signatures established for well-known cell 
types. Figure 3d and Supplementary Fig. 24 show the normalized 
attention contributions of key features to define cell identity, suc-
cessfully recovering some canonical modality-specific markers for 
representative cell types (Methods). CD4 and CD8 T cells show 
divergent attention patterns of CD4 and CD8 protein markers, but 
no significant difference in their RNA transcripts, recapitulating the 
protein marker-based definition of these T cells. For B cells, CD19 
protein and MS4A1 RNA (transcript of CD20 protein) emerge as 
key markers. Concerto also extracts the CD16 protein marker and 
cytotoxic RNA transcripts (GZMB, GNLY) in activated NK cells. 
Although neither clustering nor differential testing is used, some 
modality-specific signatures are automatically extracted by atten-
tion weights at single-cell resolution and match well with biological 
implications, representing a promising self-distillation marker iden-
tification protocol where the only learning signal is from each cell 
itself. We acknowledge this is a preliminary attempt and the robust-
ness of attention weights should be further investigated. A similar 
idea was reported in DINO29 to extract semantic layouts from natu-
ral images.

Concerto enables de novo data integration via removing 
unwanted batch effects and well supports integrating partially 
overlapping datasets. Facing the need to correct batch effects when 
combining different sources into a reference atlas, we benchmark 
Concerto’s data integration performance on a well-curated multi-
donor human pancreatic (HP) islet dataset (eight batches, five tech-
nologies, n = 14,890 cells)54–58 against Seurat v.3, Harmony, trVAE 
and naive-PCA as baselines. Harmony and Seurat v.3 operate on 
principal components, whereas trVAE uses fully connected layers 
to compress the input. Concerto’s encoding scheme can easily oper-
ate on all genes. We designed six scenarios to evaluate the impact 
of the number of input genes (Fig. 3 and Supplementary Fig. 12). 
All methods can combine different batches to varying degrees 
except for naive-PCA. We use the k-nearest-neighbour batch-effect 
test (kBET)59 to quantify batch-mixing performance and the aver-
age silhouette width (ASW)60 to evaluate cell type purity. Concerto 
achieves higher ASWs than competing methods by a large margin 
in the six scenarios (ASW = 0.533 for 2,000 HVGs, 0.305 for all 
genes; Fig. 3g), indicating better biological preservation. All meth-
ods show decreased ASW when accepting more genes as input, 
possibly because cell labels used to calculate ASW are derived from 
principal components (PCs) of 2,000 HVGs followed by manual 
inspection of cluster-specific signatures, more resembling the pro-
tocols used by Seurat and Harmony; 2,000 HVGs might not cap-
ture complete biological variations. Despite obtaining the lowest 
kBET score (0.10), Concerto successfully integrates eight sources 
at an acceptable level. We argue that no further mixing is neces-
sary provided kBET reaches a certain threshold to ensure biological 
signals converge together rather than confounded by batch effects. 
Overpursuing a larger kBET might aggressively misalign distinct 

Fig. 3 | Concerto enables effective unsupervised clustering over multimodal dataset and batch-corrected data integration. a, Evaluating Concerto 
embeddings on clustering performance against PCA, Seurat and scDeepCluster, as measured by the mean ARI over the PBMC45k dataset (10X only, 
n = 11,377 cells). Louvain and Leiden clustering methods are used for Concerto, PCA and Seurat (set five different resolutions at 0.1, 0.2, 0.3, 0.4, 0.6 for 
Louvain or Leiden; k = 7, 8, 9, 10, 11 for scDeepCluster). b, UMAP visualization of true cell type labels versus cluster assignment (resolution = 0.4 for Leiden; 
k = 9 for scDeepCluster). c, UMAP visualization of Concerto-learned embeddings on the PBMC160k dataset (RNA, protein, and RNA + protein), labelled 
by Azimuth (level-1 categories for unimodality and level-2 categories for dual-modality). The blue arrows show the directional distributions of subtypes 
within CD8 T cells, CD4 T cells and B cells. The black arrows are used to indicate some cell types, such as CD4 TCM, CD8 Naive, avoiding overlap and 
ambiguity in the figure. d, A heatmap showing how attention weights relate to some canonical modality-specific markers in major immune cell types. The 
ith row, jth column of the heatmap represents the attention weight of the ith cell’s jth gene (or protein). e, UMAP visualization coloured by cell type label 
and batch label after integrating the human pancreatic islet scRNA-seq dataset (n = 14,890 cells, eight batches of five technologies). Benchmark methods 
include Seurat v.3, Harmony, trVAE and an uncorrected baseline (PCA only). f, Overcorrection analysis by removing all beta-cells (coloured red and 
indicated by red dashed ovals) except for CEL-Seq2, illustrated by UMAP visualization. g, Comparison of batch correction measured by kBET and ASW for 
six HVG scenarios (top 2,000, 5,000, 10,000, 15,000 and 20,000 HVGs, and all genes).
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cell populations, that is, overcorrection. To validate this hypothesis, 
we design a more complex scenario of integrating partially overlap-
ping datasets by manually removing beta-cells from all five technol-
ogies except for CEL-Seq2. Harmony and Seurat mix up beta-cells 
with other types (Fig. 3f), implying overcorrection with lower 
beta-cell ASW but larger kBET (kBET = 0.32 and Beta-ASW = 0.29 
for Harmony; kBET = 0.39 and Beta-ASW = 0.05 for Seurat v.3). 
Concerto clearly distinguishes beta-cells (Beta-ASW = 0.34 for 
Concerto), albeit obtaining a lower kBET value (0.03). To further 
justify Concerto’s ability to avoid overcorrection, we design another 
controlled experiment using a simulated dataset (n = 12,097 cells, 
six batches of seven cell types, 2,000 HVGs) from a benchmark 
study (see the Supplementary Notes for details)61. We remove cell 
type-2 cells from all six batches except batch 1 to construct partially 
overlapping dataset before integration. Concerto clearly separates 
cell type-2 cells from other types (Extended Data Fig. 1c), obtain-
ing larger cell type-2 ASW than other methods (kBET = 0.21 and 
cell type-2 ASW = 0.12 for Concerto; kBET = 0.43 and cell type-2 
ASW = 0.06 for Harmony; kBET = 0.33 and cell type-2 ASW = 0.05 
for Seurat V3; kBET = 0.21 and cell type-2-ASW = 0.09 for trVAE). 
Concerto’s contrastive learning objective is immune to merging dis-
tinct subpopulations and preserves biological variation to build a 
high-quality reference.

Concerto achieves state-of-the-art accuracy for query-to-reference 
mapping and supports projecting unseen cell types in the refer-
ence. We further evaluate Concerto for mapping query cells onto 
harmonized reference embeddings. Unlike rigid cell classification, 
query-to-reference mapping only uses cell type labels during infer-
ence. In particular, we first calculate query embeddings using pre-
trained model weights, locate query cells near their most similar 
reference cells and use a k-nearest-neighbour (usually k = 5) voting 
classifier to transfer reference annotations to queries. We design two 
experiments: cross-technology mapping, using the inDrop Baron 
dataset (n = 8,569 cells) as a query and all four other technologies 
(n = 6,321 cells) as a reference (HP → inDrop); and cross-species 
mapping using the same reference but with the mouse pancreatic 
islet (MP) (n = 1,880 cells) as a query (HP → MP). We benchmark 
against scArches, Symphony and Seurat v.4, with each correspond-
ing to a reference building protocol (trVAE, Harmony and Seurat v.3, 
respectively); 2,000 HVGs are used for fair comparison. Concerto 
achieves the highest mean ACC for both experiments (0.981 for 
HP → inDrop, 0.927 for HP → MP, five replicates) (Fig. 4a). The con-
fusion matrix (Fig. 4b) shows that Concerto can accurately transfer 
labels across technologies and species. Inspired by using unifor-
mity and alignment to understand contrastive learning23, we calcu-
late these two properties (Methods) to explore the underpinnings  

of Concerto’s superior performance in the query-to-reference map-
ping task. By comparison with the cell representations of other 
methods (Fig. 4c and Supplementary Notes), Concerto achieves 
the best alignment, which is two to four orders of magnitude lower 
than other methods (the lower the better), suggesting it has more 
consistent embedding quality to pull similar cells together on the 
hypersphere. We also conduct comprehensive ablation studies to 
justify why Concerto’s asymmetric self-distillation architecture 
with a teacher network as output achieves better query-to-reference 
mapping performance than symmetric design (Fig. 4d and 
Supplementary Notes). Other components regarding hyperpa-
rameter choice, data-augmentation strategies, distillation schemes 
and the network structure for batch-effect correction are described 
in Supplementary Notes, with ablation results in Supplementary  
Figs. 13–17 and Supplementary Tables 4–6 and 8.

We then design a study to project unseen cell types and evaluate 
whether incorporating all genes can bring benefits. We assign one 
sample (P3) from PBMC160k as a query and use the other seven 
samples to build a reference. All CD8 T cells are removed from the 
reference. Concerto operating on all genes obtains considerably 
higher ACC (0.988 for all genes, 0.772 for 2,000 HVGs) and precisely 
localizes CD8 T cells between NK cells and CD4 T cells (Fig. 4g).  
Although Concerto has never seen CD8 T cells, the enrichment 
region of the CD8a protein marker overlaps with the positions of 
query CD8 T cells assigned by Concerto (Fig. 4e). Operating on 
all genes is expected to capture biological nuance to better iden-
tify fine-grained subtypes within CD8 T cells. The enrichment 
region of the cytotoxic marker GZMA is closer to NK cells, whereas 
the naive/memory-like marker CCR7 is located further away. 
Furthermore, transcriptional gradients of canonical markers cor-
relate well with distances between CD8 T subtypes and NK cells. 
In the all-genes scenario, CD8 naive cells, which are further away 
from NK cells, show lower cytotoxic signatures (GNLY and NKG7) 
than proliferating and effector cells, whose locations are closer to 
NK cells (Fig. 4e), as quantified by negative Pearson correlation 
coefficients (r = −0.327 for GNLY, P-value = 1.01 × 10−41; r = −0.639 
for NKG7, P-value = 9.13 × 10−187). The expression of naive signa-
tures (CCR7) in CD8 T cells shows a positive correlation with the 
distance from NK cells (r = 0.253, P-value = 4.92 × 10−25). We dem-
onstrate that Concerto can project unseen cell subtypes along a bio-
logically meaningful continuum. We also show that Concerto can 
infer unmeasured modalities in query cells. We leverage 80% of the 
samples from PBMC160k cells to build a dual-modality reference 
and use the remaining 20% with only the RNA count as a query 
(Methods). Concerto achieves consistent protein expression predic-
tion against actual measurement in query cells (top-20 prediction, 
Pearson r = 0.966–0.998; Supplementary Figs. 22 and 23). Inferred 

Fig. 4 | Concerto achieves state-of-the-art accuracy for query-to-reference mapping and supports projecting unseen cell types in the reference with 
multimillion-cell scalability. a, Performance comparison of query-to-reference mapping against Symphony, scArches and Seurat v.4. Left: HP → inDrop, 
n = 8,569 cells; the HP dataset is the reference except for when inDrop is used as the query. Right, HP → MP, n = 1,880 cells; the HP dataset is the reference 
except for inDrop and MP are used as queries (repeated five times). Error bars represent the 95% confidence interval. b, Confusion matrices of Concerto 
prediction measured by ACC. c, Alignment–uniformity plot for Concerto, scArches, Seurat and Symphony on HP dataset (HVGs = 2,000). There are 
three replicates (represented by dots) for each method. d, Ablation study on asymmetrical teacher–student network architectures; 2 teacher or 2 student 
represent both networks using attention operations or dense operations, respectively. Teacher + student denotes asymmetric design with the final cell 
embeddings extracted from the network and indicated in parentheses. The box plots show the accuracy of query-to-reference mapping for HP datasets (all 
genes, across six different k-values in nearest-neighbour-voting, k = 3, 5, 10, 15, 20, 25). e, Top: a heatmap showing that Concerto can successfully identify 
CD8 T cells masked in the reference, expressing the canonical CD8 protein marker, cytotoxic GZMA, and the CCR7 RNA marker enriched in the annotated 
CD8 T cell region. Bottom, Concerto preserves biological signals, showing a negative correlation of cytotoxic markers GMLY and NKG7, and a positive 
correlation of naive/memory marker CCR7 with the distance between CD8 T cells and NK cells (negative means increased expression at a closer distance 
to NK cells; positive means increased expression at a greater distance to NK cells). f, Heatmap of ground truth protein expression versus Concerto 
prediction for CLEC12A, CD55, CD11c and CD14 proteins visualized by UMAP (5-NN are used to infer L2-normalized protein expression). g, Illustration of 
Concerto’s ability to project unseen cell types onto a reference by operating on all genes evaluated on the multimodal PBMC160k dataset (RNA + protein). 
All CD8 T cells in the query set are removed. h, Scalability of Concerto measured by elapsed time for reference building and querying cells of the same 
size. i, Schematic comparison among Concerto and three other mainstream packages.
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expression paired with the ground truth of CLEC12A, CD55, and 
CD11c and CD14 are visualized by UMAP (Fig. 4f). Concerto 
shows great potential to uncover missing signals toward a holistic 
view of query cells.

Concerto can efficiently scale to 10-million-cell atlas construc-
tion and reference mapping. For scalability analysis, we simulate 
virtual references and map an equal number of query cells against 
each reference. Contrastive learning is naturally parallelizable and 
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easily scalable to an extra-large atlas by dividing the whole task into 
multiple processing batches (Supplementary Table 10). By distrib-
uted training on eight orchestrated GPUs (NVIDIA Quadro RTX-
6000), Concerto can build a 1-million-cell reference in 585 s (less 
than 10 min) and a 10-million-cell reference in 5,133 s (less than 
1.5 h) (Fig. 4h). The reference only needs to be built locally and easily  

shared by model weights without compromising data privacy. 
Researchers can simply download pretrained reference weights and 
use in-house data to make direct inferences or perform unsuper-
vised fine-tuning. Mapping a million-scale query takes 168 s (less 
than 3 min) (Fig. 4h). The peak memory usage is set to 6 GB per 
CPU (Intel Xeon Gold 6226 R) and 2.5 GB per GPU. Concerto can 
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Fig. 5 | Hierarchical query-to-reference mapping preserves the differential immune response in COVID-19 patients. a, Illustration of mapping 
Schulte-Schrepping and colleagues’64 PBMC scRNA dataset (n = 99,049 cells) onto an integrated COVID-19 reference (Ren et al.62 and Zhu et al.63).  
b, UMAP visualization of annotated CD8 T cells divided into five subtypes and differential compositions among healthy controls (HC), moderate (M) 
and severe (S) disease statuses. c, Expression heatmap shows canonical markers for CD8 naive, cytotoxic, proliferating and exhaustion states. d, The box 
plots show the relative percentages of CD8 T cell subtypes among CD8 T cells at different disease statuses. e, UMAP shows proliferative-exhausted CD8 
T cells and other exhausted CD8 T cells (top). Heatmap shows function-specific canonical markers in UMAP visualization (bottom). f, The box plots show 
the relative percentages of CD4 naive T cells among CD4 T cells at different disease statuses (left) and expression levels of T cell activation related genes 
in activated CD4 T cells at different disease statuses (right). g, The box plots show the relative percentages of NK CD56dimCD16bright and NK CD56bright cells 
among annotated NK cells at different disease statuses. h, UMAPs show deficiency of an antigen presentation marker (HLA-DR) and enrichment of an 
inflammatory marker (S100A) that co-localize in the upper-left region of annotated monocytes, marked by red ovals. The box plots show the median, the 
first quartile and the third quartile values. The whiskers extend to points that lie within 1.5-times the interquartile ranges of the lower and upper quartiles 
and then observations that fall outside of this range are displayed independently. Mann–Whitney U test for differential expression analysis, two-sided, 
*P < 0.05, ** P < 0.01, ***P < 0.001, ****P < 0.0001.
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efficiently scale to build a multimillion-cell reference, enabling 
rapid mapping within minutes. Concerto can also work on a typi-
cal computer using a CPU alone, taking 1.1 h to build a reference 
of 100,000 cells and query an equal number of cells within 30 min 
(Supplementary Fig. 21). We draw a schematic diagram to compare 
Concerto with other well-recognized tools (Fig. 4i). Concerto is the 
most scalable, does not require PCA or scaling, can operate on all 
genes and well supports multimodal integration.

Mapping COVID-19 immune cells against disease references 
reveals differential immune responses at different infection 
statuses. We further use Concerto to project a recently published 
COVID-19 PBMC dataset (Schulte-Schrepping et al., n = 99,049) 
onto a comprehensive COVID-19 reference, which is built by inte-
grating cells from Ren et al.62 (n = 451,096 PBMCs; 10X Chromium) 
and Zhu et al.63 (n = 42,752; DNBelab-C4 system). We then project 
query set (Schulte-Schrepping et al.64) onto it without fine-tuning 
(Fig. 5a). The COVID-19 reference contains disease-relevant cell 
states similar to those in the query; therefore, direct model inference 
is sufficient for rapid mapping. We propose a hierarchical mapping 
approach to enable effective interpretation. First, all query cells are 
mapped on top of the reference to obtain coarse-grained level-1 
annotations, grouped query cells are then projected to subgroups of 
the reference to yield level-2 annotations. Schulte-Schrepping and 
colleagues’ work focuses on myeloid cells, and we complement their 
analysis for lymphoid cells. Concerto can successfully localize query 
cells to obtain consistent level-1 subpopulations with the reference 
and identify perturbed pathological states through level-2 mapping 
(Fig. 5a).

For all annotated CD8 T cells, Concerto discriminates diver-
gent compositions of naive, proliferating, memory and effec-
tor states at different disease states (healthy controls, mild and 
severe) and obtains concordant state-specific signatures (Fig. 5b,c 
and Methods). Naive markers are upregulated in annotated CD8 
naive T cells (CCR7, LEF1, TCF7, SELL; logarithmic fold change 
(log2FC) = 0.98, 0.89, 0.81 and 0.30; false-discovery rate adjusted 
P-value (Padjusted) = 2.2 × 10−308, 3.0 × 10−263, 8.6 × 10−92 and 5.8 × 10−11, 
respectively; Wilcoxon rank-sum test), while the relative abundance 
of CD8 naive T cells significantly decreases in patients (Fig. 5d). 
CD8 T effector memory cells (TEM) manifest upregulated cyto-
toxic transcripts (PRF1, log2FC = 1.22, Padjusted = 2.2 × 10−308; GNLY, 
log2FC = 1.28, Padjusted = 2.2 × 10−308). Concerto also identifies emerg-
ing exhausted T cells in patient regions with increased exhaustion 
scores (such as LAG3; see Methods). We also validate the presence 
of a hybrid proliferative-exhausted CD8 T cell phenotype reported 
by Su et al.65, co-expressing upregulated exhaustion transcripts 
(LAG3), proliferative marker (MK167) and cytotoxic signature 
(GZMA) without completely losing naive (TCF7) features (Fig. 5e).

For CD4 T cells, the relative abundance of CD4 naive T cells 
significantly decreases in COVID-19 patients (Fig. 5f), whereas 
the abundance of activated CD4 T cells increases in patients 
(Supplementary Fig. 20a)65,66. In particular, we annotate an acti-
vated CD4 T cell subtype with elevated CD2AP expression, indi-
cating a dramatic state transition following infection, as presented 
by Zhu et al.63 (Fig. 5f). CD2AP modulates the differentiation of 
follicular helper T cells, probably leading to an improved antibody 
response67. The proportion of regulatory T cells (Treg) increases in 
COVID-19 patients compared to healthy controls (Supplementary 
Fig. 20b), suggesting possible immunosuppression and an active 
anti-inflammatory response68.

For NK cells, Concerto identifies CD56dimCD16bright subpopu-
lations that are significantly activated in severe patients (Fig. 5g; 
reported in another flow cytometry study69), showing elevated expres-
sion of cytotoxic markers (PRF1, log2FC = 0.70, Padjusted = 1.5 × 10−16; 
GZMB, log2FC = 0.75, Padjusted = 6.5 × 10−20) and exhaustion mark-
ers (HAVCR2, log2FC = 0.29, Padjusted = 2.1 × 10−2). For monocytes, 

Concerto clearly separates healthy, moderate and severe samples 
(Fig. 5h). Non-classical monocytes (CD14lowCD16high) are enriched 
in healthy samples but depleted in severe samples. For classical 
monocytes (CD14highCD16low), Concerto identifies a dysfunctional 
HLA-DRloS100Ahi CD14+ subtype enriched in severe patients, 
recapitulating its inflammatory phenotype with antigen presenta-
tion deficiency (Schulte-Schrepping et al.64 and Ren et al.62).

Overall, Concerto successfully separates pathological states, 
preserves nuanced status-specific variation, and identifies dif-
ferential immune signatures. Whether implementing direct infer-
ence or unsupervised fine-tuning depends on reference diversity 
and relevance to the query. A more comprehensive reference usu-
ally benefits mapping performance (Supplementary Fig. 18 and 
Supplementary Notes). Concerto can be shaped as a continuous 
learning framework by iteratively updating references to cover more 
diverse samples.

Discussion
Assuming each cell is different, Concerto learns high-quality cell 
representations by discriminating each cell from others. Based on 
comparing different theoretical foundations with PCA or VAE-based 
methods, contrastively learned embeddings are well suited to pre-
serve biological nuance as quantified by better cell alignment score 
in the latent space23 (Fig. 4c). Concerto supports operating on all 
genes, which is particularly important to ensure feature overlap 
between query and reference in mapping-based tasks18. Inspired 
by recent progress in natural language processing33, Concerto pio-
neers introducing model-level data augmentations in the omics 
field without disrupting molecular input. Concerto’s asymmetric 
self-distillation scheme strikes a balance between learning seman-
tically rich representations from the teacher network’s attention 
operation and good generalizability from the student network’s 
dense output (Fig. 4d and Supplementary Notes). By interpreting 
attention weights, we conceptually show that Concerto can auto-
matically extract some canonical molecular signatures at single-cell 
resolution and identify relative contributions of each modality to 
define cell identity. Query-to-reference mapping has become a new 
paradigm in single-cell analysis. Concerto’s contrastive setting is 
easily parallelizable and supports direct inference or unsupervised 
fine-tuning depending on reference diversity or relevance. Simply 
through element-wise summation, Concerto effectively supports 
multiomics integration. We plan to deploy Concerto in perturba-
tion analysis to enable rapid identification of altered cell states upon 
stimulation. Concerto also shows great potential in translational 
research when large-scale disease atlases are available.

Methods
Concerto uses both simulated and real single-cell RNA-seq and CITE-seq datasets, 
and implements several benchmarking tasks, as listed in Supplementary Table 9. 
A full description of the data source can be found in Supplementary Table 1, with 
preprocessing details in Supplementary Table 2.

Overview of Concerto architecture. Concerto leverages an asymmetric 
self-distillation contrastive learning framework. The teacher module aggregates 
distributional gene embeddings using an attention mechanism30 followed by 
nonlinear fully connected layers to obtain the teacher view for each cell, whereas 
the student module feeds discrete gene counts into dense layers. This asymmetric 
configuration injects imbalanced complexity presented as teacher and student. 
For model input, the normalized gene-count matrix is transformed into the 
index–value format, where index refers to gene identity defined by a dictionary 
comprising all genes of a certain species and value refers to corresponding 
counts in a cell. This encoding scheme supports sparse high-dimensional input 
and improves computational efficiency. The teacher module scales each gene’s 
embedding by the corresponding count value. By defining a pretext task of 
discriminating each unlabelled cell, Concerto learns cell representations by 
maximizing agreement between each cell’s different views using a contrastive 
loss in the latent space. Two augmented views for the same cell are obtained by 
passing the same cell through the student and teacher modules with a random 
dropout mask right before the output layer. Common perturbation techniques 
such as explicit transformations or randomness injections to original data might 
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alter the biological meaning. The dropout mask can be regarded as a minimal 
data augmentation without changing the original input33. Projected onto a unit 
hypersphere space23, the contrastive loss compares pairs of cell embeddings by 
pushing apart different cells within a batch while pulling together teacher–student 
views of the same cell as positive pairs. The distance is measured by the cosine 
similarity of L2-normalized embeddings using the dot product operation. To 
process multiomics data, simple element-wise summation of modal-specific 
attention output in the teacher module or dense output in the student module 
enables the generation of a unified cell view (Fig. 1b). Learned embeddings 
can then be fine-tuned for various downstream tasks, including automatic cell 
type classification, clustering, data integration for batch-effect correction, and 
query-to-reference mapping.

	1.	 For automatic cell type identification, Concerto implements task-agnostic 
pretraining followed by supervised fine-tuning using existing annotations. 
For the within-datasets (intra-dataset) prediction, we fine-tuned Concerto 
via an extra fully connected classification layer with a softmax operation over 
the dimensions of the predefined categories. For cross-datasets (inter-dataset) 
prediction, we conduct semi-supervised fine-tuning by adding a domain 
adaptation module.

	2.	 To group functionally similar cells into clusters, Concerto decouples cell 
representation learning and clustering into two stages, which are expected to 
be less sensitive to model initialization than one-step approaches.

	3.	 For de novo data integration, Concerto aims to learn batch-invariant embed-
dings across species, technologies, experimental conditions or sample status. 
These metadata are incorporated as model input to guide source-specific 
batch normalization70 within a training mini-batch. This simple configuration 
enables Concerto to extract a batch-invariance biological signal34 to remove 
unwanted confounding factors.

	4.	 A reference atlas is constructed for query-to-reference mapping. Query cell 
embeddings are simply inferred by passing them through the trained teacher 
network. In this case, users directly utilize reference model weights and 
contextualize query cells onto a stable reference space. Reference annotations 
can be easily transferred to query cells through an nearest-neighbour voting 
scheme to derive a fast interpretation. This task is distinct from supervised 
rigid annotation as in part 1, that is, the cell type labels are never used in the 
training process. On the other hand, users can also leverage reference weights 
as model initialization and implement unsupervised fine-tuning on query 
cells. Concerto can be continuously updated to construct a more comprehen-
sive atlas.

Filtering, preprocessing and normalization. For scRNA-seq dataset, we delete 
mitochondrial genes (ERCC, MT-, mt-), discard low-quality cells with fewer than 
600 genes and remove genes expressed in fewer than three cells. We use SCANPY 
(v.1.7.1) to normalize each cell count to 10,000 read counts before logarithmic 
transformation. For protein, original data are used except for missing modality 
inference.

HVG selection. Concerto supports operating on both all genes and selected HVGs 
by SCANPY4 (1.7.1). For the all-genes scenario, the same number of genes is used 
within a batch, whereas for the HVG scenario, only selected HVGs are used to 
generate the index and value.

Homologue alignment. In the HP → MP transfer task, orthologous genes in the 
Mouse Genome Informatics database are used71.

Input encoding scheme. TensorFlow Record (TF-record) file is used to encode the 
normalized gene-count matrix. TF-record is a binary file containing sequences of 
serialized byte strings for the sharding file in TensorFlow. Concerto encapsulates 
‘gene index’ and ‘count value’ into the TF-record file. The teacher network accepts 
both the gene index and count value, whereas the student network reads only the 
count value file.

Teacher network. The teacher network accepts Xindices ∈ R
G and Xcounts ∈ R

G, 
where G denotes the number of genes. Xindices represents gene indices, where 
indices refer to the gene identity defined by a dictionary comprising all genes 
of a certain species. Each gene within a cell is represented by i, where i ∈ R

G. 
Xcounts represents the value of gene counts. Embedding denotes a neural network 
with only one fully connected layer to transform a sequence of a cell’s molecular 
input to learned embedding. First, xindices is embedded into a d-dimensional 
vector space emb, embi ∈ R

d(1), where d is set to 128 as the default. Xindices is a 
matrix with N*G dimension while xindices is a vector. Xindices is the collection of all 
xindices. The cross product of emb and xcounts outputs the weighted hidden vector, 
hiddeni,hiddeni ∈ R

d, see equation (2)

emb = Embedding (xindices) (1)

hiddeni = emb × xcounts (2)

Concerto then uses attention mechanism31 to aggregate gene embeddings; 
hiddeni is first fed into an multilayer perceptron with one hidden layer, and a 
nonlinear tanh transformation is activated to obtain a hidden vector, hiddeni 
(equation (3)). A cellular context vector u ∈ R

d then applies the dot product to 
hiddeni, using the softmax operation to obtain attention weights, attentioni ∈ R

G 
(equation (4)); aggregation is then implemented on all of the genes’ vectors 
hiddeni through weighted summation by attention weights, attentioni, to obtain 
aggregated vectors, hidden (equation (5)).

hiddeni = tanh(hiddeni) (3)

attentioni = softmax(hiddeni · u) (4)

hidden =
∑

i
(attentioni × hiddeni) (5)

The attention layer output is fed into a batch normalization layer followed by a 
dropout layer, and then a dense layer with ReLU activation leads to the final output 
of the teacher network, Zteacher ∈ R

d (equation (6))

zteacher = BatchNormalization(hidden) (6)

zteacher = Dropout(zteacher) (7)

zteacher = ReLU(zteacher) (8)

Student network. The student network accepts only Xcounts ∈ R
G, then going 

through a batch normalization layer followed by a dropout layer and then a dense 
layer with ReLU activation, leading to the final output of the student network, 
Zstudent ∈ R

d.

hidden = Dense(xcounts) (9)

hidden = BatchNormalization(hidden) (10)

hidden = Dropout(hidden) (11)

zstudent = ReLU(hidden) (12)

Data augmentation with a dropout layer. The dropout layer operation is used as a 
model-level data augmentation strategy33. By randomly masking neural units with 
a certain probability (parameters, dropout rate = 0.2) before the final dense layer, 
augmented embeddings of the same cell are generated for contrastive learning.

Contrastive loss (NT-Xent loss). Contrastive learning is conducted on a unit 
hypersphere space and explicitly compares pairs of cell embeddings of d dimension 
(where d = 128 by default). Through contrastive learning, for each cell, Concerto 
pushes apart all other cells and their augmentations within a batch while pulling 
together teacher–student views of the same cell as positive pairs. As we use an 
asymmetric teacher–student network, we obtain two different embeddings, zteacher 
and zstudent.

The distance of the two given embeddings is defined by equations (13) and 
(14). Assume a positive pair as cellj (which embeds zteacherj ∈ Zteacher) and cellj+ 
(which embeds zstudentj+ ∈ Zstudent), where τ is the adjustable temperature 
coefficient, which can be used to scale the degree of pushing apart negative 
samples. NT-Xent loss represents the normalized temperature-scaled cross-entropy 
loss, as formalized by equation (15), where j and j+ is a pair of positive samples. 
We randomly sample a mini-batch of N cells and compute NT-Xent loss on pairs 
of augmented examples derived from the mini-batch, resulting in 2N data points. 
Given a positive pair, the other 2(N − 1)-augmented examples within a mini-batch 
are treated as negative examples.

sα,β = zTteacherα
zstudentβ /τ ∥ zteacherα ∥ ∥ zstudentβ ∥ (13)

s+α,β = zTstudentα
zteacherβ /τ ∥ zstudentα ∥∥ zteacherβ ∥ (14)

L =
1
2N

N∑

k=1
[ℓ
(
j, j+

)
+ ℓ(j+, j)] (15)

where ℓ
(
j, j+

)
 is defined as:

ℓ

(
j, j+

)
= −log

exp
(
sj,j+

)

∑2N
k=1 I[k̸=j][exp

(
sk,j

)
+ exp

(
sk,j+

)
]
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where ℓ
(
j+, j

)
 is defined as:

ℓ

(
j+, j

)
= −log

exp
(
s+
j+ ,j

)

∑2N
k=1 I[k̸=j+][exp

(
s+
k,j+

)
+ exp

(
s+k,j

)
]

Multimodal integration. Concerto supports convenient multimodal integration. 
To process multiomics datasets, simple element-wise summation of modal-specific 
attention output in the teacher module or dense output in the student module 
enables Concerto to generate unified cell embeddings. In the case of two modalities 
(RNA and protein), we illustrate the respective operations as per equations (16) 
and (17), where the term Add denotes add along the dimension of embedding.

zmulti
student = Add

(
zRNAstudent, z

protein
student

)
zmulti
student ∈ R

d (16)

zmulti
teacher = Add(zRNAteacher, z

protein
teacher) zmulti

teacher ∈ R
d (17)

Pretraining procedure. We input cells x ∈ Xindices, Xcounts into the asymmetric 
teacher–student network to obtain Zteacher and Zstudent and then project them onto 
the unit hypersphere space. We use the contractive loss to explicitly compare pairs 
of cell embeddings and maximize the agreement between teacher–student views of 
the same cell so that the contrastively learned embeddings are expected to capture 
high-level features to discriminate different cells for downstream usage. We denote 
fpre-training as the pretraining procedure, which is also shown in Fig. 1a.

Supervised fine-tuning. For rigid annotation, Concerto leverages contrastive 
learning as a task-agnostic pretraining procedure followed by supervised 
fine-tuning using manually annotated labels. For within-datasets prediction 
(intra-dataset), we fine-tune Concerto via an extra fully connected classification 
layer with a softmax operation over the dimensions of the predefined cell type 
categories. The loss function is the classical supervised cross-entropy loss 
(equation (18)). For the cross-dataset (inter-dataset) prediction, we conduct 
semi-supervised fine-tuning by adding a domain adaptation module to derive 
cross-tissue or cross-species predictions. We also validate the inferior performance 
of end-to-end training (Concerto-E2E) by discarding the contrastive loss without 
a self-supervised training procedure while retaining only the model backbone to 
conduct fully supervised training.

minJ (θ) = Ex∼PL(x)
[
CE(pθ

(
fpre-training(x)

)
∥ x∗)

]
(18)

where x ∈ Xindices, Xcounts represents the input of Concerto and CE represents 
the cross-entropy method. We first conduct pretraining on x and then fine-tune 
Concerto via a fully connected layer with a softmax operation and output pθ (x); 
pθ (x) denotes the predicted classification probability; θ represents the parameters 
of the final classification layer; x* represents the true labels of the input data; and 
PL (x) represents the distribution of the input data. Furthermore, the confidence 
score of x is calculated by the min–max-scaled pθ

(
fpre-training(x)

)
.

Domain adaptation module. For inter-dataset annotation, we add a domain 
adaptation module43 to adapt the target labels to the source distribution. In 
addition to the supervised cross-entropy loss, we add an unsupervised consistency 
training loss (equation (19)).

MinJ (θ) = λEy∼PU(y)Eŷ∼PU(̂y)[CE(pθ̃(y) ∥ pθ(ŷ))] (19)

where y ∈ Xindices, Xcounts denotes unlabelled target data; pθ (y) denotes the 
predicted classification probability; θ̃ is a fixed copy of the current parameter θ, 
indicating that the gradient is not propagated through θ̃; ŷ represents augmented 
(via the dropout layer) unlabelled target data; and PU (y) denotes target data 
distribution. We set λ to 1 to balance loss term from equations (18) and (19) to train 
Concerto in a semi-supervised setting for inter-dataset prediction. This module 
combines consistency loss with cross-entropy loss to align two data distributions 
from the source domain and target domain, which enables dealing with potential 
batch effects encountered in inter-dataset rigid annotation tasks.

Source-aware batch normalization for data integration. For data integration, 
Concerto aims to learn batch-invariance embeddings to integrate heterogeneous 
data sources and overcome batch effects34. Metadata of source information are used 
as source identities. Batch normalization is only conducted for cells from the same 
source within a training mini-batch.

Nearest-neighbour voting classifier. To transfer annotations from reference 
cells to query cells after obtaining all cell embeddings, Concerto uses a simple 
k-nearest-neighbour voting classifier to annotate query cells. The nearest-neigbour 
voting classifier assigns the k-nearest-neighbours for query cells y, where 
y ∈ Xindices, Xcounts. For query cells y, we extracted their k-nearest-neighbours 

(Ny). In Dy,Ny (equation (20)), cosine similarity is used to calculate the distance 
between y and their neighbours n in the latent space (cell embeddings). The 
normalization of Dy,Ny is implemented as in equation (21) to calculate p (x∗, y), 
which is the probability of assigning reference annotations (x*) to y, where x∗(i) is 
the annotation label of the ith neighbour and y′ is the transferred annotation with 
the maximum probability (equation (22)). We set k to 5 for most cases, while k 
can be tuned accordingly. Furthermore, the confidence score of y is calculated by 
p (x∗, y).

Dy,Ny = cosine(y, n) (20)

p
(
x∗, y

)
=

∑
iϵNy

I(x∗(i) = x∗)Dy,Ny∑
iϵNy

Dy,Ny

(21)

y′ = argmax(p
(
x∗, y

)
) (22)

UMAP visualization. Cell embeddings are visualized by UMAP using scanpy.
pl.umap from SCANPY (v.1.7.1). The number of neighbours (n_neighbours) is 
set to 15; use_rep = X; and metric = euclidean. The other functions use the default 
parameters.

Hyperparameters. The learning rate in contrastive pretraining is set to varied 
values from 1 × 10–4 to 1 × 10–6 using Adam optimizer training for three epochs. For 
fine-tuning, the learning rate is set to 1 × 10–3 using Adam optimizer training for 
one epoch. The temperature coefficient in NT-Xent loss is set to 0.1, the mini-batch 
size is set to 32, and d = 128. Ablation studies are detailed in Supplementary Notes.

Attention weight extraction. Attention weights are calculated by the following 
steps: first, the cell’s gene embeddings hiddeni=1,2,…,G (1 × G × d) are fed into an 
multilayer perceptron with one hidden layer with nonlinear tanh transformation 
to obtain hidden vectors hiddeni=1,2,…,G (1 × G × d); then, a cellular context vector 
u (d × 1) applies a dot product to hiddeni=1,2,…,G using a softmax operation to 
obtain attention weights attentioni (1 × G). All calculations are conducted in a 
128-dimensional space.

Calculation of alignment and uniformity. The alignment (equation (23)) is 
simply defined as the expected distance between positive pairs (x, x+). First we 
conduct pretraining on input x and obtain the embedding z(x)teacher. To find x+, 
which is the positive pair of x, we use k-nearest neighbours to extract the nearest 
neighbours of x (Nx), and we assign k = 5 nearest neighbours as x+.

ℓalign
Δ
= E(x,x+)∼ppos

∥∥∥z(−)

teacher − z(x
+)

teacher

∥∥∥
2

(23)

where ppos is a distribution of positive pairs.
The uniformity (equation (24)) is defined as the logarithm of the average 

pairwise Gaussian potential.

ℓuniform
Δ
= logE(xα ,xβ)∼pdata e

−2
∥

∥

∥

∥

z
(xα−)

teacher −z(xβ)
teacher

∥

∥

∥

∥

2

(α ̸= β) (24)

where xα and xβ denote different data, and pdata denotes the data distribution.

Missing modality inference. We first split the PBMC160k dataset into eight 
donors (where each donor represents one replicate). For each donor, we 
randomly sample 80% of the cells to build a multimodal reference and obtain 
128-dimensional embedding for each reference cell. We then calculate query 
embeddings using only the RNA modality as input for the remaining 20% hold-out 
cells of each donor. It is noted that no fine-tuning process is needed. Based on the 
inferred query embeddings, we compute the expression of 224 surface proteins 
for query cells by averaging normalized protein expression across the cell’s five 
nearest neighbours in the reference, whose distance is defined as cosine similarity 
in 128-dimensional embedding space.

NOTA evaluation. We evaluate whether Concerto can support NOTA cells as a 
rejection option if the test set contains certain cell subpopulations not existing 
in training samples. These cells cannot be accurately predicted and should be 
assigned as NOTA when the classifier is not confident enough to annotate them 
with predefined labels. We download a multimodal PBMC CITE-seq atlas of 
161,764 cells (PBMC160k) with three levels of annotations. Only RNA counts 
are used as input features in this rejection study. For different levels, we remove 
different granularities of T cells from the training set to form progressively 
increasing difficulties. First, all T cells are removed; then only CD4 T cells are 
removed; and then only CD4 Mem T cells are removed. Twenty percent of the 
training set is randomly selected as the validation set. The test set only contains 
removed cell types at each level (detailed mask setting in Supplementary Table 3). 
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A qualified classifier should predict accurate labels for cells in the validation set 
while assigning NOTA to cells from the test set.

Robustness analysis. We use the R package Splatter41 to simulate scRNA-seq data 
to mimic various biological scenarios under different dropout rates (defined as 
the proportion of expressed genes being knocked out) and different expression 
signal strengths (defined as various fold change levels of differential genes). 
For differential expression (DE) simulation, the following parameters are used 
in the splatSimulate() R function: groupCells = 5, nGenes = 2,500, dropout.
present = TRUE, dropout.shape = 1, dropout.mid = 1, and de.scale = 0.15, 0.2, 
0.25, 0.3, respectively. For dropout rate simulation, the following parameters are 
used in the splatSimulate() R function: groupCells = 5, nGenes = 2,500, dropout.
present = TRUE, dropout.shape = 1, dropout.mid = −0.5, 0, 0.5, 1, respectively, and 
de.scale = 0.2.

Scalability analysis. For scalability analysis, simulated datasets are generated using 
the scsim Python package72, which is based on the Splatter statistical framework, 
while it performs more efficiently to generate large-scale simulated data. The 
following parameters are used in the scsim() Python function: ngenes = 25,000; 
ncells = 50,000, 100,000, 500,000, 1,000,000, 2,000,000 and 10,000,000; ngroups = 5; 
diffexpprob = 0.025.

Exhausted T annotation in COVID-19 analysis. As exhausted CD8 T cells do not 
exist in the COVID-19 reference, we calculate the exhaustion signature score using 
an exhaustion gene set (PDCD1, TIGIT, LAG3, HAVCR2, CTLA4) by summing 
their expression values (scaled to 0 to 1). CD8 T cells with exhaustion scores of 
greater than 0.7 are annotated as exhausted T cells.

Identification of COVID-19 reference subpopulations. Ren et al.62 and Zhu 
et al.63 previously characterized cell type specific subpopulations and detailed the 
function of each subgroup. On the basis of collecting markers from their works, 
subtypes of CD8 T cells, CD4 T cells, NK cells and monocytes are identified 
following the functional description in their original papers.

Analytic metrics. F1-score and ACC. The F1-score and ACC are metrics for 
classification performance calculated by the Python functions sklearn.metrics.
f1_score() and sklearn.metrics.accuracy_score() from the scikit-learn library, 
respectively.

ARI and NMI. The ARI and NMI are applied to assess clustering performance 
calculated by the Python functions adjusted_rand_score() and normalized_
mutual_info_score() from the scikit-learn library, respectively.

ASW. The ASW is calculated using the Python function sklearn.metrics.cluster.
silhouette_samples() from the scikit-learn library as an evaluation metric for 
biological meaning reservation.

kBET. kBET61 is a metric for batch-effect correction, indicating how well mixed 
batches from randomly sampled nearest-neighbour cells are based on local batch 
label distribution consistent with global batch label distribution. Pegasus is adopted 
to calculate kBET, and k is set to 15.

Clustering. Python function sklearn.cluster. KMeans() is used to perform k-means 
clustering. To perform the Leiden and Louvain algorithm, we apply the R function 
FindClusters() from the R package Seurat v.3, and the parameter ‘algorithm’ is 
set to 4 and 1. We also apply the Python functions scanpy.tl.leiden and scanpytl.
louvain from SCANPY in SCANPY-relevant clustering analysis.

Other benchmarking tools. Descriptions of implementing other benchmarking 
tools can be found in the Supplementary Notes.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the scRNA-seq and CITE-seq datasets in this study were published 
previously2,19,35,42,54–58,61–64; their availabilities, alongside downloadable links, are 
described in Supplementary Table 1. We have uploaded four pre-built references 
with corresponding model weights learned by Concerto to facilitate community 
usage (see Supplementary Table 7). Source Data are provided with this paper73.

Code availability
Concerto is written in Python using the TensorFlow library. The source code 
with reproducibility demo is available on Github at https://github.com/melobio/
Concerto-reproducibility under the GPLv3 license (https://doi.org/10.6084/
m9.figshare.19351745).
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Extended Data Fig. 1 | (a) Clustering performance benchmark measured by mean normalization mutual information (NMI) and Silhouette score on 
PBMC45K dataset (10X-v2, v3 only, n = 11,377 cells) across 5 different resolutions (resolution = 0.1,0.2,0.3,0.4,0.6 for Louvain or Leiden, k = 7,8,9,10,11 for 
scDeepCluster). (b) Benchmarking Concerto’s clustering performance against BREMSC, jointDIMMSC, CiteFuse, totalVI and Seurat (WNN) measured by 
mean NMI and ARI on PBMC160k dataset (RNA and Protein) across 5 different resolutions. Leiden clustering for Concerto and totalVI, spectral clustering 
as default for CiteFuse and smart local moving (SLM) algorithm for Seurat WNN clustering. CiteFuse’s scores are mean scores of 8 samples, since “out 
of memory” error (more than 500 G) occurs when all 160 k cells are used as input. (c) Over-correction analysis on simulated dataset via removing all cell 
type-2-cells except in Batch1. Cell type-2-cells are coloured in blue and circled in red on UMAP plots.
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