Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Towards neural Earth system modelling by integrating artificial intelligence in Earth system science

Abstract

Earth system models (ESMs) are our main tools for quantifying the physical state of the Earth and predicting how it might change in the future under ongoing anthropogenic forcing. In recent years, however, artificial intelligence (AI) methods have been increasingly used to augment or even replace classical ESM tasks, raising hopes that AI could solve some of the grand challenges of climate science. In this Perspective we survey the recent achievements and limitations of both process-based models and AI in Earth system and climate research, and propose a methodological transformation in which deep neural networks and ESMs are dismantled as individual approaches and reassembled as learning, self-validating and interpretable ESM–network hybrids. Following this path, we coin the term neural Earth system modelling. We examine the concurrent potential and pitfalls of neural Earth system modelling and discuss the open question of whether AI can bolster ESMs or even ultimately render them obsolete.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Symbolic representation of Earth system components in terms of knowledge clusters.
Fig. 2: Successive stages of the fusion process of ESMs and AI towards NESYM.

References

  1. 1.

    Prinn, R. G. Development and application of earth system models. Proc. Natl Acad. Sci. USA 110, 3673–3680 (2013).

    Article  Google Scholar 

  2. 2.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  3. 3.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  4. 4.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  5. 5.

    Lin, J. W.-B. & Neelin, J. D. Considerations for stochastic convective parameterization. J. Atmos. Sci. 59, 959–975 (2002).

    Article  Google Scholar 

  6. 6.

    Klein, R. Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249–274 (2010).

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Berner, J. et al. Stochastic parameterization: toward a new view of weather and climate models. Bull. Am. Meteorol. Soc. 98, 565–588 (2017).

    Article  Google Scholar 

  8. 8.

    Knutti, R. Should we believe model predictions of future climate change? Phil. Trans. R. Soc. A 366, 4647–4664 (2008).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Knutti, R., Rugenstein, M. A. & Hegerl, G. C. Beyond equilibrium climate sensitivity. Nat. Geosci. 10, 727–736 (2017).

    Article  Google Scholar 

  10. 10.

    Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

  11. 11.

    Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  12. 12.

    Lenton, T. M. et al. Tipping elements in the earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    MATH  Article  Google Scholar 

  13. 13.

    Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard-Oeschger cycles. Proc. Natl Acad. Sci. USA 115, E11005–E11014 (2018).

    Article  Google Scholar 

  14. 14.

    Valdes, P. Built for stability. Nat. Geosci. 4, 414–416 (2011).

    Article  Google Scholar 

  15. 15.

    Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article  Google Scholar 

  16. 16.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018); https://www.ipcc.ch/sr15

  17. 17.

    IPCC Special Report on Climate Change and Land (eds Shukla, P. et al.) (IPCC, 2019); https://www.ipcc.ch/srccl/

  18. 18.

    IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. et al.) (IPCC, 2019); https://www.ipcc.ch/srocc/

  19. 19.

    Otto, F. E. et al. Attribution of extreme weather events in Africa: a preliminary exploration of the science and policy implications. Climatic Change 132, 531–543 (2015).

    Article  Google Scholar 

  20. 20.

    Balsamo, G. et al. Satellite and in situ observations for advancing global earth surface modelling: a review. Remote Sens. 10, 2038 (2018).

  21. 21.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  22. 22.

    Evensen, G. Data Assimilation: The Ensemble Kalman Filter (Springer, 2009).

  23. 23.

    Houtekamer, P. L. & Zhang, F. Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 144, 4489–4532 (2016).

    Article  Google Scholar 

  24. 24.

    van Leeuwen, P. J. Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q. J. R. Meteorol. Soc. 136, 1991–1999 (2010).

    Article  Google Scholar 

  25. 25.

    van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R. & Reich, S. Particle filters for high-dimensional geoscience applications: a review. Q. J. R. Meteorol. Soc. 145, 2335–2365 (2019).

    Article  Google Scholar 

  26. 26.

