Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

On the importance of ethnographic methods in AI research

To truly understand the societal impact of AI, we need to look beyond the exclusive focus on quantitative methods, and focus on qualitative methods like ethnography, which shed light on the actors and institutions that wield power through the use of these technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Benjamin, R. Race After Technology: Abolitionist Tools for the New Jim Code (Polity, 2019).

  2. 2.

    Eubanks, V. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St. Martin’s Press, 2018).

  3. 3.

    Noble, S. U. Algorithms of Oppression (NYU Press, 2018).

  4. 4.

    Raji, I. D. et al. in Proc. AAAI/ACM Conference on AI, Ethics, and Society 145–151 (ACM, 2020).

  5. 5.

    Hicks, M. Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge in Computing (MIT Press, 2018).

  6. 6.

    Keyes, O. Proc. ACM on Human-Computer Interaction Vol. 2 88 (ACM, 2018).

  7. 7.

    Prasad, M. & Marda, V. In Artificial Intelligence: Human Rights, Social Justice and Development 145–151 (APC, Article 19, Sida, 2019).

  8. 8.

    Devich-Cyril, M. The Atlantic http://go.nature.com/3bvkfjS (2020).

  9. 9.

    Lum, K. & Issac, W. Significance 13, 14–19 (2016).

    Article  Google Scholar 

  10. 10.

    Moss, E. & Sloane, M. Nat. Mach. Intell. 1, 330–331 (2019).

    Article  Google Scholar 

  11. 11.

    Forsythe, D. Studying Those Who Study Us: An Anthropologist in the World of Artificial Intelligence 8–9 (Stanford Univ. Press, 2001).

  12. 12.

    Marda, V. in Artificial Intelligence: Human Rights, Social Justice and Development 9–13 (APC, Article 19, Sida, 2019).

  13. 13.

    Reeves, S., Kuper, A. & Hodges, B. D. BMJ 337, a1020 (2008).

    Article  Google Scholar 

  14. 14.

    Nader, L. J. Ethnograph. Theor. 1, 211–219 (2011).

    Article  Google Scholar 

  15. 15.

    Nader, L. (ed.) Naked Science: Anthropological Inquiry into Boundaries, Power, and Knowledge (Routledge, 2014).

  16. 16.

    Barabas C., Doyle, C., Rubinovitz, J. B. & Dinakar, K. in ACM Conf. Fairness, Accountability, and Transparency 167–176 (ACM, 2020).

  17. 17.

    Elish, M. C. & Boyd, D. Preprint at https://ssrn.com/abstract=3040201 (2017).

  18. 18.

    From the Commissioner’s Desk (Delhi Police, 2015).

  19. 19.

    Singh, K. P. Hindustan Times http://go.nature.com/3uqfX64 (2017).

  20. 20.

    CAG’s Performance Audit report on Manpower and Logistics Management in Delhi Police” presented (Comptroller and Auditor General of India, 2020); https://go.nature.com/2NTAhf8

  21. 21.

    Marda, V & Narayan, S in Proc. ACM Conference on Fairness, Accountability, and Transparency 317–324 (ACM, 2020).

  22. 22.

    Seaver, N. in Knowing Algorithms in DigitalSTS: A Field Guide for Science and Technology Studies (eds. Vertesi, J. & Ribes, D) 412–422 (Princeton Univ. Press, 2019).

  23. 23.

    Haraway, D. Fem. Stud. 14, 575–599 (1988).

    Article  Google Scholar 

  24. 24.

    Delhi Police selects Barco for city’s first C4I Surveillance Center (Barco, 2010); http://go.nature.com/3uqab4j

  25. 25.

    Hanna, A. & Park, M. T. Preprint at https://arxiv.org/abs/2010.08850 (2020).

  26. 26.

    Christin, A. Theor. Soc. 49, 897–918 (2020).

    Article  Google Scholar 

  27. 27.

    Latour, B. in The Lure of Whitehead (eds. Gaskill, N. & Nocek, A. J.) 34 (Univ. Minnesota Press, 2014).

Download references

Acknowledgements

The authors thank N. Raval, R. Renno and M. Ansari for their feedback on various drafts of this piece.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Vidushi Marda or Shivangi Narayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marda, V., Narayan, S. On the importance of ethnographic methods in AI research. Nat Mach Intell 3, 187–189 (2021). https://doi.org/10.1038/s42256-021-00323-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing