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Molecule optimization (MO) for improving the structural 
and/or functional profile of a molecule is an essential 
step for many scientific and engineering applications, 

including chemistry, drug discovery, bioengineering and mate-
rial science. Without further modelling or use of prior knowledge, 
the challenge of MO lies in searching over the prohibitively large 
space composed of all possible molecules and generating new, valid 
and optimal ones. In recent years, machine learning has shown 
to be a promising tool for MO by combining domain knowledge 
and data-driven learning for efficient discovery1–4. Compared to 
traditional high-throughput wet-lab experiments or computer 
simulations, which are time-consuming and expensive5,6, machine 
learning can accelerate MO by enabling iterative improvements 
based on instant feedback from real-time model prediction and 
analysis7,8, thereby reducing the gap between initial discovery and 
subsequent optimization and production of materials for various 
applications. For example, machine learning-driven MO can enable 
the prompt design of optimized candidates starting from existing 
lead molecules, leading to potentially better inhibition of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins. 
It is now well accepted that the majority of existing drugs fail to 
show the desired binding (and inhibition) to SARS-CoV-2 tar-
gets, mostly due to the novel nature of the SARS-CoV-2 virus9,10. 
Therefore, optimization of existing lead molecules towards better 
SARS-CoV-2 target binding affinity while keeping the molecu-
lar similarity high appears a promising first step for optimal drug 
design for coronavirus disease 2019 (COVID-19). Similarly, an effi-
cient MO method can guide the design of antimicrobials with better 
optimized toxicity to fight against resistant pathogens, one of the 
biggest threats to global health11. Without loss of generality, we refer 
to a lead molecule as the starting molecule to be optimized to meet 
a set of desired properties and constraints. Many recent research 
studies that focus on machine learning-enabled MO represent a 
molecule as a string consisting of chemical units. For small organic 
molecules, the SMILES representation12 is widely used, whereas for 
peptide sequences, a text string comprised of amino-acid charac-
ters is a popular representation. Often, for efficiency reasons, the 

optimization is performed on a learned representation space of the 
system of interest, which describes molecules as embedding vectors 
in a low-dimensional continuous space. A sequence-to-sequence 
encoder–decoder model, such as a (variational) autoencoder, can 
be used to learn continuous representations of the molecules in a 
latent space. Moreover, different optimization or sampling tech-
niques based on the latent representation can be used to improve 
a molecule with external guidance from a set of molecular prop-
erty predictors and simulators. The external guidance can be either 
explicitly obtained from physics-based simulations, (chem/bio-)
informatics and wet-lab experiments or implicitly learned from a 
chemical database.

Based on the methodology, the related works on machine learn-
ing for MO can be divided into two categories: guided search and 
translation. Guided search uses guidance from the predictive mod-
els and/or evaluations from statistical models, where the search 
can be either in the discrete molecule sequence space or through 
a continuous latent space (or distribution) learned by an encoder–
decoder. Genetic algorithms13–15 and Bayesian optimization (BO)16 
have been proposed for searching in the discrete sequence space, 
but their efficiency can be low in the case of a high search dimen-
sion. Recent works have exploited latent representation learning 
and different optimization/sampling techniques to achieve an effi-
cient search. Examples include the combined use of a variational 
autoencoder (VAE) and BO17–20, VAE and Gaussian sampling21, 
VAE and sampling guided by a predictor22,23, VAE and evolution-
ary algorithms24, deep reinforcement learning and/or a generative 
network25–29 and attribute-guided rejection sampling on an autoen-
coder30. The translation-based approach, on the other hand, treats 
molecule generation as a sequence-to-sequence translation prob-
lem31–34. Examples include translation with junction-tree35,36, shape 
features18, hierarchical graphs37 and transfer learning38. Comparing 
to guided search, translation-based approaches require the addi-
tional knowledge of paired sequences for learning to translate a lead 
molecule into an improved molecule. This knowledge may not be 
available for new MO tasks with limited information. For exam-
ple, in the task of optimizing a set of known inhibitor molecules 
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to better bind to the SARS-CoV-2 target protein sequence while 
preserving the desired drug properties, a sufficient number of such 
paired molecule sequences is unavailable. We also note that these 
two categories are not exclusive. Guided search can be jointly used 
with translation.

In this Article, we propose a novel query-based molecule optimi-
zation (QMO) framework, as illustrated in Fig. 1. In this context, a 
query to a designed loss function for QMO gives the corresponding 
numerical value obtained through the associated property evalu-
ations. Efficiency refers to the performance of the optimization 
results given a query budget. QMO uses an encoder–decoder and 
external guidance, but it differs from existing works in the following 
aspects. (1) QMO is a generic end-to-end optimization framework 
that reduces the problem complexity by decoupling representation 
learning and guided search. It applies to any plug-in (pre-trained) 
encoder–decoder with continuous latent representations. It is also a 
unified and principled approach that incorporates multiple predic-
tions and evaluations made directly at the molecule sequence level 
into guided search without further model fitting. (2) To achieve 
efficient end-to-end optimization with discrete molecule sequences 
and their continuous latent representations, QMO adopts a novel 
query-based guided search method based on zeroth-order opti-
mization39,40, a technique that performs efficient mathematical 
optimization using only function evaluations (more details are pro-
vided in Supplementary Section 1). Its query-based guided search 
enables direct optimization over the property evaluations provided 
by chemical informatics/simulation software packages or predic-
tion application programming interfaces (APIs), and it supports 
guided search with exact property evaluations that only operate at 
the molecular sequence level instead of latent representations or 

surrogate models. To the best of our knowledge, this work is the 
first study that facilitates molecule optimization by disentangling 
molecule representation learning and guided search, and by exploit-
ing zeroth-order optimization for efficient search in the molecular 
property landscape. The success of QMO can be attributed to its 
data efficiency, achieved by exploiting the latent representations 
learned from abundant unlabelled data and the guidance for prop-
erty prediction trained on relatively limited labelled data.

We first demonstrate the effectiveness of QMO by means of 
two sets of standard benchmarks. On two existing (and simpler) 
MO benchmark tasks—optimizing QED (quantitative estimate of 
drug-likeness)41 and penalized logP (reflecting the octanol–water 
partition coefficient)22 with similarity constraints—QMO attains 
superior performance over existing baselines, showing at least 15% 
higher success on QED optimization and an absolute improvement 
of 1.7 on penalized logP. The performance of QMO on these molec-
ular physical property benchmarks shows its potential for opti-
mizing material design before synthesis, which is critical in many 
applications and fields, such as the food industry, agrochemicals, 
pesticides, drugs, catalysts and waste chemicals.

Next, as a motivating discovery use case that also, at least to some 
extent, reflects the complexity of real discovery problems42, we dem-
onstrate how QMO can be used to improve the binding affinity of a 
number of existing inhibitor molecules for the SARS-CoV-2 main 
protease (Mpro), one of the most extensively studied drug targets for 
SARS-CoV-2. As an illustration, Fig. 2 shows the top docking poses 
of dipyridamole and its QMO-optimized variant with SARS-CoV-2 
Mpro. We formulate this task as an optimization over predicted 
binding affinity (obtained using a pre-trained machine learning 
model) starting from an existing molecule of interest (a lead mol-

Property evaluation on   
decoded molecules    
Dec(zt) and Dec(   )  
Save molecule Dec(zt) if
evaluation is successful

Lead 
molecule to 

optimize

Property 
evaluation

Encoder Decoder

Query-based molecule
optimization (QMO) 

Remdesivir
(embedding vector: z0) 

Random neighbourhood sampling 
around candidate embedding zt

Similarity
binding affinity

Dec(zt)
Decoding from embedding zt

Gradient estimation
t + 1t   ←

Get decoded molecules 
Dec(    ) from random samples

Lead 
molecule

Embedding 
vector

Decoded
molecule

Pre-trained encoder and decoder

Encoder Decoder
Query-based gradient descent:

zt+1 = zt − α · Loss (zt)

∆

Embedding vector zt
Randomly sampled points

10

8

6

4

2

0

–2

–4

–6

10

8

6

4

2

0

–2

–4

–6

Embedding vector zt
Randomly sampled points

1.05

0.90

0.75

0.60

0.45

0.30

0.15

0

9.6
8.8
8.0
7.2
6.4
5.6
4.8
4.0
3.2
2.4

Embedding vector zt
Randomly sampled points

Current embedding zt
Updated embedding zt + 1

Latent space
embedding

Binding affinity landscape

Tanimoto similarity landscape

Loss landscape

Loss landscape

Fig. 1 | System illustration of the proposed QMO framework. The QMO system progressively optimizes an input lead molecule (for example, remdesivir) 
according to a set of user-specified properties (for example, binding affinity and Tanimoto similarity) by leveraging the learned molecule embeddings from a 
pre-trained encoder and decoder pair (that is, an autoencoder) and by evaluating the properties of the generated molecules. Given a candidate embedding 
zt at optimization step t, QMO randomly samples the neighbouring vectors of zt in the embedding space, evaluates the properties of the corresponding 
decoded molecules, and uses the evaluations for gradient estimation (equation (4)) and query-based gradient descent (equation (3)) to find the next 
candidate embedding vector zt+1.
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ecule). Because experimental half-maximal inhibitory concentra-
tion (IC50) values are widely available, we use them as a measure for 
protein–ligand binding affinity. The pIC50 of the optimized molecule 
(where pIC50 = −log 10(IC50)) is constrained to be above 7.5, a sign 
of good affinity, while the Tanimoto similarity between the optimized 
molecule and the original molecule is maximized. Retaining high 
similarity while optimizing the initial lead molecule means impor-
tant chemical characteristics can be maximally preserved. Moreover, 
a high similarity to existing leads is important for a rapid response to 
a novel pathogen such as SARS-CoV-2, as it is more likely to leverage 
existing knowledge and manufacturing pipelines for the synthesis and 
wet-lab evaluation of the optimized variants. Moreover, the chance 
of optimized variants inducing adverse effects is potentially low. Our 
results show that QMO can find molecules with high similarity and 
improved affinity, while preserving other properties of interest such 
as drug-likeness.

We also consider the task of optimizing existing antimicrobial 
peptides towards lower selective toxicity, which is critical for accel-
erating safe antimicrobial discovery. In this task, QMO shows a 
high success rate (~72%) in improving the toxicity of antimicrobial 
peptides, and the properties of optimized molecules are consistent 
with external toxicity and antimicrobial activity classifiers. Finally, 
we perform property landscape visualization and trajectory analysis 
of QMO to illustrate its efficiency and diversity in finding improved 
molecules with desired properties.

We emphasize that QMO is a generic-purpose optimization algo-
rithm that enables optimization over discrete spaces (for example, 
sequences and graphs), which involves searching over a latent space 
of the system by using guidance from (expensive) black-box func-
tion evaluations. Beyond the organic and biological molecule opti-
mization applications considered in this study, QMO can be applied 
to the optimization of other classes of material, such as inorganic 
solid-state materials like metal alloys or metal oxides.

results
Representations of molecules. In our QMO framework, we 
model a molecule as a discrete string of chemical or amino-acid 

characters (a sequence). Depending on the downstream MO 
tasks, the sequence representation can either be a string of natural 
amino acids30,43 or a string designed for encoding small organic 
chemicals. In particular, the simplified molecular input line entry 
specification (SMILES) representation12 describes the structure 
of small organic molecules using short ASCII strings. Without 
loss of generality, we define Xm := X× X · · · × X as the product 
space containing every possible molecule sequence of length m, 
where X denotes the set of all chemical characters. To elucidate 
the problem complexity, considering the 20 protein-building 
amino acids as characters in a peptide sequence, the number of 
possible candidates in the space of sequences with length m = 60 
is already reaching the number of atoms in the known universe 
(~1080). Similarly, the space of small molecules with therapeu-
tic potential is estimated to be on the order of 1060 (refs. 44,45). 
Therefore, the problem of MO in the ambient space Xm can be 
computationally inefficient as the search space grows combinato-
rially with sequence length m.

Encoder–decoder for learning latent molecule representa-
tions. To address the issue of the large search space for mol-
ecule sequences, QMO adopts an encoder–decoder framework. 
The encoder Enc : Xm

�→ R
d encodes a sequence x ∈ X

m to 
a low-dimensional continuous real-valued representation of 
dimension d, denoted by an embedding vector z = Enc(x). The 
decoder Dec : Rd

�→ X
m′

 decodes the latent representation z of 
x back to the sequence representation, denoted by x̂ = Dec(z). 
We note that, depending on the encoder–decoder implementa-
tion, the input sequence x and the decoded sequence x̂  may have 
different lengths. On the other hand, the latent dimension d is 
universal (fixed) to all sequences. Winter et al.46 proposed a novel 
molecular descriptor and used it for an autoencoder to learn 
latent representations featuring high similarity between the orig-
inal and reconstructed sequences. QMO applies to any plug-in 
(pre-trained) encoder–decoder with continuous latent represen-
tations and thus decouples representation learning and guided 
search, reducing the problem complexity of MO.
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Fig. 2 | top docking poses of dipyridamole and its QMO-optimized variant with SarS-CoV-2 Mpro, obtained using autoDock Vina. a–d, Top docking poses 
of dipyridamole (a) and its QMO-optimized variant (b) and their 2D structures (c,d). QMO optimizes the predicted affinity for the dipyridamole variant 
from 3.94 to 7.59, while maintaining a Tanimoto similarity score of 0.58 and without changing the binding pocket substantially. MM/PBSA calculations for 
these poses show an improvement in binding free energy from −11.49 kcal mol−1 to −25.65 kcal mol−1. Important residues from the Mpro substrate-binding 
pocket are also shown. Details are provided in Supplementary Table 2.
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MO formulation via guided search. In addition to leveraging 
learned latent representations from a molecule encoder–decoder, 
our QMO framework incorporates molecular property prediction 
models and similarity metrics at the sequence level as external guid-
ance. Specifically, for any given sequence x ∈ X

m we use a set of I 
separate prediction models {fi(x)}Ii=1 to evaluate the properties of 
interest for MO. In principle, for a candidate sequence x, a set of 
thresholds {τi}

I
i=1 on its property predictions {fi(x)}Ii=1 is used for 

validating the condition fi(x) ≥ τi for all i ∈ [I], where [I] denotes the 
integer set {1, 2, …, I}. Moreover, we can simultaneously impose a 
set of J separate constraints {gj(x|S) ≥ ηj}

J
j=1 in the optimization 

process, such as molecular similarity, relative to a set of reference 
molecule sequences denoted by S.

Our QMO framework covers two practical cases in MO: (1) opti-
mizing molecular similarity while satisfying the desired chemical 
properties and (2) optimizing chemical properties with similarity 
constraints. It can be easily extended to other MO settings that can 
be formulated via {fi(x)}Ii=1 and {gj(x|S)}Jj=1.

In what follows, we formally define our designed loss function 
of QMO for case (1). Given a starting molecule sequence x0 (a lead 
molecule) and a pre-trained encoder–decoder, let x = Dec(z) denote 
a candidate sequence decoded from a latent representation z ∈ R

d. 
Our QMO framework aims to find an optimized sequence by solv-
ing the following continuous optimization problem:

Minimizez∈Rd

I∑

i=1
max{τi − fi(Dec(z)), 0}

︸ ︷︷ ︸

Property validation loss (to be minimized)

−

J∑

j=1
λj × gj(Dec(z)|S)

︸ ︷︷ ︸

Molecular score (to be maximized)

(1)

The first term, 
∑I

i=1max{τi − fi(Dec(z)), 0}, quantifies the loss 
of property constraints and is presented as the sum of hinge loss 
over all property predictions, which approximates the binary prop-
erty validation relative to the required thresholds {τi}

I
i=1. It achieves 

the optimal value (that is, 0) only when the candidate sequence 
x = Dec(z) satisfies all the desired properties, which is equivalent 
to the condition that fi(Dec(z)) ≥ τi for all i ∈ [I]. The second term, 
∑J

j=1λj · gj(Dec(z)|S), corresponds to a set of molecular similarity 
scores to be maximized (therefore a minus sign in the minimiza-
tion formulation). The reference sequence set S can be the starting 
sequence such that S = {x0}, or a set of molecules. The positive coef-
ficients {λj}

J
j=1 are associated with the set of molecular similarity 

scores {gj(Dec(z)|S)}Jj=1, respectively. It is worth mentioning that 
the use of the latent representation z as the optimization variable in 
a low-dimensional continuous space greatly facilitates the original 
MO problem in a high-dimensional discrete space. The optimiza-
tion variable z can be initialized as the latent representation of x0, 
denoted by z0 = Enc(x0).

Similarly, for case (2), the optimization problem is formulated as

Minimizez∈Rd

J∑

j=1
max{ηj − gj(Dec(z)|S), 0}

︸ ︷︷ ︸

Molecular constraint loss (to be minimized)

−

I∑

i=1
γi × fi(Dec(z))

︸ ︷︷ ︸

Property score (to be maximized)

(2)

where {ηj}
J
j=1 are the similarity score constraints and {γi}

I
i=1 are 

positive coefficients of the property scores {fi(Dec(z))}Ii=1.

QMO procedure. Although we formulate MO as an unconstrained 
continuous minimization problem, we note that solving it for a 
feasible candidate sequence x = Dec(z) is not straightforward, for 
two reasons. (1) The output of the decoder x = Dec(z) is a discrete 
sequence, which imposes challenges on any gradient-based (and 
high-order) optimization method because acquiring the gradient 
of z becomes non-trivial. Even by resorting to the Gumbel-softmax 
sampling trick for discrete outputs47, the large output space of the 
decoder may render it ineffective. (2) In practice, many molecular 
property prediction models and molecular metrics are computed in 
an access-limited environment, such as prediction APIs and chemi-
cal software, which only allow inference on a queried sequence 
and prohibit other functionalities such as gradient computation. 
To address these two issues, we use zeroth-order optimization in 
our QMO framework (details of the procedure are provided in the 
Methods) to provide a generic and model-agnostic approach for 
solving the problem formulation in equations (1) and (2), using only 
the inference results of {fi}Ii=1 and {gj}Jj=1 on queried sequences.

Let Loss(z) denote the objective function to be minimized, as 
defined in either equation (1) or equation (2). Our QMO framework 
uses zeroth-order gradient descent to find a solution, which mimics  
the descent steps on the loss landscape in gradient-based solvers  
but only uses the function values Loss(⋅) of queried sequences. 
Specifically, at the tth iteration of the zeroth-order optimization pro-
cess, the iterate (candidate embedding vector) z(t + 1) is updated by

z(t+1) = z(t) − αt × ∇̂Loss(z(t)), (3)

where αt ≥ 0 is the step size at the tth iteration, and the true gra-
dient ∇Loss(z(t)) (which is challenging or infeasible to compute) 
is approximated by the pseudo gradient ∇̂Loss(z(t)). The pseudo 
gradient ∇̂Loss(z(t)) is estimated by Q independent random direc-
tional queries defined as

∇̂Loss(z(t)) = d
β · Q

Q∑

q=1

[

Loss(z(t) + βu(q))− Loss(z(t))
]

× u(q),

(4)

where d is the dimension of the latent space of the encoder–decoder 
used in QMO, and β > 0 is a smoothing parameter used to per-
turb the embedding vector z(t) for neighbourhood sampling with 
Q random directions {u(q)}

Q
q=1 that are independently and iden-

tically sampled on a d-dimensional unit sphere. Figure 1 presents 
an illustration of random neighbourhood sampling. In our imple-
mentation, we sample {u(q)}

Q
q=1 using a zero-mean d-dimensional 

isotropic Gaussian random vector divided by its Euclidean norm, 
such that the resulting samples are drawn uniformly from the unit 
sphere. Intuitively, the gradient estimator in equation (4) can be 
viewed as an average of Q random directional derivatives along 
the sampled directions {u(q)}

Q
q=1. The constant d

β·Q in equation (4) 
ensures the norm of the estimated gradient is of the same order as 
that of the true gradient39,40.

A schematic example of the QMO procedure is illustrated in Fig. 1  
using binding affinity and Tanimoto similarity as property evalua-
tion criteria. Note that, based on the iterative optimization step in 
equation (3), QMO only uses function values queried at the original 
and perturbed sequences for optimization. The query count made 
on the Loss function for computing ∇̂Loss(z(t)) is Q + 1 per itera-
tion. Larger Q further reduces the gradient estimation error at the 
price of increased query complexity. When solving equation (1), an 
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iterate z(t) is considered as a valid solution if its decoded sequence 
Dec(z(t)) satisfies the property conditions fi(Dec(z(t))) ≥ τi for all 
i ∈ [I]. Similarly, when solving equation (2), a valid solution z(t) 
means gj(Dec(z(t)∣S)) ≥ ηj for all j ∈ [J]. Finally, QMO returns a set of 
found solutions (returning null if in vain). Detailed descriptions for 
the QMO procedure are provided in the Methods.

Three sets of MO tasks with multiple property evaluation crite-
ria. In what follows, we demonstrate the performance of our pro-
posed QMO framework on three sets of tasks that aim to optimize 
molecular properties with constraints, including standard MO 
benchmarks and challenging tasks relating to real-world discovery 
problems. The pre-trained encoder–decoder and the hyperparam-
eters of QMO for each task are specified in the Methods and in 
Supplementary Section 3.

Benchmarks on QED and penalized logP optimization. We start 
by testing QMO on two single property targets: penalized logP and 
QED41. LogP is the logarithm of the partition ratio of the solute 
between octanol and water. Penalized logP is defined as the logP 
minus the synthetic accessibility (SA) score22. Given a similar-
ity constraint, finding an optimized molecule that improves the 
drug-likeness of compounds using the QED score (from a range of 
[0.7, 0.8] to [0.9, 1.0])41 or improves the penalized logP score22 are 
two widely used benchmarks. For a pair of original and optimized 
sequences (x0, x), we use the QMO formulation in equation (2) with 
the Tanimoto similarity (ranging from 0 to 1) over Morgan finger-
prints48 as gTanimoto(x∣x0) and the interested property score (QED or 
penalized logP) as fscore(x). Following the same setting as existing 
works, the threshold δ for gTanimoto(x∣x0) is set as either 0.4 or 0.6. We 
use RDKit (open-source cheminformatics; http://www.rdkit.org) to 
compute QED and logP, and use MOSES49 to compute SA, where 
fpenalized logP(x) = logP(x) − SA(x).

In our experiments, we use the same set of 800 molecules with 
low penalized logP scores and 800 molecules with QED ∈ [0.7, 0.8] 
chosen from the ZINC test set50 as in Jin et al.22 as our starting 
sequences. We compare QMO with various guided-search and 
translation-based methods in Extended Data Figs. 1 and 2. Baseline 
results are obtained from the literature35,38 that use machine learning 
for solving the same task.

For the QED optimization task, the success rate, defined as the 
percentage of improved molecules having similarity greater than 
δ = 0.4, is shown in Extended Data Fig. 1. QMO outperforms all 
baselines by at least 15%. For penalized logP task, the molecules 
optimized by QMO outperform the baseline results by a notable 
margin, as shown in Extended Data Fig. 2. The increased standard 
deviation in QMO is an artefact of having some molecules with 
much improved penalized logP scores (Supplementary Section 4).

Although the above-mentioned molecular property optimiza-
tion tasks provide well-defined benchmarks for testing our QMO 
algorithm, it is well recognized that such tasks are easy to solve and 
do not capture the complexity associated with real-world discov-
ery51. For example, it is trivial to achieve state-of-the-art results 
for logP optimization by generating long saturated hydrocarbon 
chains52. Coley et al.42 have proposed that MO goals that better 
reflect the complexity of real discovery tasks might include binding 
or selectivity attributes. Therefore, in the remainder of this Article 
we consider two such tasks: (1) optimizing the binding affinity of 
existing SARS-CoV-2 Mpro inhibitor molecules and (2) lowering the 
toxicity of known antimicrobial peptides.

Optimizing existing SARS-CoV-2 main protease inhibitor mol-
ecules toward better IC50. To provide a timely solution and acceler-
ate the drug discovery against a new virus such as SARS-CoV-2, it is 
a sensible practice to optimize known leads to facilitate design and 
production as well as to minimize the emergence of adverse effects. 

Here we focus on the task of optimizing the parent-molecule structure 
of a set of existing SARS-CoV-2 Mpro inhibitors. Specifically, we use 
the QMO formulation in equation (1), a pre-trained binding affinity 
predictor53 faffinity (the output is the pIC50 value) and the Tanimoto simi-
larity gTanimoto between the original and optimized molecules. Given a 
known inhibitor molecule x0, we aim to find an optimized molecule x 
such that faffinity(x) ≥ τaffinity while gTanimoto(x∣x0) is maximized.

For this task, we start by assembling 23 existing molecules 
shown to have weak to moderate affinity with SARS-CoV-2 
Mpro54,55. These are generally in the micromolar range of IC50, 
a measure of inhibitory potency (Supplementary Section 3 
describes the experimental IC50 values). We choose the target 
affinity threshold τaffinity as pIC50 ≥ 7.5, which implies strong affin-
ity. Table 1 shows the final optimized molecules compared to 
their initial state (that is, the original lead molecule). We high-
light common substructures and show a similarity map to empha-
size the changes. The results of all 23 inhibitors are summarized 
in Supplementary Table 2.

Because all of these 23 inhibitors are reported to bind to the 
substrate-binding pocket of Mpro, we investigate possible bind-
ing mode alterations of the QMO-optimized molecules. It should 
be noted that a direct comparison of IC50 with binding free energy 
(BFE) is not always possible, as the relationship of binding affinity 
and IC50 for a given compound varies depending on the assay condi-
tions and the compound’s mechanism of inhibition56. Furthermore, 
high-fidelity BFE estimation requires accounting for factors such 
as conformational entropy and the explicit presence of the solvent. 
Nevertheless, we report the BFE and mode for the QMO-optimized 
variants. For simplicity, we limit the analysis to achiral molecules. 
First, we run blind docking simulations using AutoDock Vina57 over 
the entire structure of Mpro with the exhaustiveness parameter set to 
8. We further rescore the top three docking poses for each of the orig-
inal and QMO-optimized molecules using the molecular mechanics/
Poisson Boltzmann surface area (MM/PBSA) method and AMBER 
forcefield58, which is known to be more rigorous and accurate than 
the scoring function used in docking. Next we inspect if any of the 
top three docking poses of the original as well as of QMO-optimized 
variants involve the substrate-binding pocket of Mpro, as favourable 
interaction with that pocket is crucial for Mpro function inhibition.

As an illustration, Fig. 2 shows the top docking pose of dipyridam-
ole and its QMO-optimized variant to the Mpro substrate-binding 
pocket. Consistent with the more favourable MM/PBSA BFE, the 
QMO-optimized variant forms 14% more contacts (with a 5-Å dis-
tance cutoff between heavy atoms) with the Mpro substrate-binding 
pocket compared to dipyridamole. Some of the Mpro residues that 
explicitly form contacts with the dipyridamole variant are Leu167, 
Asp187, Arg188 and Gln192. Similar observations, for example, a 
higher number of contacts with the Mpro substrate-binding pocket 
that involve Tyr54, were found for other exemplars of QMO vari-
ants, such as favipiravir and umifenovir. Supplementary Section 4 
provides an extended analysis of blind docking.

Optimization of existing antimicrobial peptides towards 
improved toxicity. As an additional motivating use case, dis-
covering new antibiotics at rapid speed is critical for tackling the 
looming crisis of a global increase in antimicrobial resistance11. 
Antimicrobial peptides (AMPs) are considered promising can-
didates for next-generation antibiotics. Optimal AMP design 
requires balancing between multiple, tightly interacting attribute 
objectives59,60, such as high potency and low toxicity. In an attempt 
to address this challenge, we show how QMO can be used to find 
improved variants of known AMPs with reported/predicted toxic-
ity, such that the variants have lower predicted toxicity and high 
sequence similarity compared to original AMPs.

For the AMP optimization task, a peptide molecule is repre-
sented as a sequence of 20 natural amino-acid characters. Using 
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the QMO formulation in equation (1), subject to the constraints 
of the toxicity prediction value (ftox) and the AMP prediction 
value (fAMP), we aim to find most similar molecules for a set of 
toxic AMPs. The sequence similarity score (gsim) to be maximized 
is computed using Biopython (http://www.biopython.org), which 
uses global alignment between two sequences (normalized by 
the length of the starting sequence) to evaluate the best concor-
dance of their characters. Detailed descriptions are provided in 
the Methods.

The objective of QMO is to search for improved AMP  
sequences by maximizing similarity while satisfying the AMP activ-
ity and toxicity predictions (that is, classified as being an AMP and 
non-toxic based on predictions from pre-trained deep learning 
models30).

In our experiments, we use QMO to optimize 150 experimen-
tally verified toxic AMPs collected from public databases61,62 by 
Das et al.30 as starting sequences. Note that the toxic annotation 
here does not depend on a specific type of toxicity, such as hae-
molytic toxicity. Extended Data Fig. 3 shows their cumulative suc-
cess rate (turning toxic AMPs into non-toxic AMPs) using QMO 
up to the tth iteration. Within the first few iterations, more than 
60% molecules are successfully optimized. Eventually, ~72.67% 

(109/150) molecules can be successfully optimized. Analysis over 
all 109 original–improved pairs reveals notable physicochemical 
changes, for example, lowering of hydrophobicity and hydropho-
bic moment in the QMO-optimized AMP sequences (Fig. 3a,b and 
Supplementary Table 8). This trend is consistent with the reported 
positive correlation of hydrophobicity and hydrophobic moment 
with cytotoxicity and haemolytic activity63,64. Figure 3c shows 
examples of known AMPs and their QMO-optimized variant 
sequences. Sequence alignment and similarity ratio relative to the 
original sequence are also shown, indicating that sequences result-
ing from QMO differ widely from the initial ones. Supplementary 
Fig. 3 depicts the optimization process of some AMP sequences. 
QMO can further improve similarity while maintaining low pre-
dicted toxicity and high AMP values for the specified thresholds 
after the first success.

We perform additional validation of our optimization results 
by comparing QMO-optimized sequences using a number of 
state-of-the-art AMP and toxicity predictors that are external clas-
sifiers not used in the QMO framework. Extended Data Fig. 4  
shows the external classifiers’ prediction results on 109 origi-
nal and improved sequence pairs that are successfully optimized  
by QMO. We note that these external classifiers vary in terms of  

Table 1 | the final QMO-optimized molecules compared with their initial state for SarS-CoV-2 main protease inhibitor molecules

Dipyridamole Favipiravir Umifenovir Kaempferol

Original

−11.49 −0.77 −16.08 −11.86

Similarity

0.670.730.460.58

Optimized

−25.65 −10.93 −20.87 −13.48

Rows from top to bottom (images): the original molecule with the common substructure highlighted, a Tanimoto similarity map of the improved molecule with respect to the original molecule (green 
indicates similar regions; purple indicates dissimilar regions), and the QMO-optimized molecule with the common substructure highlighted. Rows from top to bottom (numbers): original molecule MM/
PBSA BFE estimate, overall Tanimoto similarity and QMO-optimized molecule BFE estimate. Both BFE calculations are performed with the molecules docked to the substrate-binding pocket of Mpro.
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training data size and type, as well as on model architecture, and 
report a range of accuracy. Data and models for the toxicity predic-
tion task are more rare than those for the AMP classification prob-
lem. Furthermore, external toxicity classifiers such as HAPPENN65 
and HLPpred-fuse66 explicitly target predicting the haemolytic 
nature. For these reasons, the predictions of the external classi-
fiers on the original lead sequences may vary when compared to 
ground-truth labels (third column in Supplementary Table 7). 
Nonetheless, predictions on the QMO-optimized sequences using 
external classifiers show high consistency in terms of toxicity 
improvement when compared with the predictors used in QMO.

Specifically, the predictions from iAMP-2L67 and HAPPENN65 
(haemolytic toxicity prediction) show that 56.88% (62/109) of 
QMO-optimized molecules are predicted as non-toxic AMPs. In 
Supplementary Section 7.1, we also show that the use of a better 
encoder–decoder helps the optimization performance of QMO.

Property landscape visualization and trajectory analysis. To gain 
a better understanding of how QMO optimizes a lead molecule with 
respect to the property constraints and objectives, we provide visual 
illustration of the property landscapes and search trajectories via 
QMO using a two-dimensional (2D) local interpolation on the mol-
ecule embedding space. Specifically, given the original embedding 
z0 and the embedding of the best candidate z* returned by QMO, we 
perform local grid sampling following two selected directions vx and 
vy, and then evaluate the properties of the decoded sequences from 
the sampled embeddings for property landscape analysis. For the 
purpose of visualizing the property landscape in low dimensions, 
we project the high-dimensional search trajectories {zt}Tt=1 to the 
two directions vx and vy. Figure 4a shows the landscape of Tanimoto 
similarity versus binding affinity prediction when using remdesivir 
as the lead molecule, with the optimization objective of maximizing 
Tanimoto similarity while ensuring the predicted binding affinity is 
above a defined threshold of 7.5. The two directions are the princi-
pal vector z* − z0 and a random vector orthogonal to the principal 
vector (more details are provided in the Methods). The trajectory 
shows how QMO leverages the evaluations of similarity and bind-
ing affinity for optimizing the lead molecule. Figure 4b displays the 
common substructure of candidate molecules in comparison to the 
remdesivir molecule in terms of subgraph similarity and their pre-
dicted properties over sampled iterations in QMO.

In addition to demonstrating the efficiency in optimizing lead 
molecules, we also study the diversity of the optimized molecules 
by varying the random seed used in QMO for query-based guided 
search. Figure 5 shows three different sets of trajectory on the land-
scape of predicted binding affinity when using remdesivir as the lead 
molecule (more details are provided in Methods). The optimization 
objective is the same as that of Fig. 4. The visualization suggests 
that the trajectories are distinct and the best candidate molecules 
in each trajectory are distant from each other in the embedding 
space, suggesting that QMO can find a diverse set of improved mol-
ecules with desired properties. In Supplementary Section 6.1 we 
also provide a quantitative study on the diversity and novelty of the 
QMO-optimized sequences when varying the similarity threshold. 
Setting a lower similarity threshold in QMO results in more novel 
and diverse sequences.

Discussion and conclusion
In this Article we have proposed QMO, a generic MO framework 
that readily applies to any pre-trained molecule encoder–decoder 
with continuous latent molecule embeddings and any set of prop-
erty predictions and evaluation metrics. It features efficient guided 
search with molecular property evaluations and constraints obtained 
using predictive models and cheminformatics software. More 
broadly, QMO is a machine learning tool that can be incorporated 
into different scientific discovery pipelines with deep generative 
models, such as generative adversarial networks, for efficient guided 
optimization with constraints. As a demonstration, Supplementary 
Sections 6.2 and 6.3 show the QMO results on the SARS-CoV-2 
main protease inhibitor optimization task, with alternative objec-
tives and randomly generated lead sequences, respectively. QMO 
is able to perform successful optimization with respect to different 
objectives, constraints and starting sequences. The proposed QMO 
framework can be applied, in principle, to other classes of material, 
such as metal oxides, alloys and genes.

On the simpler benchmark tasks for optimizing drug-likeness 
and penalized logP scores with similarity constraints, QMO dem-
onstrates superior performance over baseline results. We also apply 
QMO to improve the binding affinity of existing inhibitors of the 
SARS-CoV-2 main protease and to improve the toxicity of AMPs. 
The QMO-optimized variants of existing drug molecules show 
a favourable BFE with SARS-CoV-2 main protease upon blind  
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docking and MM/PBSA re-scoring, whereas the QMO-optimized 
peptides are consistently predicted to be antimicrobial and non-toxic 
by external peptide property predictors. The property landscape 
analysis and low-dimensional visualization of the optimization tra-
jectories provide insights on how QMO efficiently navigates in the 
property space to find a diverse set of improved molecules with the 
desired properties. Our results show strong evidence that QMO can 

serve as a novel and practical tool for molecule optimization and 
other process/product design problems as well to aid in accelerat-
ing chemical discovery with constraints. In Supplementary Section 
7 we provide an ablation study of QMO for additional performance 
analysis, including the effect of the encoder–decoder, the difference 
between sequence-level and latent-space classifiers, and a compari-
son between different gradient-free optimizers. The results show 
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that QMO is a query-efficient end-to-end MO framework, and 
a better encoder–decoder can further improve its performance. 
Future work will include integrating multi-fidelity expert feedback 
into the QMO framework for human–AI collaborative material 
optimization, and using QMO for accelerating the discovery of 
novel, high-performance and low-cost materials.

Methods
Procedure descriptions for the QMO framework. 

•	 Procedure inputs: pre-trained encoder–decoder; molecular property predic-
tors {fi}Ii=1 and thresholds {τi}

I
i=1; molecular similarity metrics {gj}Jj=1 and 

thresholds {ηj}
J
j=1

; total search iteration T; step size {αt}
T−1
t=0 ; starting lead 

molecule sequence x0; reference sequence set S; Loss function from equation 
(1) or (2)

•	 Procedure initialization: z(0) = Enc(x0); Zsolution ← {∅}

•	 Repeat the following steps T times, starting from T = 0:
•	 Gradient estimation: generate Q random 

unit-norm perturbations {u(q)}Qq=1 and compute 
∇̂Loss(z(t)) = d

β·Q
∑Q

q=1

[
Loss(z(t) + βu(q)) − Loss(z(t))

]
× u(q)

•	 Pseudo gradient descent: z(t+1) = z(t) − αt × ∇̂Loss(z(t))
•	 Molecular property and constraint verification: if solving for formulation (1),  

check fi(Dec(z(t))) ≥ τi for all i ∈ [I]. If solving for formulation (2), check 
gj(Dec(z(t))∣S) ≥ ηj for all j ∈ [J].

•	 Update valid molecule sequence: Zsolution ← Zsolution ∪ {z(t)}

Procedure convergence guarantee and implementation details for QMO. 
Inherited from zeroth-order optimization, QMO has algorithmic convergence 
guarantees. Under mild conditions for the true gradient (Lipschitz continuous 
and bounded gradient), the zeroth-order gradient descent following equation 
(3) ensures QMO takes at most O( d

T ) iterations to be sufficiently close to a local 
optimum in the loss landscape for a non-convex objective function39,40, where 
T is the number of iterations. In addition to the standard zeroth-order gradient 
descent method, our QMO algorithm can naturally adopt different zeroth-order 
solvers, such as zeroth-order stochastic and accelerated gradient descent. Our 
implementation of gradient estimation gives Q + 1 loss function queries per 
iteration. If the decoder outputs a SMILES string, we pass the string to RDKit for 
validity verification and disregard invalid strings.

In our QMO implementation, we use the zeroth-order version of the  
popular Adam optimizer68 that automatically adjusts the step sizes {αt}

T−1
t=1   

with an initial learning rate α0 (further details are provided in Supplementary 
Section 2). Empirically, we find that Adam performs better than stochastic 
gradient descent in our tasks. The convergence of the zeroth-order Adam-type 
optimizer is described in ref. 69. We will specify experimental settings, data 
descriptions and QMO hyperparameters for each task. In all settings, QMO 
hyperparameters were tuned to a narrow range and then all the reported 
combinations were tried for each starting sequence. Among all feasible solutions 
returned by QMO, we report the one having the best molecular score given the 
required constraints. The stability analysis of QMO is studied in Supplementary 
Section 5.

Machine learning experimental settings. In our experiments, we run the QMO 
procedure based on the reported hyperparameter values and report the results of 
the best molecule found in the search process. The procedure will return null (that 
is, an unsuccessful search) if it fails to find a valid molecule sequence.

Benchmarks on QED and penalized logP. The pre-trained encoder–decoder by 
Winter et al.46 is used, with the latent dimension d = 512. For the penalized log 
P optimization task, we use Q = 100, β = 10, α0 = 2.5, γpenalized logP = 0.04 and T = 80. 
For the QED task, we use Q = 50, β = 10, α0 = 0.05, γQED = 4 and T = 20, and report 
the best results among 50 restarts. We find that, for the QED task, using multiple 
restarts can further improve the performance (Supplementary Section 5 provides  
a detailed discussion). For penalized logP, there is no reason to continue 
optimizing past 80 iterations, as penalized logP can be increased almost arbitrarily 
without making the resulting molecule more useful for drug discovery29—even 
under similarity constraints—as we find. Therefore, we set T = 80 for the penalized  
logP task.

Optimizing existing inhibitor molecules for SARS-CoV-2 main protease. The 
pre-trained encoder–decoder from Winter et al.46 is used, with the latent dimension 
d = 512. The hyperparameters of QMO are Q = 10, T = 2,000, β = {10, 25}, 
α0 = {0.1, 0.05} and λTanimoto = {1, 10}.

Optimization of AMPs for improved toxicity. The pre-trained predictors for 
toxicity and AMP by Das et al.30 are used, with the latent dimension d = 100. 
The similarity between the original sequence x0 and the improved sequence x is 

computed using the global alignment function in Biopython, formally defined as 
gsim(x∣x0) = global-alignment(x, x0)/log(length(x0)), where global-alignment(x, x0) is 
the value returned by the function pairwise2.align.globalds(x, x0, matlist.blosum62, 
−10, −1) and log(length(x0)) is the log value of the sequence length of x0. Blosum62 
is the weight matrix for estimating the alignment score70, and −10/−1 is the penalty 
for opening/continuing a gap. The QMO parameters are Q = 100, β = {1, 10}, 
α0 = {0.1, 0.05, 0.01}, λsim = 0.01 and T = 5,000. The toxicity property constraint 
is set as ftox(x) ≤ 0.1529 and amp as famp(x) ≥ 0.9998. Binary classification on this 
threshold gives 93.7% accuracy for toxicity and 88.00% for AMP prediction on a 
large peptide database30.

Trajectory visualization. In Figs. 4 and 5, the optimization trajectory 
achieved by QMO is visualized by projection on two selected directors vx and 
vy originating from the starting embedding z0. Specifically, in Fig. 4 we set 
vx = z* − z0 and set vy as a unit-norm randomly generated vector that is orthogonal 
to vx. The 2D local grid in the embedding space is then sampled according to 
zgrid(x, y) = z0 + x ⋅ vx + y ⋅ ∥z*∥2 ⋅ uy, where ∥⋅∥2 denotes the Euclidean distance, and 
we sample x and y uniformly from [−0.5, 1.5] and [−2, 2], respectively. Note that, 
by construction, zgrid(0, 0) = z0 and zgrid(1, 0) = z*. We then evaluate the Tanimoto 
similarity and binding affinity prediction of the grid and present their results in 
Fig. 4. Similarly, in Fig. 5, we set vx and vy to be two unit-norm randomly generated 
vectors, and set zgrid(x, y) = z0 + x ⋅ ∥z0∥2 ⋅ vx + y ⋅ ∥z0∥2 ⋅ uy, where x and y are sampled 
uniformly from [−1.6, 1.6].

Data availability
Data for the benchmark molecule optimization tasks (QED and penalized logP) 
are available at https://github.com/IBM/QMO71. For other enquiries contact the 
corresponding authors.

Code availability
Code for the benchmark molecule optimization tasks (QED and penalized logP) 
is available at https://github.com/IBM/QMO71. For other enquiries contact the 
corresponding authors.
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Extended Data Fig. 1 | Cumulative success rate of antimicrobial peptide (aMP) sequence optimization v.s. iterations using QMO.
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Extended Data Fig. 2 | aMP and toxicity analysis. Reported accuracy, prediction rate, and property improvement for 109 pairs of starting and 
QMO-optimized sequences based on different AMP (a) and toxicity (b) classifiers. The 109 starting sequences are experimentally verified toxic AMPs 
and are correctly predicted by the AMP and toxicity classifiers used in QMO. The external classifiers have varying prediction accuracy as they may yield 
incorrect predictions on some of starting sequences. The prediction rate on QMO-optimized sequences is defined as the fraction of AMP and/or toxin 
predictions. About 56.88% of QMO-optimized sequences are predicted as non-toxic AMPs by iAMP-2L + HAPPENN, showing high agreement with the 
classifiers used in QMO. The complete results are reported in Supplementary Table 7.

Nature MaCHiNe iNtelligeNCe | www.nature.com/natmachintell

http://www.nature.com/natmachintell


Articles NATuRE MACHiNE iNTElligENCEArticles NATuRE MACHiNE iNTElligENCE

Extended Data Fig. 3 | Performance of drug likeness (QeD) task with tanimoto similarity constraint δ = 0.4.
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Extended Data Fig. 4 | Performance of penalized logP task at various tanimoto similarity constraint value δ.
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