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B-cell receptors (BCRs) recognize antigenic epitopes and con-
trol the activation and maturation of B cells1–5. B cells with 
mature BCRs differentiate into plasma cells that secrete anti-

bodies, which are the secreted forms of BCRs and carry out a vari-
ety of functions, such as neutralization of invading pathogens6,7. In 
addition to their key roles in infectious diseases and autoimmune 
diseases, recent studies have also discovered curious parts that 
tumour-infiltrating B lymphocytes play in all stages of cancers, 
potentially in a BCR/antibody-dependent manner8–14.

Due to the importance and the complexity of BCRs, profiling of 
the BCR repertoire has been the core interest of many studies. BCR 
sequencing enables the direct sequencing of BCRs of thousands  
of cells at one time. Following the sequencing of BCRs, BCRs with 
the same variable (V) and joining (J) gene segments and the same 
complementarity-determining region 3 (CDR3) lengths are some-
times grouped as being clonally related15. Moreover, the phylo
genetic relationships of the BCRs are usually derived using metrics 
such as Levenshtein distance16–18. Many studies employ certain 
diversity metrics to characterize the clonal richness of BCRs19–21. 
However, a fundamental challenge exists for all the aforementioned 
approaches—all conclusions are drawn solely on the basis of inter-
rogating the BCR sequences, without knowing the functional rele
vance of the BCRs/antibodies.

To address this challenge, we need to investigate the coupling 
between the BCR repertoire and the transcriptomic status of the  
B cells, which could reveal the true functional implication of the  
BCR repertoire under various biomedical contexts. Several recently  

developed single-cell RNA-sequencing (scRNA-seq) technologies 
provide the necessary data to answer this question. Among them, 
the 10x Genomics Chromium platform, which directly amplifies the 
BCRs while capturing the expression information of the other genes 
at the same time, is currently the dominant technique. However, until 
now, most studies generating such data have simply analysed these two 
modalities of data using separate and ad hoc methods. Critical oppor-
tunities from an integrative analysis of scBCR-seq and scRNA-seq 
data to discover interesting biological insights have been missed.

In this work, we develop a mathematical model, named Benisse  
(Fig. 1a), to integrate the high-dimensional BCR and single-B-cell 
expression data. Benisse is based on a correlation effect that we 
observed between BCRs and B-cell gene expression. By validating and 
applying Benisse on 43,938 B cells from 13 scRNA-seq + scBCR-seq 
datasets, we showed that Benisse is capable of mapping the func-
tional relevance of the BCR repertoire in various biological con-
texts, at single-cell resolution and supported by empirical evidence 
from single-B-cell expression.

Results
A numeric embedding for BCRs of B cells based on deep con-
trastive learning. To build Benisse, we need to first mathematically 
describe the peptide sequences of the BCRs. To achieve this, we 
focused on the complementarity-determining region of the heavy 
chain (CDR3H) regions of BCRs and built a numeric embedding 
of BCR CDR3H sequences. We encoded the BCR sequences by the 
‘Atchley factors’22, representing each amino acid with five numeric 
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values. Next, we further reduced the dimension of this Atchley fac-
tor matrix into a short numeric vector through contrastive learn-
ing23. During this step, the contrastive learning model learns a 
20-dimensional embedding space where similar CDR3H peptide 
sequences are closer to each other, whereas the dissimilar ones are 
far apart (Extended Data Fig. 1).

We tested whether the CDR3H embedding is reflective of 
antigen specificity using the LIBRA-seq data24, which allows 
high-throughput mapping of antigen specificity of BCR sequences. 
A total of nine antigens were profiled in one setting, and the anti-
gen specificities of 2,321 BCRs against these nine antigens were 
obtained as a continuous variable for each antigen. We calculated 
the pairwise similarities between BCRs, in terms of their LIBRA-seq 
antigen specificity scores (Euclidean distances between LIBRA-seq 
scores of all antigens), and also of their numeric embeddings of 
BCRs (also Euclidean distances). We showed that the correlations 
between BCR sequence embedding similarities and BCR antigen 
specificity similarities reached 0.616 (Fig. 1b), suggesting that our 
embedding can indeed reasonably reflect the key features of BCR 
CDR3Hs. We also performed this analysis with each individual 
antigen, and observed an overall positive but reduced correlation 
for each (Fig. 1c and Extended Data Fig. 2). As a benchmark, we 
performed the same analyses with the work of Lindenbaum et al.25 
and bcRep26, in both of which we can also calculate similarity scores 
between different BCRs. In Fig. 1d, we show that our BCR CDR3H 
embeddings achieved a higher association with the LIBRA-seq 
scores compared with Lindenbaum et al. and bcRep.

We also accessed the BCR-sequencing data from Liao et al.27, 
who performed BCR sequencing for a single lineage of antibodies 
derived against one human immunodeficiency virus (HIV) epitope,  
collected at a series of times (weeks after HIV infection). We 
generated a pairwise Euclidean distance matrix between the BCR 
embeddings. A phylogenetic tree of BCRs was constructed from 
this distance matrix28, rooted at the unmutated common ancestor 
(UCA) of these BCRs. We observed that BCRs from earlier times 
are closer to the UCA on the tree (Extended Data Fig. 3a). The  
phylogenetic tree then branched out, and the leaves in the only 
major branch contain many BCRs from later times. In particular,  
the group of the best antigen-targeting antibodies of week 144, 
CH103, CH104, CH105 and CH106 (sharing the same CDR3H), 
were found at almost the farthest leaf of the tree. The waterfall plot 
with BCRs ordered by the Euclidean distances between the UCA 
BCR and all the other BCRs (Extended Data Fig. 3b) also con-
firms that BCRs from earlier times are closer to the UCA BCR in 
general. Taken together, these analyses validate our BCR embed-
ding approach, and reveal an interesting linear evolution pattern of 
BCRs/antibodies.

Benisse integrates BCR and expression of single B cells. With the 
BCR embeddings, we then sought to investigate whether the BCRs 
are indeed correlated with the expression of the B cells. We inves-
tigated a total of 13 datasets that were generated from scRNA-seq 
with paired scBCR-seq (Extended Data Table 1). In each dataset, 

we embedded the BCRs as described above, and then we calculated 
the pairwise distances between BCR clonotypes using their BCR 
distances and also their gene expression distances. Interestingly, we 
observed a positive correlation between these two distances, sug-
gesting that the BCR clonotypes with similar BCR sequences have 
similar gene expression profiles (Supplementary Note 2). Across all 
13 datasets, we observed a positive correlation with an average of 
0.32. Importantly, in this analysis, we removed pairs of BCRs that 
are the same (BCR distance = 0). We also separately examined the 
expression distances between pairs of B cells with BCRs that are the 
same (in the same clonotype) or differ. We observed that B cells in 
the same clonotype have much more similar expressions than those 
from different clonotypes (Supplementary Note 2).

Motivated by this observation, we built the core Benisse model 
(Supplementary Note 1), to enable a more refined interrogation of 
the relationships between BCRs and B-cell expression. The model 
searches for a latent space of the BCRs, supervised by the empirical 
evidence of their functional relevance provided through the B-cell 
gene expression. Many BCRs in one sample are usually clonally 
related, representing BCRs that were generated from one parental  
BCR due to somatic hypermutations15,29. Therefore, we need to 
detect sparse graphs of BCRs under the new latent space so that 
closely related BCRs will be connected into what we term ‘BCR net-
works’ (Fig. 1a). Mathematically, Benisse employs a sparse graph 
learning model to handle these requirements, where the BCRs are 
to be embedded in a low-dimensional manifold that may be reason-
ably expressed by a graph. Each vertex is a B-cell clonotype marked 
by a unique BCR (same V/J gene and same CDR3H) and the weight 
of each edge represents the similarity between two BCRs. This 
latent space is learned via the supervision of gene expression, and 
we require that BCRs closer to each other in the latent space should 
have similar BCR sequences and represent B cells with similar tran-
scriptomic features. We also incorporated a prior requirement that 
an edge exists only when two BCRs share the same V gene and the 
same J gene. The resulting Benisse graph is comprised of many 
small BCR networks, with each network containing BCRs with the 
same V/J genes and similar CDR3Hs in the latent space.

In the scRNA-seq data that we collected, we calculated the dis-
tances in the latent space between the BCR clonotypes that are con-
nected in the BCR networks, that are not connected but share V/J 
genes or that do not share the same V/J genes. In Fig. 1e, we show 
that the BCR distances in the latent space are the smallest for the 
BCR clonotypes that are connected within the same networks by 
Benisse (the first group). This is consistent with our expectation, 
as Benisse is supposed to group B-cell clonotypes with the most 
similar BCRs into individual BCR networks. In Fig. 1f, we also  
calculate the correlation between the expression-wise distances and 
BCR-wise distances of the BCR clonotypes that are connected in the 
same networks. We found that their correlation indeed increased in 
the Benisse latent space compared with the original BCR numeric 
embedding space. These results suggest that Benisse successfully  
achieved the maximal sharing of information between B-cell expres-
sion and the BCRs of B cells.