    Vetra-Carvalho, S. et al. State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus A 70, 1–43 (2018).

    Article  Google Scholar 

  27. 27.

    Penny, S. G. et al. Strongly coupled data assimilation in multiscale media: experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst. 11, 1803–1829 (2019).

    Article  Google Scholar 

  28. 28.

    Browne, P. A., de Rosnay, P., Zuo, H., Bennett, A. & Dawson, A. Weakly coupled ocean-atmosphere data assimilation in the ECMWF NWP system. Remote Sens. 11, 234 (2019).

  29. 29.

    Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 7068349 (2018).

    Google Scholar 

  30. 30.

    Brown, T. B. et al. Language models are few-shot learners. Preprint at https://arxiv.org/abs/2005.14165 (2020).

  31. 31.

    Loh, E. Medicine and the rise of the robots: a qualitative review of recent advances of artificial intelligence in health. BMJ Lead. 2, 59–63 (2018).

    Article  Google Scholar 

  32. 32.

    Girasa, R. in Artificial Intelligence as a Disruptive Technology 3–21 (Springer, 2020).

  33. 33.

    Bauer, P. et al. The digital revolution of Earth-system science. Nat. Comput. Sci. 1, 104–113 (2021).

    Article  Google Scholar 

  34. 34.

    Lary, D. J., Alavi, A. H., Gandomi, A. H. & Walker, A. L. Machine learning in geosciences and remote sensing. Geosci. Front. 7, 3–10 (2016).

    Article  Google Scholar 

  35. 35.

    Salcedo-Sanz, S. et al. Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources. Inf. Fusion 63, 256–272 (2020).

    Article  Google Scholar 

  36. 36.

    Dawson, M., Olvera, J., Fung, A. & Manry, M. Inversion of surface parameters using fast learning neural networks. In Proc. IGARSS ’92 International Geoscience and Remote Sensing Symposium Vol. 2, 910–912 (IEEE, 1992); http://ieeexplore.ieee.org/document/578294

  37. 37.

    Miller, D. M., Kaminsky, E. J. & Rana, S. Neural network classification of remote-sensing data. Comput. Geosci. 21, 377–386 (1995).

    Article  Google Scholar 

  38. 38.

    Serpico, S. B., Bruzzone, L. & Roli, F. An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recogn. Lett. 17, 1331–1341 (1996).

    Article  Google Scholar 

  39. 39.

    Hsieh, W. W. & Tang, B. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Am. Meteorol. Soc. 79, 1855–1870 (1998).

    Article  Google Scholar 

  40. 40.

    Knutti, R., Stocker, T. F., Joos, F. & Plattner, G. K. Probabilistic climate change projections using neural networks. Clim. Dynam. 21, 257–272 (2003).

    Article  Google Scholar 

  41. 41.

    Arcomano, T. et al. A machine learning-based global atmospheric forecast model. Geophys. Res. Lett. 47, e2020GL087776 (2020).

    Article  Google Scholar 

  42. 42.

    Weyn, J. A., Durran, D. R. & Caruana, R. Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data. J. Adv. Model. Earth Syst. 11, 2680–2693 (2019).

    Article  Google Scholar 

  43. 43.

    Weyn, J. A., Durran, D. R. & Caruana, R. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. J. Adv. Model. Earth Syst. 12, e2020MS002109 (2020).

    Article  Google Scholar 

  44. 44.

    Chantry, M., Hatfield, S., Duben, P., Polichtchouk, I. & Palmer, T. Machine learning emulation of gravity wave drag in numerical weather forecasting. Preprint at https://arxiv.org/abs/2101.08195 (2021).

  45. 45.

    Gettelman, A. et al. Machine learning the warm rain process. J. Adv. Model. Earth Syst. 13, e2020MS002268 (2021).

    Article  Google Scholar 

  46. 46.

    Rasp, S. & Thuerey, N. Data-driven medium-range weather prediction with a Resnet pretrained on climate simulations: a new model for WeatherBench. J. Adv. Model. Earth Syst. 13, e2020MS002405 (2021).

    Article  Google Scholar 

  47. 47.

    Palmer, T. A vision for numerical weather prediction in 2030. Preprint at https://arxiv.org/abs/2007.04830 (2020).

  48. 48.

    Neumann, P. et al. Assessing the scales in numerical weather and climate predictions: will exascale be the rescue? Phil. Trans. R. Soc. A 377, 20180148 (2019).

    Article  Google Scholar 

  49. 49.

    Kurth, T. et al. Exascale deep learning for climate analytics. In SC18: International Conference for High Performance Computing, Networking, Storage and Analysis 649–660 (IEEE, 2018).

  50. 50.

    Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377 (2019).

    Article  Google Scholar 

  51. 51.

    Ham, Y.-g, Kim, J.-h & Luo, J.-j Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    Article  Google Scholar 

  52. 52.

    Yan, J., Mu, L., Wang, L., Ranjan, R. & Zomaya, A. Y. Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 10, 8055 (2020).

    Article  Google Scholar 

  53. 53.

    Kadow, C., Hall, D. M. & Ulbrich, U. Artificial intelligence reconstructs missing climate information. Nat. Geosci. 13, 408–413 (2020).

    Article  Google Scholar 

  54. 54.

    Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C. & Anderson, D. Viewing forced climate patterns through an AI lens. Geophys. Res. Lett. 46, 13389–13398 (2019).

    Article  Google Scholar 

  55. 55.

    Barnes, E. A. et al. Indicator patterns of forced change learned by an artificial neural network. J. Adv. Model. Earth Syst. 12, e2020MS002195 (2020).

  56. 56.

    Chattopadhyay, A., Hassanzadeh, P. & Pasha, S. Predicting clustered weather patterns: a test case for applications of convolutional neural networks to spatio-temporal climate data. Sci. Rep. 10, 1317 (2020).

    Article  Google Scholar 

  57. 57.

    Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. Preprint at https://arxiv.org/abs/1710.05941 (2017).

  58. 58.

    Lu, Z., Hunt, B. R. & Ott, E. Attractor reconstruction by machine learning. Chaos 28, 061104 (2018).

  59. 59.

    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    MATH  Article  Google Scholar 

  60. 60.

    Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019).

    Article  Google Scholar 

  61. 61.

    Huntingford, C. et al. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 14, 124007 (2019).

    Article  Google Scholar 

  62. 62.

    Irrgang, C., Saynisch, J. & Thomas, M. Estimating global ocean heat content from tidal magnetic satellite observations. Sci. Rep. 9, 7893 (2019).

    Article  Google Scholar 

  63. 63.

    Irrgang, C., Saynisch-Wagner, J., Dill, R., Boergens, E. & Thomas, M. Self-validating deep learning for recovering terrestrial water storage from gravity and altimetry measurements. Geophys. Res. Lett. 47, e2020GL089258 (2020).

    Article  Google Scholar 

  64. 64.

    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the fluxcom approach. Biogeosciences 17, 1343–1365 (2020).

    Article  Google Scholar 

  65. 65.

    Tramontana, G. et al. Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks. Glob. Change Biol. 26, 5235–5253 (2020).

    Article  Google Scholar 

  66. 66.

    Bolton, T. & Zanna, L. Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst. 11, 376–399 (2019).

    Article  Google Scholar 

  67. 67.

    Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. 115, 9684–9689 (2018).

    Article  Google Scholar 

  68. 68.

    O’Gorman, P. A. & Dwyer, J. G. Using machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events. J. Adv. Model. Earth Syst. 10, 2548–2563 (2018).

    Article  Google Scholar 

  69. 69.

    Gagne, D. J., Christensen, H. M., Subramanian, A. C. & Monahan, A. H. Machine learning for stochastic parameterization: generative adversarial networks in the Lorenz ’96 model. J. Adv. Model. Earth Syst. 12, e2019MS001896 (2020).

    Article  Google Scholar 

  70. 70.

    Han, Y., Zhang, G. J., Huang, X. & Wang, Y. A moist physics parameterization based on deep learning. J. Adv. Model. Earth Syst. 12, e2020MS002076 (2020).

    Article  Google Scholar 

  71. 71.

    Beucler, T., Pritchard, M., Gentine, P. & Rasp, S. Towards physically-consistent, data-driven models of convection. Preprint at http://arxiv.org/abs/2002.08525 (2020).

  72. 72.

    Yuval, J. & O’Gorman, P. A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nat. Commun. 11, 3295 (2020).

    Article  Google Scholar 

  73. 73.

    Brenowitz, N. D. & Bretherton, C. S. Prognostic validation of a neural network unified physics parameterization. Geophys. Res. Lett. 45, 6289–6298 (2018).

    Article  Google Scholar 

  74. 74.

    Watt-Meyer, O. et al. Correcting weather and climate models by machine learning nudged historical simulations. Preprint at ESSOAr https://doi.org/10.1002/essoar.10505959.1 (2021).

  75. 75.

    Pathak, J. et al. Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos 28, 041101 (2018).

    MathSciNet  Article  Google Scholar 

  76. 76.

    Krasnopolsky, V. M. & Fox-Rabinovitz, M. S. Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Netw. 19, 122–134 (2006).

    Article  Google Scholar 

  77. 77.

    Brenowitz, N. D. et al. Machine learning climate model dynamics: offline versus online performance. Preprint at http://arxiv.org/abs/2011.03081 (2020).

  78. 78.

    Brenowitz, N. D., Beucler, T., Pritchard, M. & Bretherton, C. S. Interpreting and stabilizing machine-learning parametrizations of convection. J. Atmos. Sci. 77, 4357–4375 (2020).

    Article  Google Scholar 

  79. 79.

    Seifert, A. & Rasp, S. Potential and limitations of machine learning for modeling warm-rain cloud microphysical processes. J. Adv. Model. Earth Syst. 12, e2020MS002301 (2020).

    Article  Google Scholar 

  80. 80.

    Beucler, T., Rasp, S., Pritchard, M. & Gentine, P. Achieving conservation of energy in neural network emulators for climate modeling. Preprint at https://arxiv.org/abs/1906.06622 (2019).

  81. 81.

    Schneider, T., Lan, S., Stuart, A. & Teixeira, J. Earth system modeling 2.0: a blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett. 44, 12396–12417 (2017).

    Google Scholar 

  82. 82.

    Cintra, R. S. & Velho, H. Fd. C. Data assimilation by artificial neural networks for an atmospheric general circulation model: conventional observation. Bull. Am. Meteorological Soc. 77, 437–471 (2014).

    Google Scholar 

  83. 83.

    Wahle, K., Staneva, J. & Guenther, H. Data assimilation of ocean wind waves using neural networks. a case study for the german bight. Ocean Model. 96, 117–125 (2015).

    Article  Google Scholar 

  84. 84.

    Irrgang, C., Saynisch-Wagner, J. & Thomas, M. Machine learning-based prediction of spatiotemporal uncertainties in global wind velocity reanalyses. J. Adv. Model. Earth Syst. 12, e2019MS001876 (2020).

    Article  Google Scholar 

  85. 85.

    Brajard, J., Carrassi, A., Bocquet, M. & Bertino, L. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model. J. Comput. Sci. 44, 101171 (2020).

    MathSciNet  Article  Google Scholar 

  86. 86.

    Ruckstuhl, Y., Janjić, T. & Rasp, S. Training a convolutional neural network to conserve mass in data assimilation. Nonlin. Processes Geophys. 28, 111–119 (2020).

    Article  Google Scholar 

  87. 87.

    Geer, A. J. Learning Earth system models from observations: machine learning or data assimilation? Phil. Trans. R. Soc. A 379, 20200089 (2021).

    MathSciNet  Article  Google Scholar 

  88. 88.

    Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).

    Article  Google Scholar 

  89. 89.

    Boers, N. et al. Prediction of extreme floods in the eastern central andes based on a complex networks approach. Nat. Commun. 5, 5199 (2014).

    Article  Google Scholar 

  90. 90.

    Qi, D. & Majda, A. J. Using machine learning to predict extreme events in complex systems. Proc. Natl Acad. Sci. USA 117, 52–59 (2020).

    MathSciNet  MATH  Article  Google Scholar 

  91. 91.

    Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, 1–12 (2020).

    Article  Google Scholar 

  92. 92.

    Leinonen, J., Guillaume, A. & Yuan, T. Reconstruction of cloud vertical structure with a generative adversarial network. Geophys. Res. Lett. 46, 7035–7044 (2019).

    Article  Google Scholar 

  93. 93.

    Stengel, K., Glaws, A., Hettinger, D. & King, R. N. Adversarial super-resolution of climatological wind and solar data. Proc. Natl Acad. Sci. USA 117, 16805–16815 (2020).

    Article  Google Scholar 

  94. 94.

    Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nat. Geosci. 5, 31–36 (2012).

    Article  Google Scholar 

  95. 95.

    Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geophys. Res. Lett. 47, e2020GL088376 (2020).

    Article  Google Scholar 

  96. 96.

    Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998).

    Article  Google Scholar 

  97. 97.

    Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    MathSciNet  MATH  Article  Google Scholar 

  98. 98.

    Ramadhan, A. et al. Capturing missing physics in climate model parameterizations using neural differential equations. Preprint at http://arxiv.org/abs/2010.12559 (2020).

  99. 99.

    Goodfellow, I. J. et al. Generative adversarial networks. Preprint at https://arxiv.org/abs/1406.2661 (2014).

  100. 100.

    Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339 – 1360 (2013).

    Article  Google Scholar 

  101. 101.

    Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  Google Scholar 

  102. 102.

    Balaji, V. Climbing down Charney’s ladder: machine learning and the post-Dennard era of computational climate science. Phil. Trans. R. Soc. A 379, 20200085 (2021).

    MathSciNet  Article  Google Scholar 

  103. 103.

    Sonnewald, M. et al. Bridging observation, theory and numerical simulation of the ocean using machine learning. Preprint at https://arxiv.org/abs/2104.12506 (2021).

  104. 104.

    Ethics Guidelines for Trustworthy AI (European Commission, 2019); https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

  105. 105.

    The Biden Administration Launches AI.gov Aimed at Broadening Access to Federal Artificial Intelligence Innovation Efforts, Encouraging Innovators of Tomorrow (White House, 2021); https://www.whitehouse.gov/ostp/news-updates/2021/05/05/the-biden-administration-launches-ai-gov-aimed-at-broadening-access-to-federal-artificial-intelligence-innovation-efforts-encouraging-innovators-of-tomorrow/

  106. 106.

    Toms, B. A., Barnes, E. A. & Ebert-Uphoff, I. Physically interpretable neural networks for the geosciences: applications to Earth system variability. J. Adv. Model. Earth Syst. 12, e2019MS002002 (2020).

    Article  Google Scholar 

  107. 107.

    Kaiser, B. E., Saenz, J. A., Sonnewald, M. & Livescu, D. Objective discovery of dominant dynamical processes with intelligible machine learning. Preprint at https://arxiv.org/abs/2106.12963 (20201).

  108. 108.

    McGovern, A. et al. Making the black box more transparent: understanding the physical implications of machine learning. Bull. Am. Meteorological Soc. 100, 2175 – 2199 (2019).

    Article  Google Scholar 

  109. 109.

    Ebert-Uphoff, I. & Hilburn, K. Evaluation, tuning and interpretation of neural networks for working with images in meteorological applications. B. Am. Meteorol. Soc. 101, E2149–E2170 (2020).

    Article  Google Scholar 

  110. 110.

    Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. Preprint at ESSOAr https://doi.org/10.1002/essoar.10506146.1 (2021).

  111. 111.

    Beucler, T., Ebert-Uphoff, I., Rasp, S., Pritchard, M. & Gentine, P. Machine learning for clouds and climate (invited chapter for the AGU geophysical monograph series ‘clouds and climate’). Preprint at ESSOAr https://doi.org/10.1002/essoar.10506925.1 (2021).

  112. 112.

    Olden, J. D., Joy, M. K. & Death, R. G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 178, 389–397 (2004).

    Article  Google Scholar 

  113. 113.

    Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015).

    Article  Google Scholar 

  114. 114.

    Barnes, E. A., Mayer, K., Toms, B., Martin, Z. & Gordon, E. Identifying opportunities for skillful weather prediction with interpretable neural networks. Preprint at https://arxiv.org/abs/2012.07830 (2020).

  115. 115.

    Sonnewald, M., Wunsch, C. & Heimbach, P. Unsupervised learning reveals geography of global ocean dynamical regions. Earth Space Sci. 6, 784–794 (2019).

    Article  Google Scholar 

  116. 116.

    Callaham, J. L., Koch, J. V., Brunton, B. W., Kutz, J. N. & Brunton, S. L. Learning dominant physical processes with data-driven balance models. Nat. Commun. 12, 1016 (2021).

  117. 117.

    Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019).

  118. 118.

    Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Article  Google Scholar 

  119. 119.

    Schlund, M. et al. Constraining uncertainty in projected gross primary production with machine learning. J. Geophys. Res. Biogeosci. 125, e2019JG005619 (2020).

    Article  Google Scholar 

  120. 120.

    Rasp, S. et al. WeatherBench: a benchmark dataset for data-driven weather forecasting. J. Adv. Model. Earth Syst. 12, e2020MS002203 (2020).

    Article  Google Scholar 

  121. 121.

    Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020).

    Article  Google Scholar 

  122. 122.

    Buckner, C. Understanding adversarial examples requires a theory of artefacts for deep learning. Nat. Mach. Intell. 2, 731–736 (2020).

    Article  Google Scholar 

  123. 123.

    Alvarez-Melis, D. & Jaakkola, T. S. On the robustness of interpretability methods. Preprint at https://arxiv.org/abs/1806.08049 (2018).

  124. 124.

    Rolnick, D. et al. Tackling climate change with machine learning. Preprint at http://arxiv.org/abs/1906.05433 (2019).

Download references

Acknowledgements

This study was funded by the Helmholtz Association and by the Initiative and Networking Fund of the Helmholtz Association through the project Advanced Earth System Modelling Capacity (ESM). N.B. acknowledges funding by the Volskwagen foundation and the European Union’s Horizon 2020 research and innovation program under grant agreement number 820970 (TiPES, contribution #121). E.A.B. was supported, in part, by the US National Science Foundation under grant number AGS-1749261. M.S. acknowledges funding from the Cooperative Institute for Modeling the Earth System, Princeton University, under award number NA18OAR4320123 and from the National Oceanic and Atmospheric Administration, US Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of Princeton University, the National Oceanic and Atmospheric Administration or the US Department of Commerce.

Author information

Affiliations

Authors

Contributions

C.I. conceived the study and organized the collaboration. All authors contributed to writing and revising all sections of this manuscript. In particular, N.B. and C.I. drafted the ESM overview, J.S.-W. and J.S. drafted the ESO and data assimilation overview, C.I. and C.K. drafted the ‘From ML-based data exploration towards learning physics’ section, C.I. and J.S.-W. and N.B. drafted the ‘Fusion of process-based models and AI’ section and M.S. and E.A.B. and CI drafted the ‘Peering into the black box’ section.

Corresponding author

Correspondence to Christopher Irrgang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Machine Intelligence thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irrgang, C., Boers, N., Sonnewald, M. et al. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat Mach Intell 3, 667–674 (2021). https://doi.org/10.1038/s42256-021-00374-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing