Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning

Abstract

Machine learning-based generative models can generate novel molecules with desirable physiochemical and pharmacological properties from scratch. Many excellent generative models have been proposed, but multi-objective optimizations in molecular generative tasks are still quite challenging for most existing models. Here we proposed the multi-constraint molecular generation (MCMG) approach that can satisfy multiple constraints by combining conditional transformer and reinforcement learning algorithms through knowledge distillation. A conditional transformer was used to train a molecular generative model by efficiently learning and incorporating the structure–property relations into a biased generative process. A knowledge distillation model was then employed to reduce the model’s complexity so that it can be efficiently fine-tuned by reinforcement learning and enhance the structural diversity of the generated molecules. As demonstrated by a set of comprehensive benchmarks, MCMG is a highly effective approach to traverse large and complex chemical space in search of novel compounds that satisfy multiple property constraints.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The architecture of MCMG.
Fig. 2: Illustration of chemical space and results of evaluation setting 1.
Fig. 3: The top differential scaffold results generated by the three model configurations in task 1.

Data availability

The training dataset was obtained from the study reported by Olivecrona et al.26, which selected the data from the ChEMBL51 dataset. The bioactivity dataset includes the experimental bioactivity data for three different protein targets, namely DRD2, JNK3 and GSK3β. The DRD2 dataset was provided by Olivecrona et al.26, which contains 100,000 negative and 7,219 positive compounds. The JNK3 dataset52 contains the inhibition data for 50,000 negative and 2,665 positive compounds, whereas the GSK3β dataset53,54 contains the inhibition data for 50,000 negative and 740 positive compounds. The JNK3 and GSK3β datasets are available from the study of Li and colleagues41.

Code availability

The code used in the study is publicly available from the GitHub repository: https://github.com/jkwang93/MCMG (ref. 64).

References

  1. 1.

    Elton, D. C., Boukouvalas, Z., Fuge, M. D. & Chung, P. W. Deep learning for molecular design-a review of the state of the art. Mol. Syst. Design Eng. 4, 828–849 (2019).

    Article  Google Scholar 

  2. 2.

    Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 23, 1241–1250 (2018).

    Article  Google Scholar 

  3. 3.

    Chen, H. & Engkvist, O. Has drug design augmented by artificial intelligence become a reality? Trends Pharmacol. Sci. 40, 806–809 (2019).

    Article  Google Scholar 

  4. 4.

    Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019).

    Article  Google Scholar 

  5. 5.

    Mater, A. C. & Coote, M. L. Deep learning in chemistry. J. Chem. Inf. Model. 59, 2545–2559 (2019).

    Article  Google Scholar 

  6. 6.

    Jørgensen, P. B., Schmidt, M. N. & Winther, O. Deep generative models for molecular science. Mol. Inf. 37, 1700133 (2018).

    Article  Google Scholar 

  7. 7.

    Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119, 10520–10594 (2019).

    Article  Google Scholar 

  8. 8.

    Hessler, G. & Baringhaus, K.-H. Artificial intelligence in drug design. Molecules 23, 2520 (2018).

    Article  Google Scholar 

  9. 9.

    Batool, M., Ahmad, B. & Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci. 20, 2783 (2019).

    Article  Google Scholar 

  10. 10.

    Xu, Y. et al. Deep learning for molecular generation. Future Med. Chem. 11, 567–597 (2019).

    Article  Google Scholar 

  11. 11.

    Button, A., Merk, D., Hiss, J. A. & Schneider, G. Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat. Mach. Intell. 1, 307–315 (2019).

    Article  Google Scholar 

  12. 12.

    Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular design in low data regimes. Nat. Mach. Intell. 2, 171–180 (2020).

    Article  Google Scholar 

  13. 13.

    Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 4, 268–276 (2018).

    Article  Google Scholar 

  14. 14.

    Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article  Google Scholar 

  15. 15.

    Polykovskiy, D. et al. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol. Pharmaceutics 15, 4398–4405 (2018).

    Article  Google Scholar 

  16. 16.

    Putin, E. et al. Adversarial threshold neural computer for molecular de novo design. Mol. Pharm. 15, 4386–4397 (2018).

    Article  Google Scholar 

  17. 17.

    Bjerrum, E. J. & Threlfall, R. Molecular generation with recurrent neural networks (RNNs). Preprint at https://arxiv.org/abs/1705.04612 (2017).

  18. 18.

    Gupta, A. et al. Generative recurrent networks for de novo drug design. Mol. Inf. 37, 1700111 (2018).

    Article  Google Scholar 

  19. 19.

    Pogány, P., Arad, N., Genway, S. & Pickett, S. D. De novo molecule design by translating from reduced graphs to SMILES. J. Chem. Inf. Model. 59, 1136–1146 (2019).

    Article  Google Scholar 

  20. 20.

    Liu, X., Ye, K., van Vlijmen, H. W. T., Ijzerman, A. P. & van Westen, G. J. P. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J. Cheminf. 11, 35 (2019).

    Article  Google Scholar 

  21. 21.

    Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. 4, 120–131 (2018).

    Article  Google Scholar 

  22. 22.

    Yang, X., Zhang, J., Yoshizoe, K., Terayama, K. & Tsuda, K. ChemTS: an efficient python library for de novo molecular generation. Sci. Technol. Adv. Mater. 18, 972–976 (2017).

    Article  Google Scholar 

  23. 23.

    Grisoni, F., Moret, M., Lingwood, R. & Schneider, G. Bidirectional molecule generation with recurrent neural networks. J. Chem. Inf. Model. 60, 1175–1183 (2020).

    Article  Google Scholar 

  24. 24.

    Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inf. 37, 1700153 (2018).

    Article  Google Scholar 

  25. 25.

    Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  Google Scholar 

  26. 26.

    Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminf. 9, 48 (2017).

    Article  Google Scholar 

  27. 27.

    Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminf. 10, 31 (2018).

    Article  Google Scholar 

  28. 28.

    Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. in Proc. 34th International Conference on Machine Learning Vol. 70. (eds. Doina, P. & Yee Whye, T.) 1945–1954 (PMLR, 2017).

  29. 29.

    Liu, Q., Allamanis, M., Brockschmidt, M. & Gaunt, A. L. in Proc. 32nd International Conference on Neural Information Processing Systems 7806–7815 (Curran Associates Inc., 2018).

  30. 30.

    Simonovsky, M. & Komodakis, N. in International Conference on Artificial Neural Networks 412–422 (Springer, 2018).

  31. 31.

    Bjerrum, E. J. & Sattarov, B. Improving chemical autoencoder latent space and molecular de novo generation diversity with heteroencoders. Biomolecules 8, 131 (2018).

    Article  Google Scholar 

  32. 32.

    Jin, W., Barzilay, R. & Jaakkola, T. in Proc. 35th International Conference on Machine Learning Vol. 80. (eds. Jennifer, D. & Andreas, K.) 2323–2332 (PMLR, 2018).

  33. 33.

    Kang, S. & Cho, K. Conditional molecular design with deep generative models. J. Chem. Inf. Model. 59, 43–52 (2019).

    Article  Google Scholar 

  34. 34.

    Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2014).

  35. 35.

    Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A. & Zhavoronkov, A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharmaceutics 14, 3098–3104 (2017).

    Article  Google Scholar 

  36. 36.

    Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L. & Aspuru-Guzik, A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.5309668.v3 (2017).

  37. 37.

    Guimaraes, G. L., Sanchez-Lengeling, B., Farias, P. L. C. & Aspuru-Guzik, A. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. Preprint at https://arxiv.org/abs/1705.10843 (2017).

  38. 38.

    Putin, E. et al. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model. 58, 1194–1204 (2018).

    Article  Google Scholar 

  39. 39.

    Yu, L., Zhang, W., Wang, J. & Yu, Y. in Proc. 31st AAAI Conference on Artificial Intelligence 2852–2858 (AAAI Press, 2017).

  40. 40.

    Sohn, K., Yan, X. & Lee, H. in Proc. 28th International Conference on Neural Information Processing Systems Vol. 2, 3483–3491 (MIT Press, 2015).

  41. 41.

    You, J., Liu, B., Ying, Z., Pande, V. & Leskovec, J. in Advances in Neural Information Processing Systems 6410–6421 (2018).

  42. 42.

    Brochu, E., Cora, V. M. & Freitas, N. d. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Preprint at https://arxiv.org/abs//1012.2599 (2010).

  43. 43.

    Cao, N. D. & Kipf, T. MolGAN: an implicit generative model for small molecular graphs. Preprint at https://arxiv.org/abs/1805.11973 (2018).

  44. 44.

    Jaques, N. et al. in Proc. 34th International Conference on Machine Learning Vol. 70, 1645–1654 (JMLR.org, 2017).

  45. 45.

    Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning (MIT Press, 1998).

  46. 46.

    Blaschke, T. et al. REINVENT 2.0: an AI tool for de novo drug design. J. Chem. Inf. Model. 60, 5918–5922 (2020).

    Article  Google Scholar 

  47. 47.

    Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Proc. Syst. 30, 5998–6008 (2017).

    Google Scholar 

  48. 48.

    Tripp, A., Daxberger, E. & Hernández-Lobato, J. M. in Advances in Neural Information Processing Systems 11259–11272 (2020).

  49. 49.

    Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

    Article  Google Scholar 

  50. 50.

    Blaschke, T., Engkvist, O., Bajorath, J. & Chen, H. Memory-assisted reinforcement learning for diverse molecular de novo design. J. Cheminf. 12, 68 (2020).

    Article  Google Scholar 

  51. 51.

    Anna, G. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, 1100–1107 (2012).

    Article  Google Scholar 

  52. 52.

    Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr. Opin. Cell Biol. 10, 205–219 (1998).

    Article  Google Scholar 

  53. 53.

    Shang, L. et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3 beta signaling pathways. PLoS ONE 5, e10092 (2010).

    Article  Google Scholar 

  54. 54.

    Tanabe, K. et al. Glucose and fatty acids synergize to promote B-cell apoptosis through activation of glycogen synthase kinase 3 beta independent of JNK activation. PLoS ONE 6, e18146 (2011).

    Article  Google Scholar 

  55. 55.

    Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. Computer Sci. 14, 38–39 (2015).

    Google Scholar 

  56. 56.

    Cho, K. et al. Learning phrase representations using RNN Encoder decoder for statistical machine translation. Preprint at https://arxiv.org/abs/1406.1078 (2014).

  57. 57.

    Jaques, N., Gu, S., Turner, R. E. & Eck, D. Tuning recurrent neural networks with reinforcement learning. Preprint at https://arxiv.org/abs/1611.02796v1 (2017).

  58. 58.

    Jin, W., Barzilay, R. & Jaakkola, T. Composing molecules with multiple property constraints. Preprint at https://arxiv.org/abs/2002.03244v1 (2020).

  59. 59.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Article  Google Scholar 

  60. 60.

    David, R. & Mathew, H. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article  Google Scholar 

  61. 61.

    Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Freeze, J. G., Kelly, H. R. & Batista, V. S. Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem. Rev. 119, 6595–6612 (2019).

    Article  Google Scholar 

  63. 63.

    Polykovskiy, D. et al. Molecular Sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 11, 565644 (2020).

    Article  Google Scholar 

  64. 64.

    Wang J. et al. Code Repository jkwang93/MCMG: v1.1.0 (Zenodo, 2021); https://doi.org/10.5281/zenodo.5205570

Download references

Acknowledgements

We want to thank Z. Liu for insightful discussion on this study. This work was financially supported by National Key R&D Program of China (grant no. 2016YFA0501701), National Natural Science Foundation of China (grant no. 81773632), Natural Science Foundation of Zhejiang Province (grant no. LZ19H300001), Key R&D Program of Zhejiang Province (grant no. 2020C03010), and Fundamental Research Funds for the Central Universities (grant no. 2020QNA7003).

Author information

Affiliations

Authors

Contributions

T.J.H., C.Y.H., D.S.C. and X.C. designed the research study. J.K.W. developed the method and wrote the code. J.K.W., M.Y.W., X.R.W., D.J.J., B.B.L., X.J.Z. B.Y. and Q.J.H. performed the analysis. J.K.W., M.Y.W., T.J.H. and C.Y.H. wrote the paper. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Dongsheng Cao, Xi Chen or Tingjun Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Machine Intelligence thanks J.B. Brown, Jose Jimenez-Luna, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Discussion and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hsieh, CY., Wang, M. et al. Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nat Mach Intell 3, 914–922 (2021). https://doi.org/10.1038/s42256-021-00403-1

Download citation

Search

Quick links