Fig. 1 | Schematic overview of the Benisse model. a, Schematic diagram showing how Benisse digests the BCR sequence data and the single-B-cell expression 
data to detect an embedding space of the BCR clonotypes that are supervised by the transcriptomic information, and also to detect a graph of BCR networks 
that connect BCR clonotypes (from a crude BCR graph that connects BCRs with the same V and J genes). Uniform manifold approximation and projection 
(UMAP) was performed for dimension reduction of the single-cell expression data. The BCR encoder outputs a 20-dimensional embedding of the BCRs. Thus 
they are labelled differently (‘UMAP 1’ versus ‘Dim 1’). B cell expression and BCRs of the same B cells, marked by the same colour (e.g., red, blue, yellow), 
are merged into one single latent space embedding point. b,c, Spearman correlation between BCR distances and distances between LIBRA-seq scores of 
all antigens (b) and the HA_indo antigen (c) for all pairs of BCR clonotypes. d, Benchmark analyses showing the correlations between BCRs and LIBRA-seq 
scores, for BCR embeddings derived from our contrastive learning model, from BcRep and from Lindenbaum et al.25 e, The distances in latent space between 
the BCR clonotypes that are connected in the BCR networks built by Benisse (left), that are not connected but share V/J genes (middle) and that do not 
share V/J genes (right). Results for all datasets are averaged. f, The correlations between expression and BCR of the B cells of the same networks, with BCR 
distances calculated from the Benisse latent space (‘cor(a, b)’, left-hand box of the boxplot) or the original BCR embedding space (‘cor(a, c)’, right-hand box).
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Benisse reveals a gradient of B-cell activation along BCR trajec
tories. During somatic hypermutations in the germinal centres 
(GCs), BCRs of B cells keep mutating until one or more BCRs with 

high affinity to the target antigens have been created, supposedly 
creating a family of continuously evolving BCRs with different 
antigen-targeting efficiencies (Fig. 2a). In the Benisse analyses, such 
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Fig. 2 | Benisse reveals a gradient of B-cell activation along BCR trajectories. a, A schematic showing the proposed model of a linear and continuous 
pattern of BCR evolution. A phylogenetic tree-like pattern of BCR evolution is shown for one BCR network, where the BCRs are created through VDJ 
recombination and somatic hypermutation to become better and better at targeting the antigen. The x axis shows the direction of BCR evolution. The  
y axis shows the B-cell activity levels of the BCR clonotypes on the tree. The coloured bars on the Y axis refer to the levels of B cell activation in successive 
stages of BCR maturation as a result of SHM (marked by different colours). The dotted circles denote the prime clonotypes assigned by our model. 
SHMs, somatic hypermutations. b, An example dataset showing how the phenotypes of the B cells vary as a function of the BCR distance from the prime 
clonotypes (x axis). The y axis shows the expression level of the activation signature in the B cells. Clone sizes of the BCR clonotypes and class-switching 
status are also shown for each BCR clonotype. NSCLC, non-small-cell lung carcinoma. c, Boxplots showing the pseudotimes of the B cells in the BCR 
clonotypes that are grouped into groups 1, 2 and 3. Only BCR networks with at least three BCR clonotypes were included. B cells in group 1 have BCRs  
that are closest to those of the prime BCR clonotypes (and include prime BCR clonotypes themselves). Group 3 is most dissimilar from prime BCRs.  
d, Expression of the B-cell activation signature of the B cells belonging to groups 1, 2 and 3. e, GSEA plots of the pathways enriched in the genes that 
showed a monotonic increase or decrease of expression from the B cells of group 1 to group 3 BCR clonotypes. The COVID U41 dataset is shown as an 
example. f, The clonal sizes of the B cells belonging to groups 1, 2 and 3. g,h, The proportions of the IgD, M, G, A and E BCRs of all the B cells in the 10x 
melanoma dataset (g) or all datasets (h) in each of the three groups.
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networks of related BCRs are detected as a part of the algorithm. 
We calculated pseudotimes for the B cells using Monocle30, and we 
picked, in each BCR network, the BCR clonotypes that are most 
newly created according to pseudotimes. These recently generated 
BCR clonotypes probably represent the BCRs that are the ‘best’ in 
terms of antigen targeting, and therefore activation of B cells, within 
each of their networks (Fig. 2a). We term these BCR clonotypes the 
‘prime’ clonotypes of their respective networks.

To evaluate our hypothesized paradigm of BCR evolution, we 
calculated the similarity of each BCR to its network’s prime BCR, 
in terms of Euclidean distance in the latent space learned by Benisse 
(x axis of Fig. 2b). We divided BCR clonotypes of each BCR net-
work into three groups on the basis of this BCR distance. The first 
group of BCRs (including the prime BCR clonotypes themselves) 
has the largest similarity to the prime BCR clonotypes, and the 
third group of BCRs has the least similarity. We then investigated 
how the phenotypes of the B cells vary as a function of the distances 
from the prime clonotypes on the BCR trajectories. We first exam-
ined the pseudotimes of all the BCR clonotypes in each network,  
and observed that group 1 BCR clonotypes have the smallest  
pseudotimes, and more importantly that these three groups of  
BCR clonotypes formed a gradient with group 2 clonotypes having 
larger pseudotimes than group 1 clonotypes and group 3 clonotypes 
having larger pseudotimes than group 2 (Fig. 2c).

We also delineated specifically which part of the transcriptome is 
associated with the trajectories of the BCR networks, by examining 
a gene signature of B-cell activation (Methods). We again observed 
a gradient of B-cell activation among the three groups, with group 
1 BCR clonotypes’ B cells having the highest level of activation  
(Fig. 2d). On the other hand, we performed an unbiased search, 
using gene set enrichment analyses (GSEAs)31, for the pathways 
enriched in the genes that showed a monotonic increase or decrease 
of expression from group 1 to group 3 in each dataset (Fig. 2e).  
We observed strong enrichment of pathways relevant for B-cell 
activation (for example, ‘Naive_vs_Memory_Bcell_DN’). We made 
similar observations with all other datasets that we investigated 
(Extended Data Fig. 4). Concomitant with the variation in tran-
scriptomic phenotypes, group 1 BCR clonotypes also have larger 
clonal sizes than group 2 clonotypes, which in turn have larger 
clonal sizes than group 3 (Fig. 2f).

In the GCs, a process called class switching happens, which is 
independent of but related to BCR somatic hypermutations32–34. 
Class switching changes a B cell’s production of immunoglobulin 
from IgM and IgD to IgG, IgA and IgE during B-cell maturation. In 
Fig. 2g (the 10x melanoma dataset), we calculated the probability 
of class switching for the B cells belonging to each of groups 1–3. 
Interestingly, we observed that the group 1 BCRs have the lowest 
proportions of IgM/D and highest rate of class switching, followed by  
group 2 BCRs and then group 3 BCRs. We performed this analysis  
for all scRNA-seq datasets (Fig. 2h), and observed that group 1  
BCRs do indeed have the highest rates of class switching (t-test  

P value of IgD + M% = 0.0034 for group 1 versus group 2, 0.00035 
for 1 versus 3, 0.35 for 2 versus 3). Overall, we showed that Benisse is 
capable of defining functionally relevant trajectories of BCR evolu-
tion, which revealed how somatic hypermutations generate increas-
ingly ‘better’ BCRs that confer stronger activation and maturation 
signals to their B cells.

Benisse reveals tighter coupling of BCR and B-cell expression 
during COVID-19. To demonstrate the capability of Benisse to 
reveal novel biological insights, we deployed Benisse to analyse a 
set of single-B-cell RNA-sequencing datasets with matched BCR 
sequencing from COVID-19 patients35. These data consist of 16,066 
B cells from 11 patients and two healthy donors. We applied Benisse 
to the expression and BCR data of each patient’s B cells, constructed 
the BCR networks and detected the prime BCR clonotypes (Fig. 3a  
and Extended Data Fig. 5). We first validated that the detection 
of the BCR networks and the prime/non-prime BCR clonotypes 
is biologically meaningful, by leveraging the data of validated 
SARS-CoV-2 antibodies36 (N = 2,037). As we hypothesize that the 
prime BCRs are more likely to be antigen specific and will more 
strongly activate the B cells, we should expect the prime BCRs to be 
more likely to be the same as or at least very similar to these vali-
dated SARS-CoV-2 antibodies. Indeed, the prime BCRs are much 
more likely to be the same as one of the 2,037 validated antibodies 
or only differ by a small number of amino acids (from <2 to 5) from 
them, compared with the non-prime BCRs (Fig. 3b).

We next examined the topology of the BCR networks constructed 
by Benisse, which could reflect the activity of the somatic mutation 
events during BCR clonotype generation. For the diseased patients, 
the B cells were collected from one or more of the severe, recovery 
and cured phases of COVID-19 (definition in Methods, Fig. 3c). We 
counted the number of connections (degree) each BCR clonotype 
makes within the networks (Fig. 3d), in each of three disease phases 
and the healthy donors. We also narrowed down the investigation to 
the prime BCR clonotypes of each network and examined the degrees 
of connection of only these BCR clonotypes (Fig. 3e). Interestingly, we  
observed that the B-cell clonotypes from all phases of the COVID-19  
patients demonstrate more connections than the B-cell clonotypes 
from the two healthy controls (Fig. 3d,e), indicating more active 
affinity maturation of BCRs during COVID-19. Next, examining the 
different phases of COVID-19, we observed that, overall, B cells from 
the severe phases demonstrate the highest level of connections, fol-
lowed by the recovery and cured phases (Fig. 3d,e). To further con-
firm this observation, we also calculated another index, by examining 
each B-cell clonotype from each patient sample and calculating the 
probability that it is part of a BCR network with at least one other 
member clonotype. Again, this index is highest in the severe phase of 
COVID-19, followed by the recovery and cured phases, which are all 
higher than the control samples (Fig. 3f). The maturation of the BCR 
repertoire should be characterized by successive iterations of somatic 
hypermutations that generate well connected networks of BCRs.

Fig. 3 | Benisse reveals tight coupling of BCR and B-cell expression during COVID-19. a, The BCR networks constructed by Benisse for patient Coc012. 
Principal component analyses were performed to reduce the dimensions of the embedding output by Benisse to two for visualization. The nodes in the 
same BCR networks were drawn in the same colours. b, The percentages of prime BCRs and non-prime BCRs, detected by Benisse, that are the same as 
one of the validated SARS-CoV-2 antibodies (edit distance <1) or differ only by a small number of amino-acid residues (edit distance <2 to <5). c, The 
number of BCR clonotypes found in the scRNA-seq data of each sample of each patient. d,e, The degrees of connection of the BCR clonotypes (number of 
other clonotypes in the same BCR network for each BCR clonotype) of B cells found in each stage of COVID-19: d, all BCR clonotypes; e, only prime BCR 
clonotypes of the networks. f, The probability of each BCR clonotype belonging to a BCR network of at least two member clonotypes, for B-cell clonotypes 
found in each stage of COVID-19. g, The correlation between B-cell gene expression and BCR embeddings in the latent space, for B cells belonging to 
the severe/recovery/cured phases of the COVID-19 patients and the healthy donors. h, Circos plot showing the enriched pathways in the genes whose 
expression was highly correlated with the BCRs in each stage of COVID-19. The top 30 pathways in each category are shown. However, the false discovery 
rates for these 30 pathways are all <1 × 10−9. The curves in the centre connect pathways that share genes, with darker colouring of the curves referring to 
more shared genes. The sizes of the dots on the circle refer to the number of highly correlated genes in each pathway divided by all genes in the pathway. 
The colouring of these dots refers to a pathway activation score calculated by the mean of expression of all genes in each pathway. mRNA, messenger RNA.
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We sought to further investigate whether the expression of the 
B cells demonstrates any concordant changes with BCRs during 
COVID-19. We calculated the correlations between BCR distances 
of all pairwise B-cell clonotype pairs and the expressional differ-
ences of the same clonotype pairs from the Benisse networks. Again 
we observed that this coupling between expression and BCR is 
stronger in all phases of COVID-19 compared with the healthy con-
trols (Fig. 3g). We also again observed that the correlation between 
BCR repertoire and B-cell gene expression is strongest in the severe 
phase, followed by the recovery phase and then the cured phase 
(Fig. 3g). We also calculated the correlation between BCR and gene 
expression for each individual gene. We selected the top 2% of all 
investigated genes (N = 452) with the highest average correlation, 
from B cells of all datasets of the severe phases of COVID-19. We 
removed from this set the 177 genes that are also highly correlated 
with BCRs in B cells of the healthy samples (same criterion). We 
also did the same for the genes from the recovery and cured phases, 
and performed Gene Ontology (GO) analyses for remaining genes. 
For all three phases, we observed many GO terms associated with 
immune-cell functions, especially the activation of humoral immu-
nity (Fig. 3h). The severe phase has the highest level of pathway 
activation, followed by the recovering phase and then the cured 
phase. The pathways in the severe phase also have more genes in 
common with one another. These observations indicate the highest 
level of concerted action of the B cells during the severe phase of 
COVID-19.

Taken together, our analyses indicate that the BCR signalling 
pathway is most activated and induces the strongest BCR rearrange-
ment events in earlier severe phases of COVID-19, and weakens 
when the patients are on the pathway to recovery.

Discussion
In this work, we developed the Benisse model to build the link between 
expression of B-cell genes and their BCRs. The fields of BCR sequenc-
ing and scRNA-seq have been developing as independent disciplines. 
Our work models the two types of data together, providing new 
opportunities to mechanistically dissect the roles of B cells and BCRs 
in normal development and disease progression. Methodologically, 
Benisse is built upon mathematically innovative techniques that 
enable learning a sparse weighted graph in the latent space probabi-
listically from the high-dimensional data of BCRs, under the supervi-
sion of gene expression37. We applied Benisse to two human diseases, 
COVID-19 (Fig. 3) and ulcerative colitis (Supplementary Note 2), 
which revealed interesting biological insights.

Zhang et al.38 and Yost et al.39 discovered convergent VDJ (D, 
diversity) recombinations for T-cell receptors (TCRs). These works 
found that T cells tend to generate different but similar TCRs 
through VDJ recombination against the same antigen. The TCRs that  
are most similar to the ‘average/centre’ of these clustered TCRs are 
probably the most efficient in antigen targeting. In an interesting 
contrast to T cells, we observed that centre BCRs do not have higher 
activation signals or larger clonal expansion than non-centre BCRs 
(Supplementary Note 2). In other words, the prime BCR clonotypes 
that we identified above in each BCR network are not the centre of 
their BCR networks. Rather, BCRs of B cells continuously evolve, 
via somatic hypermutation, to obtain higher specificity in antigen 
targeting, forming a directional trajectory. This is most obvious in 
Extended Data Fig. 3, where the phylogenetic tree of BCRs has only 
one major branch of evolution, pointing towards the best antibody, 
placed at the tip of the tree branch. This is different from T cells, 
which have very limited somatic hypermutation ability40,41, so they 
tend to converge to the best solution from different independent 
trials of VDJ recombinations.

We observed the coupling between BCRs and B-cell expression 
in various biomedical contexts. There are two possible mechanisms 
responsible for this coupling effect. First, in the GCs, the somatic 

mutational processes keep producing BCRs of various qualities in 
a continuous process. BCRs that create higher-affinity antibodies 
for the target antigens will induce stronger proliferation signals 
for the B cells (the well known positive selection process). Similar 
BCRs will probably induce similar proliferative signals for the B 
cells. Second, some plasma cells still express functional BCRs that 
can positively impact the survival and activation of plasma cells42,43. 
Therefore, even in the stage of plasma cells, BCRs can still constitu-
tively modulate B-cell phenotypes depending on the qualities of the 
BCRs, thereby explaining this coupling effect.

Overall, the BCR repertoire should not be considered alone as a 
marker of clonality, and the interrogation of how the BCRs interact 
with and impact the transcriptomic status of the B cells will facilitate 
the discovery of vital insights. We expect Benisse and similar works 
to propell our understanding of the function of B cells in various 
physiological processes.

Methods
The BCR embedding algorithm. We created an algorithm based on deep 
contrastive learning for embedding the BCR CDR3H amino-acid sequences with 
numeric vectors. We first encoded the BCR CDR3H sequences using the Atchley 
factors, which represent each amino acid with five numeric values, and can 
comprehensively characterize the biochemical properties of each amino acid22,38. 
In our recent work on TCRs38, we also created a similar embedding model for 
TCR CDR3β (complementarity-determining region 3β) sequences with Atchley 
factors and demonstrated the appropriateness of Atchley factors for numerically 
embedding immune receptors. Next, we leveraged contrastive multiview coding 
(CMC44) to build a short numerical vector embedding of BCR CDR3H sequences 
in the space of Atchley matrices for easy manipulations in the following model. 
To achieve this, we leverage the fact that, for most CDR3H protein sequences 
we obtained from various public sources, the nucleotide sequences for the BCR 
sequences are also available. We treat the protein sequences (in the space of  
Atchley factor matrices) as one view and their corresponding nucleotide sequences 
(A/T/G/C are one-hot encoded) as another view—both matching the same 
underlying CDR3H sequence. Then we developed a CMC model that is capable of 
pairing CDR3H nucleotide sequences with the correct CDR3H protein sequences 
from a pool, and also vice versa: namely, the loss function considers the loss in 
both directions. In this process, the CMC model learns a latent embedding of 
CDR3H in the form of a short numeric vector.

This approach is different from a simplistic protein translation between DNA 
and protein sequences from several perspectives. First, the codon table is not 
given as a model input, but rather we require the model to implicitly learn this 
matching relationship from the given numerical vectors. Thus the model also has 
to learn more information regarding the key inherent properties of the nucleotide 
and protein sequences of CDR3H at the same time. Second, the goal of this CMC 
model is to obtain the numeric embedding, which is a short fixed-length vector. 
The correct pairing between CDR3H protein sequences and nucleotide sequences 
forces the CMC model to capture the key structural information of BCRs through 
this short vector, rather than only learning a simple matching relationship between 
individual amino acids and triplets of nucleotides (the codon table).

The core Benisse model. The core Benisse model deals with a pool of B cells 
where, for each cell we have (1) expression data, as a numeric vector, and  
(2) BCR data, already encoded into a numeric vector as described above. In the 
pool of B cells we analyse, there are groups of B cells that are in the same BCR 
clonotype (same V, same J and same CDR3 for the H chain), and their expression 
is averaged to the clonotype level. Benisse is tasked with detecting BCR clonotypes 
that are related (similar sequences, probably generated for the same antigen) and 
building a graph of BCR networks, with each network composed of related BCRs. 
Within each network, the similarity between different BCR clonotypes should 
be influenced by the similarity of their clonotype-level expression profiles. To 
achieve this, Benisse finds a lower-dimensional embedding based upon the original 
BCR embeddings that also satisfies the coupling between BCRs and expression. 
Moreover, Benisse concomitantly detects the graph of BCR networks in this 
lower-dimensional space.

Technically, the core Benisse model is based on a probabilistic supervised learning 
model of sparse graph structure for BCR data, informed by the expression of the  
B cells. The graph is derived from a unified model of density estimation and pairwise 
distance preservation, where latent embeddings are assumed to be random variables 
following an unknown density function to be learned, and pairwise distances are 
then calculated as the expectations over the density for the BCR clonotypes. The 
problem is solved using the alternating direction method of multipliers45 algorithm 
in two main alternating steps: (1) spectral projection for solving the latent space 
embedding of BCRs supervised by gene expression and (2) L-BFGS-B46 for solving 
the graph of BCR networks. Mathematical details of the Benisse model are described 
in Supplementary Note 1, along with simulation analyses.
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Acquisition and preprocessing of the BCR-seq and scRNA-seq data. The 
processed BCR-seq data used for the training and validation of the BCR encoder 
are obtained from bulk BCR sequencing and also from scRNA sequencing of 
B cells with paired scBCR-seq. For the training/validation of the BCR encoder, 
we included data from several sources, including IEDB (https://www.iedb.org/
database_export_v3.php), AdaptiveBiotech47–59 and Rizzetto et al.60. We also 
included all BCRs from all the scBCR-seq datasets used in this study, including 10x 
Genomics, and refs. 24,35,61–65. For the 10x single-cell data, we only included BCR 
records with ‘is_cell’, ‘high_confidence’, ‘full_length’ and ‘productive’ all being true. 
The class-switching status of each B cell in the scRNA-seq data was inferred using 
the standard 10x Cell Ranger software.

For the analyses involving the Benisse model, we only investigated cells from 
the scRNA-seq data that have both expression information and also the BCR 
heavy-chain information. The scRNA-seq data were handled by the Seurat R package 
(v4.0.5)66. For the single-cell expression matrices, we aggregated the expression of  
the transcripts to the gene levels (HUGO gene symbols) via the annotation files 
provided with the R biomaRt package (v2.48.0). We normalized by library size of 
each cell and performed log(x + 1) transformation before downstream analyses.

Implementation of bcRep and Lindenbaum cosine similarity. bcRep was 
implemented using the bcRep R package (v1.3.6), based on the cosine dissimilarity 
method, which was showcased in Fig. 6 of bcRep’s original publication. For the 
Lindenbaum et al method, we calculated the tf–idf (term frequency–inverse 
document frequency) representations (the TfidfVectorizer function from the 
Python sklearn package, v1.0) and cosine similarities between BCR sequences, 
as described in their original paper. The cosine dissimilarity used to form the 
tree structures and waterfall plots in Extended Data Fig. 3e,f was calculated by 
subtracting the min max normalized cosine similarity score (MinMaxScaler from 
the Python sklearn package, v1.0) from 1.

Defining the different phases of COVID-19 for the Bernardes et al. dataset. 
We assigned our four disease groups on the basis of the classification of Bernardes 
et al.35, but slightly consolidated their different categories of disease trajectories. 
This is done so that we have fewer groups but more samples in each of the four 
groups (for more robust analysis results), and we also have more balanced numbers 
of B cells in each category. Their ‘uninfected (control)’ samples were denoted as 
‘healthy’ in our study. Their ‘incremental’ and ‘critical’ samples were denoted as 
‘severe’, their ‘complicated’ and ‘early/moderate/late convalescence’ samples were 
denoted as ‘recovering’ and their ‘long-term follow-up’ samples were denoted as 
‘cured’. In particular, all the incremental samples were taken within two days of the 
patients entering the critical phase, including one patient who died. Therefore, we 
grouped incremental and critical samples together.

Statistical analyses. All computations are performed in the R (v4.02) and Python 
(v3.7) languages. The BCR embedding is created using the PyTorch package. 
PyTorch version, 1.10.0; pandas version, 1.3.4; NumPy version, 1.21.3; sklearn 
version, 1.0. UMAP was performed using the R umap package (v0.2.7.0) and 
t-SNE was performed using the R Rtsne package (v0.15). Pseudotime inference 
was performed using Monocle230. The predicted pseudotimes were reordered 
in each dataset so that the latest-appearing cells have the smallest pseudotimes. 
For all boxplots appearing in this Article, box boundaries represent interquartile 
ranges, whiskers extend to the most extreme data point, which is no more than 
1.5 times the interquartile range, and the line in the middle of the box represents 
the median. We assembled a B-cell activation gene signature (Fig. 2d) on the 
basis of literature review and availability of the genes in the scRNA-seq datasets 
of this study (Extended Data Table 2). GSEA analyses were performed using 
clusterProfiler v3.1467. The GOrilla webserver (v2013Mar8) was used to detect 
enriched GO pathways68. The CytoSig analyses were performed with the CytoSig 
software downloaded from https://cytosig.ccr.cancer.gov/, using all default settings. 
Canonical correlation analysis was performed using the R CCA package (v1.2.1). 
All statistical tests were two tailed, unless otherwise specified. All correlations are 
Pearson correlations unless otherwise specified.

Data availability
The data used for the training of the BCR embedding algorithm and the single-cell 
sequencing data used for Benisse analyses are all publicly available. Their accession 
methods are shown in Extended Data Table 124,35,47–65. The LIBRA-seq data are 
publicly available from Setliff et al.24. The SARS-CoV-2 antibody data are from 
Raybould et al.36. Our own in-house BCR data can be found in our GitHub 
repository at https://github.com/wooyongc/Benisse.

Code availability
The Benisse software, including the BCR embedding algorithm, is publicly 
available under the MIT License at https://github.com/wooyongc/Benisse and in 
the Supplementary Software. The software is also available via Zenodo69.
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Extended Data Fig. 1 | Schematic diagram of the contrastive deep learning model to embed the BCR CDR3H sequences into numeric vectors. The model 
is tasked to distinguish n different CDR3H protein sequences (n = 2 under our setting) to identify the correct one corresponding to the given BCR DNA 
sequence, and also vice versa. This way, the key features of the CDR3H amino acid sequences are captured on a short numeric vector of 20 elements. 
“Affinity score” refers to how close the pool of BCR CDR3H protein sequences are to the correct nucleotide sequence in the deep learning model’s latent 
space, and vice versa.
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Extended Data Fig. 2 | Scatterplots of these two distances for BCR distances determined by our contrastive learning model.
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Extended Data Fig. 3 | Tracking clonal evolution of BCRs in an HIV-infected patient. BCRs were embedded by (a,b) the Benisse BCR encoder (the deep 
learning only part); (c,d) bcRep; and (e,f) the Lindenbaum method. (a,c,e) A phylogenetic tree of BCRs was constructed from the distance matrices of 
BCRs calculated according to the BCR embeddings. The trees were rooted at the Unmutated Common Ancestor (UCA) of the BCRs. (b,d,f) A waterfall plot 
of BCR Euclidean distances between the UCA BCR and all the other BCRs, colored by their collection times.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | GSEA of the pathways enriched in the genes that showed a monotonic increase (a) or decrease (b) of expression from group 
1 to group 3 BCR clonotypes’ B cells. Pathways enriched in the genes with “increasing” or “decreasing” trends were shown separately. The results for all 
datasets are shown, with the top 5 pathways of the smallest False Discovery Rates (FDRs) shown for each dataset. The red circles denote the FDR cutoffs 
of 5% and 10%.
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Extended Data Fig. 5 | The BCR networks constructed by Benisse for patient Coc003. Principal Component Analyses were performed to reduce the 
dimensions of the embedding output by Benisse to 2 dimensions for visualization.
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Extended Data Table 1 | The genes in the B cell activation signature and their citations

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


Articles NATuRE MACHInE InTEllIgEnCEArticles NATuRE MACHInE InTEllIgEnCE

Extended Data Table 2 | The BCR sequence data and the B cell scRNA-seq data used for the training/testing of the BCR embedding 
algorithm and for Benisse analyses
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