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editorial

Optimizing the synergy between physics and 
machine learning
Although the initial inspiration of neural networks came from biology, insights from physics have helped 
neural networks to become usable. New connections between physics and machine learning produce powerful 
computational methods.

Machine learning and physics  
have long-standing strong links. 
An important connection was 

forged in 1982 by John Hopfield, as he 
considered the analogy between a physical 
system that consisted of interacting 
particles in which emergent phenomena 
such as magnetism arise, and a network 
of interacting neurons with spontaneous 
computational properties. The Hopfield 
network is a forerunner of the recurrent 
neural network, which has its use in a wide 
range of machine learning applications that 
involve temporal, dynamic features.

From a different perspective, theoretical 
physics is expected to help with a 
foundational understanding of machine 
learning. A classic paper from 1984 by  
L. G. Valiant set the tone, describing a 
rigorous statistical theory of learning. But 
with the rise of deep learning since the 
2010s, further questions have emerged 
about the surprising, unreasonably 
good performance and generalization 
capabilities of deep neural networks. In a 
recent Comment in Nature Physics, Lenka 
Zdeborová calls for renewed efforts to 
tackle such questions with physics-inspired 
approaches, pointing to physicists’ 
experience with tackling observations 
from a large number and varied range 
of experiments by searching for models 
that can capture the essence of a problem, 
ignoring many of the details, and testing 
it with analytical investigations. A case in 
point is the highly successful Ising model 
of magnetism, which does not include 
any of the quantum mechanical details 
of the magnetic interactions or material 
properties but explains many different types 
of experimental phenomena. In fact, the 
Ising model has proved useful in machine 
learning too, as Hopfield’s network can be 
cast as an Ising model of a neural network. 
Efforts in this direction can help to develop 
a theoretical understanding of deep learning 
and why it works so well.

From the point of view of practical 
applications, there are many opportunities 
to put state-of-the-art machine learning 
models to good use, tackling problems 

in physical sciences whenever large 
amounts of data are involved, such as in 
fluid mechanics, high-energy physics or 
weather forecasting. An active topic is the 
use of machine learning models to learn 
the mathematical rules, in the form of 
partial differential equations, that underlie 
complex dynamic phenomena such as 
turbulence. In a recent Review article in 
Nature Reviews Physics, George Karniadakis 
and colleagues discuss various ways in 
which physics can be embedded in such 
approaches to tackle complex dynamic 
problems, from earthquake predictions to 
molecular dynamics.

Another promising connection that 
currently sees much activity is tackling 
optimization problems with deep learning, 
in particular combinatorial optimization 
problems, where the optimal solutions 
must be found in a very large but finite 
space of possible configurations. The size 
of this space scales exponentially with the 
input size of the problem, thus making an 
exhaustive search-based solution strategy 
unfeasible. Well-known examples are solving 
the Rubik’s cube, the travelling salesman 
problem or finding the 3D structure 
of proteins. An Article in this issue by 
Mohammed Hibat-Allah et al. proposes 
a new approach in optimization, fusing 
concepts from classical and quantum physics 

and from deep learning, of particular use  
for finding the ground state of disordered 
Ising systems.

In statistical physics, optimization 
problems can be tackled with a 
computational approach called simulated 
annealing. This is a heuristic process 
inspired by annealing in metallurgy 
where a material is rapidly heated and 
subsequently slowly cooled so that the 
material can rearrange at the microscale 
into an optimal configuration with 
desired properties. A simulated annealing 
algorithm explores an energy landscape 
to find its global minimum by gradually 
decreasing ‘thermal fluctuations’ (see the 
figure for an example of a rough energy 
landscape with a clear global minimum). 
Simulated annealing, both in its classical 
and quantum formulation, is widely useful 
for optimization problems, but the process 
of ‘cooling down’ (decreasing the thermal 
fluctuations) to explore the optimization 
landscape is generally a slow process. 
Hibat-Allah et al. combine simulated 
annealing with a so-called variational 
approach, by parameterizing the joint 
distribution of the system’s state via a 
recurrent neural network. The new method, 
dubbed variational neural annealing, 
significantly speeds up the simulated 
annealing process.

Many more fruitful interactions between 
physics and machine learning can be 
expected. There is much excitement around 
the promise of merging machine learning 
with quantum information approaches. 
One focus is accelerating machine learning 
with quantum computers — betting on the 
availability of reliable quantum hardware 
in the near future. Vice versa, concepts 
from machine learning are fuelling 
advances in quantum computing. Interested 
readers can find further inspiration in 
the comprehensive Review article from 
Giuseppe Carleo et al. or tune into the 
upcoming NeurIPS workshop on machine 
learning and the physical sciences. ❐
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A simplified, very rough energy landscape, for 
protein folding. Source: Kuhlman & Bradley.  
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