Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid online learning and robust recall in a neuromorphic olfactory circuit

A preprint version of the article is available at arXiv.

Abstract

We present a neural algorithm for the rapid online learning and identification of odourant samples under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system. As with biological olfaction, the spike timing-based algorithm utilizes distributed, event-driven computations and rapid (one shot) online learning. Spike timing-dependent plasticity rules operate iteratively over sequential gamma-frequency packets to construct odour representations from the activity of chemosensor arrays mounted in a wind tunnel. Learned odourants then are reliably identified despite strong destructive interference. Noise resistance is further enhanced by neuromodulation and contextual priming. Lifelong learning capabilities are enabled by adult neurogenesis. The algorithm is applicable to any signal identification problem in which high-dimensional signals are embedded in unknown backgrounds.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Model structure and signal encoding.
Fig. 2: Plasticity rules.
Fig. 3: Odourant-evoked MC activity patterns are attracted to learned representations.
Fig. 4: Multi-odour learning.
Fig. 5: Odour learning with plume dynamics.
Fig. 6: Performance evaluation.

Data availability

The Vergara et al. gas sensor dataset4 is freely available from the UCI Machine Learning database (http://archive.ics.uci.edu/ml/datasets/gas+sensor+arrays+in+open+sampling+settings).

Code availability

A software version of the model reproducing the primary results of Figs. 35 is freely available from the ModelDB public archive (http://modeldb.yale.edu/261864). The Loihi source code is freely available from Github (https://github.com/intel-nrc-ecosystem/models/tree/master/official/epl).

References

  1. 1.

    Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article  Google Scholar 

  2. 2.

    Rinberg, D., Koulakov, A. & Gelperin, A. Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865 (2006).

    Article  Google Scholar 

  3. 3.

    Marco, S. & Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sens. J. 12, 3189–3214 (2012).

    Article  Google Scholar 

  4. 4.

    Vergara, A. et al. On the performance of gas sensor arrays in open sampling systems using inhibitory support vector machines. Sens. Actuat. B 185, 462–477 (2013).

    Article  Google Scholar 

  5. 5.

    Goff, S. A. & Klee, H. J. Plant volatile compounds: sensory cues for health and nutritional value? Science 311, 815–819 (2006).

    Article  Google Scholar 

  6. 6.

    Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nat. Neurosci. 3, 1248–1255 (2000).

    Article  Google Scholar 

  7. 7.

    Araneda, R. C., Peterlin, Z., Zhang, X., Chesler, A. & Firestein, S. A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium. J. Physiol. 555, 743–756 (2004).

    Article  Google Scholar 

  8. 8.

    Rospars, J. P. Interactions of odorants with olfactory receptors and other preprocessing mechanisms: how complex and difficult to predict? Chem. Senses 38, 283–287 (2013).

    Article  Google Scholar 

  9. 9.

    Rospars, J. P., Lansky, P., Chaput, M. & Duchamp-Viret, P. Competitive and noncompetitive odorant interactions in the early neural coding of odorant mixtures. J. Neurosci. 28, 2659–2666 (2008).

    Article  Google Scholar 

  10. 10.

    Persaud, K. C, Marco, S. & Gutierrez-Galvez, A. Neuromorphic Olfaction (CRC Press, 2013).

  11. 11.

    Raman, B., Stopfer, M. & Semancik, S. Mimicking biological design and computing principles in artificial olfaction. ACS Chem. Neurosci. 2, 487–499 (2011).

    Article  Google Scholar 

  12. 12.

    Cleland, T. A. Construction of odor representations by olfactory bulb microcircuits. Prog. Brain Res. 208, 177–203 (2014).

    Article  Google Scholar 

  13. 13.

    Bathellier, B., Lagier, S., Faure, P. & Lledo, P. M. Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J. Neurophysiol. 95, 2678–2691 (2006).

    Article  Google Scholar 

  14. 14.

    Li, G. & Cleland, T. A. A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comput. Biol. 13, e1005760 (2017).

    Article  Google Scholar 

  15. 15.

    Peace, S. T. et al. Coherent olfactory bulb gamma oscillations arise from coupling independent columnar oscillators. Preprint at https://doi.org/10.1101/213827 (2018).

  16. 16.

    Kashiwadani, H., Sasaki, Y. F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999).

    Article  Google Scholar 

  17. 17.

    Linster, C. & Cleland, T. A. Decorrelation of odor representations via spike timing-dependent plasticity. Front. Comput. Neurosci. 4, 157 (2010).

    Google Scholar 

  18. 18.

    Masquelier, T., Hugues, E., Deco, G. & Thorpe, S. J. Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. J. Neurosci. 29, 13484–13493 (2009).

    Article  Google Scholar 

  19. 19.

    Banerjee, A. et al. An interglomerular circuit gates glomerular output and implements gain control in the mouse olfactory bulb. Neuron 87, 193–207 (2015).

    Article  Google Scholar 

  20. 20.

    Cleland, T. A., Johnson, B. A., Leon, M. & Linster, C. Relational representation in the olfactory system. Proc. Natl Acad. Sci. USA 104, 1953–1958 (2007).

    Article  Google Scholar 

  21. 21.

    Cleland, T. A. et al. Sequential mechanisms underlying concentration invariance in biological olfaction. Front. Neuroeng. 4, 21 (2012).

    Article  Google Scholar 

  22. 22.

    Miller, P. Itinerancy between attractor states in neural systems. Curr. Opin. Neurobiol. 40, 14–22 (2016).

    Article  Google Scholar 

  23. 23.

    Tong, M. T., Kim, T. P. & Cleland, T. A. Kinase activity in the olfactory bulb is required for odor memory consolidation. Learn. Mem. 25, 198–205 (2018).

    Article  Google Scholar 

  24. 24.

    Chu, M. W., Li, W. L. & Komiyama, T. Lack of pattern separation in sensory inputs to the olfactory bulb during perceptual learning. eNeuro 4, 5 (2017).

    Article  Google Scholar 

  25. 25.

    Doucette, W. & Restrepo, D. Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol. 6, e258 (2008).

    Article  Google Scholar 

  26. 26.

    Sultan, S. et al. Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J. 24, 2355–2363 (2010).

    Article  Google Scholar 

  27. 27.

    Moreno, M. M. et al. Olfactory perceptual learning requires adult neurogenesis. Proc. Natl Acad. Sci. USA 106, 17980–17985 (2009).

    Article  Google Scholar 

  28. 28.

    Gao, Y. & Strowbridge, B. W. Long-term plasticity of excitatory inputs to granule cells in the rat olfactory bulb. Nat. Neurosci. 12, 731–733 (2009).

    Article  Google Scholar 

  29. 29.

    Lepousez, G. et al. Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons. Proc. Natl Acad. Sci. USA 111, 13984–13989 (2014).

    Article  Google Scholar 

  30. 30.

    de Almeida, L., Idiart, M. & Linster, C. A model of cholinergic modulation in olfactory bulb and piriform cortex. J. Neurophysiol. 109, 1360–1377 (2013).

    Article  Google Scholar 

  31. 31.

    Devore, S. & Linster, C. Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front. Behav. Neurosci. 6, 52 (2012).

    Google Scholar 

  32. 32.

    Li, G., Linster, C. & Cleland, T. A. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J. Neurophysiol. 114, 3177–3200 (2015).

    Article  Google Scholar 

  33. 33.

    Kermen, F., Sultan, S., Sacquet, J., Mandairon, N. & Didier, A. Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory. PLoS ONE 5, e12118 (2010).

    Article  Google Scholar 

  34. 34.

    Lepousez, G., Valley, M. T. & Lledo, P. M. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu. Rev. Physiol. 75, 339–363 (2013).

    Article  Google Scholar 

  35. 35.

    McIntyre, A. B. & Cleland, T. A. Biophysical constraints on lateral inhibition in the olfactory bulb. J. Neurophysiol. 115, 2937–2949 (2016).

    Article  Google Scholar 

  36. 36.

    Lagier, S. et al. GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc. Natl Acad. Sci. USA 104, 7259–7264 (2007).

    Article  Google Scholar 

  37. 37.

    McTavish, T. S., Migliore, M., Shepherd, G. M. & Hines, M. L. Mitral cell spike synchrony modulated by dendrodendritic synapse location. Front. Comput. Neurosci. 6, 3 (2012).

    Article  Google Scholar 

  38. 38.

    Borthakur, A. & Cleland, T. A. A neuromorphic transfer learning algorithm for orthogonalizing highly overlapping sensor array responses. In ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) 1–3 (IEEE, 2017).

  39. 39.

    Borthakur, A. & Cleland, T. A. Signal conditioning for learning in the wild. In Proc. Neuro-inspired Computational Elements Workshop 8 (Association for Computing Machinery, 2019).

  40. 40.

    Borthakur, A. & Cleland, T. A. A spike time-dependent online learning algorithm derived from biological olfaction. Front. Neurosci. 13, 656 (2019).

    Article  Google Scholar 

  41. 41.

    French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).

    Article  Google Scholar 

  42. 42.

    Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  43. 43.

    Chow, S. F., Wick, S. D. & Riecke, H. Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb. PLoS Comput. Biol. 8, e1002398 (2012).

    Article  MathSciNet  Google Scholar 

  44. 44.

    Levandowsky, M. & Winter, D. Distance between sets. Nature 234, 34–35 (1971).

    Article  Google Scholar 

  45. 45.

    Moreno, M. M. et al. Action of the noradrenergic system on adult-born cells is required for olfactory learning in mice. J. Neurosci. 32, 3748–3758 (2012).

    Article  Google Scholar 

  46. 46.

    Hasselmo, M. E. & Giocomo, L. M. Cholinergic modulation of cortical function. J. Mol. Neurosci. 30, 133–135 (2006).

    Article  Google Scholar 

  47. 47.

    Mandairon, N. et al. Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats. Eur. J. Neurosci. 24, 3234–3244 (2006).

    Article  Google Scholar 

  48. 48.

    Mandairon, N. et al. Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front. Behav. Neurosci. 8, 138 (2014).

    Article  Google Scholar 

  49. 49.

    Strowbridge, B. W. Role of cortical feedback in regulating inhibitory microcircuits. Ann. N. Y. Acad. Sci. 1170, 270–274 (2009).

    Article  Google Scholar 

  50. 50.

    Adams, W., Graham, J. N., Han, X. & Riecke, H. Top-down inputs drive neuronal network rewiring and context-enhanced sensory processing in olfaction. PLoS Comput. Biol. 15, e1006611 (2019).

    Article  Google Scholar 

  51. 51.

    Huang, Y.-M., Ng, M. K. & Wen, Y.-W. Fast image restoration methods for impulse and Gaussian noises removal. IEEE Sig. Proc. Lett. 16, 457–460 (2009).

    Article  Google Scholar 

  52. 52.

    Thorpe, S., Delorme, A. & Van Rullen, R. Spike-based strategies for rapid processing. Neural Netw. 14, 715–725 (2001).

    Article  Google Scholar 

  53. 53.

    Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).

    Article  Google Scholar 

  54. 54.

    Izhikevich, E. M. Polychronization: computation with spikes. Neural Comput. 18, 245–282 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  55. 55.

    Maass, W. in Models of Neural Networks IV. Physics of Neural Networks (eds van Hemmen, J. L. et al.) 373–402 (Springer, 2002).

  56. 56.

    Maass, W. & Markram, H. On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 69, 593–616 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  57. 57.

    Luna, V. M. & Schoppa, N. E. GABAergic circuits control input-spike coupling in the piriform cortex. J. Neurosci. 28, 8851–8859 (2008).

    Article  Google Scholar 

  58. 58.

    Feldman, D. E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).

    Article  Google Scholar 

  59. 59.

    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010).

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Xie, J., Xu, L. & Chen, E. Image denoising and inpainting with deep neural networks. in Proc. 25th International Conference on Neural Information Processing Systems (eds Pereira, F. et al.) 341–349 (NeurIPS, 2012).

Download references

Acknowledgements

This work was funded by the National Institute on Deafness and Other Communication Disorders (R01 DC014701 and R01 DC014367 to TAC).

Author information

Affiliations

Authors

Contributions

T.A.C. conceived the neural algorithm. N.I. instantiated the algorithm and enhanced the learning rules. T.A.C. and N.I. wrote the manuscript.

Corresponding authors

Correspondence to Nabil Imam or Thomas A. Cleland.

Ethics declarations

Competing interests

The authors declare competing interests as follows. The underlying platform-independent algorithm is the subject of a Cornell University patent application on which the authors are listed as inventors. N.I. is currently employed by Intel Labs, developers of the Loihi neuromorphic system. T.A.C. is a member of the Intel Neuromorphic Research Community and has received research funding from Intel for related work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, methods, notes, discussion and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imam, N., Cleland, T.A. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat Mach Intell 2, 181–191 (2020). https://doi.org/10.1038/s42256-020-0159-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing