Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural Error Mitigation of Near-Term Quantum Simulations

A preprint version of the article is available at arXiv.

Abstract

Near-term quantum computers provide a promising platform for finding the ground states of quantum systems, which is an essential task in physics, chemistry and materials science. However, near-term approaches are constrained by the effects of noise, as well as the limited resources of near-term quantum hardware. We introduce neural error mitigation, which uses neural networks to improve estimates of ground states and ground-state observables obtained using near-term quantum simulations. To demonstrate our method’s broad applicability, we employ neural error mitigation to find the ground states of the H2 and LiH molecular Hamiltonians, as well as the lattice Schwinger model, prepared via the variational quantum eigensolver. Our results show that neural error mitigation improves numerical and experimental variational quantum eigensolver computations to yield low energy errors, high fidelities and accurate estimations of more complex observables such as order parameters and entanglement entropy without requiring additional quantum resources. Furthermore, neural error mitigation is agnostic with respect to the quantum state preparation algorithm used, the quantum hardware it is implemented on and the particular noise channel affecting the experiment, contributing to its versatility as a tool for quantum simulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NEM procedure.
Fig. 2: Experimental and numerical NEM results for molecular Hamiltonians.
Fig. 3: Performance of NEM applied to ground states of the lattice Schwinger model.

Similar content being viewed by others

Data availability

The experimental and numerical quantum simulation measurement data shown in Fig. 2 for H2 and LiH, as well as the measurement data used in Fig. 3a–d for the eight-site lattice Schwinger model, are available at https://github.com/1QB-Information-Technologies/NEM (see Zenodo repository50).

Code availability

The numerical implementation of the NEM and the code used to numerically implement the quantum simulations studied here are available at https://github.com/1QB-Information-Technologies/NEM (see Zenodo repository50).

References

  1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  2. Bennett, C. H. Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  3. Benioff, P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. Manin, Y. Computable and Noncomputable (in Russian) (Sovetskoye Radio, 1980).

    Google Scholar 

  5. Preskill, J. Simulating quantum field theory with a quantum computer. In Proc. 36th Annual International Symposium on Lattice Field Theory (LATTICE2018) 334 (East Lansing, MI, USA, 2018).

  6. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article  Google Scholar 

  7. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    Article  MathSciNet  Google Scholar 

  8. Bauer, B., Bravyi, S., Motta, M. & Kin-Lic Chan, G. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).

    Article  Google Scholar 

  9. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  Google Scholar 

  10. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article  MathSciNet  Google Scholar 

  11. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article  Google Scholar 

  12. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  Google Scholar 

  13. Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn 90, 032001 (2021).

    Article  Google Scholar 

  14. Roffe, J. Quantum error correction: an introductory guide. Contemp. Phys. 60, 226–245 (2019).

    Article  Google Scholar 

  15. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Progr. Phys. 81, 074001 (2018).

    Article  MathSciNet  Google Scholar 

  16. Carrasquilla, J. Machine learning for quantum matter. Adv. Phys. X 5, 1797528 (2020).

    Google Scholar 

  17. Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  18. Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).

  19. Vaswani, A. et al. Attention is all you need. In Proc. 31st Conference on Neural Information Processing Systems (NIPS 2017) (Long Beach, CA, USA, 2017).

  20. Cai, Z. Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. npj Quantum Inf. 7, 80 (2021).

    Article  Google Scholar 

  21. Torlai, G. et al. Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett. 123, 230504 (2019).

    Article  Google Scholar 

  22. Song, C. et al. Quantum computation with universal error mitigation on a superconducting quantum processor. Sci. Adv. 5, eaaw5686 (2019).

    Article  Google Scholar 

  23. Sun, J. et al. Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Phys. Rev. Appl. 15, 034026 (2021).

    Article  Google Scholar 

  24. Torlai, G., Mazzola, G., Carleo, G. & Mezzacapo, A. Precise measurement of quantum observables with neural-network estimators. Phys. Rev. Res. 2, 022060 (2020).

    Article  Google Scholar 

  25. Assaraf, R. & Caffarel, M. Zero-variance principle for Monte Carlo algorithms. Phys. Rev. Lett. 83, 4682 (1999).

    Article  Google Scholar 

  26. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  Google Scholar 

  27. Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).

    Article  Google Scholar 

  28. Klco, N. et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018).

    Article  Google Scholar 

  29. Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    Article  Google Scholar 

  30. Borzenkova, O. V. et al. Variational simulation of Schwinger's Hamiltonian with polarization qubits. Appl. Phys. Lett. 118, 144002 (2021).

    Article  Google Scholar 

  31. Brydges, T. et al. Probing Renyi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    Article  Google Scholar 

  32. Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    Article  Google Scholar 

  33. Huembeli, P. & Dauphin, A. Characterizing the loss landscape of variational quantum circuits. Quantum Sci. Technol. 6, 025011 (2021).

    Article  Google Scholar 

  34. Park, C.-Y. & Kastoryano, M. J. Geometry of learning neural quantum states. Phys. Rev. Res. 2, 023232 (2020).

    Article  Google Scholar 

  35. Bukov, M., Schmitt, M. & Dupont, M. Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape. SciPost Phys. 10, 147 (2021).

    Article  Google Scholar 

  36. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neur. Comput. 9, 1735–1780 (1997).

    Article  Google Scholar 

  37. Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G. & Carrasquilla, J. Recurrent neural-network wavefunctions. Phys. Rev. Res. 2, 023358 (2020).

    Article  Google Scholar 

  38. Sharir, O., Levine, Y., Wies, N., Carleo, G. & Shashua, A. Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. 124, 020503 (2020).

    Article  Google Scholar 

  39. Carrasquilla, J. et al. Probabilistic simulation of quantum circuits using a deep-learning architecture. Phys. Rev. A 104, 032610 (2021).

    Article  MathSciNet  Google Scholar 

  40. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  41. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  42. Choo, K., Mezzacapo, A. & Carleo, G. Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020).

    Article  Google Scholar 

  43. Otis, L. & Neuscamman, E. Complementary first and second derivative methods for ansatz optimization in variational Monte Carlo. Phys. Chem. Chem. Phys. 21, 14491–14510 (2019).

    Article  Google Scholar 

  44. Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Ann. Phys. 298, 210–226 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  45. Seeley, J. T., Richard, M. J. & Love, P. J. The Bravyi–Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137, 224109 (2012).

    Article  Google Scholar 

  46. Bravyi, S., Gambetta, J. M., Mezzacapo, A. & Temme, K. Tapering off qubits to simulate fermionic Hamiltonians. Preprint at https://arxiv.org/abs/1701.08213 (2017).

  47. Qiskit Development Team. Qiskit: An Open Source Framework for Quantum Computation, ver. 0.23.0. https://qiskit.org (IBM, 2019).

  48. Spall, J. C. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34, 817–823 (1998).

    Article  Google Scholar 

  49. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  Google Scholar 

  50. Bennewitz, E. R., Hopfmueller, F., Kulchytskyy, B., Carrasquilla, J. & Ronagh, P. 1QB-Information-Technologies/NEM: 1QB-Information-Technologies/Neural Error Mitigation. Zenodo https://doi.org/10.5281/zenodo.6466405 (2022).

Download references

Acknowledgements

E.R.B., F.H., B.K. and P.R. thank 1QBit for financial support. During part of this work, E.R.B. and F.H. were students at the Perimeter Institute and the University of Waterloo and received funding through Mitacs, and F.H. was supported through a Vanier Canada Graduate Scholarship. Research at the Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Colleges and Universities. E.R.B. was also supported by a scholarship through the Perimeter Scholars International programme. P.R. thanks M. Lazaridis and O. Lazaridis and Innovation, Science and Economic Development Canada for financial support. J.C. acknowledges support from the Natural Sciences and Engineering Research Council, a Canada Research Chair, the Shared Hierarchical Academic Research Computing Network, Compute Canada, a Google Quantum Research Award and the Canadian Institute for Advanced Research (CIFAR) AI chair programme. Resources used by J.C. in preparing this research were provided, in part, by the Province of Ontario, the Government of Canada through CIFAR and companies sponsoring the Vector Institute (www.vectorinstitute.ai/#partners). P.R. thanks C. Muschik for useful conversations. We thank M. Bucyk for carefully reviewing and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.R.B. and F.H. developed the codebase for all studies, performed numerical experiments and analysed the results. E.R.B. performed experiments using the IBM quantum processor. E.R.B. and F.H. focused on the quantum chemistry and the lattice Schwinger model case studies, respectively. All authors contributed to ideation and dissemination. J.C. and P.R. contributed to the theoretical foundations and design of the method.

Corresponding author

Correspondence to Pooya Ronagh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Alba Cervera-Lierta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 VQE ansatz circuits for the lattice Schwinger model.

a, Variational quantum circuit used to prepare the approximate ground state of the lattice Schwinger model, using VQE simulated classically. The input state \(|{\Psi}_{0}\rangle\) is \(|01\cdots 01\rangle\) (\(|10\cdots 10\rangle\)) for m ≥ −0.7 (m < −0.7). b, For the results shown in Fig. 3e,f, the entangling layers of (a) are replaced with \({{{{\mathcal{O}}}}}_{N}\) for N sites. The layers of single-qubit gates are left unchanged.

Supplementary information

Supplementary Information

Supplementary Sections 1–8, Figs. 1–7 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennewitz, E.R., Hopfmueller, F., Kulchytskyy, B. et al. Neural Error Mitigation of Near-Term Quantum Simulations. Nat Mach Intell 4, 618–624 (2022). https://doi.org/10.1038/s42256-022-00509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-022-00509-0

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics