Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Homeostasis and soft robotics in the design of feeling machines


Attempts to create machines that behave intelligently often conceptualize intelligence as the ability to achieve goals, leaving unanswered a crucial question: whose goals? In a dynamic and unpredictable world, an intelligent agent should hold its own meta-goal of self-preservation, like living organisms whose survival relies on homeostasis: the regulation of body states aimed at maintaining conditions compatible with life. In organisms capable of mental states, feelings are a mental expression of the state of life in the body and play a critical role in regulating behaviour. Our goal here is to inquire about conditions that would potentially allow machines to care about what they do or think. Under certain conditions, machines capable of implementing a process resembling homeostasis might also acquire a source of motivation and a new means to evaluate behaviour, akin to that of feelings in living organisms. Drawing on recent developments in soft robotics and multisensory abstraction, we propose a new class of machines inspired by the principles of homeostasis. The resulting machines would (1) exhibit equivalents to feeling; (2) improve their functionality across a range of environments; and (3) constitute a platform for investigating consciousness, intelligence and the feeling process itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ashby’s homeostat of 1954 exhibited some self-restoring stability.
Fig. 2: Artificial and natural soft materials.

National Cancer Institute (c).

Similar content being viewed by others


  1. Damasio, A. The Strange Order of Things: Life, Feeling, and the Making of Cultures (Pantheon, 2018).

  2. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–38 (2010).

    Article  Google Scholar 

  3. Kolchinsky, A. & Wolpert, D. H. Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus 8, 20180041 (2018).

    Article  Google Scholar 

  4. Kiverstein, J. D. & Rietveld, E. Reconceiving representation-hungry cognition: an ecological-enactive proposal. Adapt. Behav. 26, 147–163 (2018).

    Article  Google Scholar 

  5. Shannon, C. E. The mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  MathSciNet  Google Scholar 

  6. Anderson, M. L. Embodied cognition: a field guide. Artif. Intell. 149, 91–130 (2003).

    Article  Google Scholar 

  7. Froese, T. & Ziemke, T. Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif. Intell. 173, 466–500 (2009).

    Article  Google Scholar 

  8. Seth, A. K. & Tsakiris, M. Being a beast machine: the somatic basis of selfhood. Trends Cogn. Sci. 969–981 (2018).

  9. Cariani, P. A. The homeostat as embodiment of adaptive control. Int. J. Gen. Syst. 38, 139–154 (2009).

    Article  Google Scholar 

  10. Walter, W. G. An imitation of life. Sci. Am. 182, 42–45 (1950).

    Article  Google Scholar 

  11. Holland, O. E. in Artificial Life V: Proceedings of the 5th International Workshop on the Synthesis and Simulation of Living Systems (eds Langton, C. G. & Shimohara, K.) 34–44 (MIT Press, 1997).

  12. Brooks, R. A. New approaches to robotics. Science 253, 1227–1232 (1991).

    Article  Google Scholar 

  13. Bongard, J. & Lipson, H. Evolved machines shed light on robustness and resilience. Proc. IEEE 102, 899–914 (2014).

    Article  Google Scholar 

  14. Parisi, D. Internal robotics. Conn. Sci. 16, 325–338 (2004).

    Article  Google Scholar 

  15. Doya, K. & Uchibe, E. The cyber rodent project: exploration of adaptive mechanisms for self-preservation and self-reproduction. Adapt. Behav. 13, 149–160 (2005).

    Article  Google Scholar 

  16. Di Paolo, E. Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. Proc. Simul. Adapt. Behav. 440–449 (2000).

  17. Parisi, D. & Petrosino, G. Robots that have emotions. Adapt. Behav. 18, 453–469 (2010).

    Article  Google Scholar 

  18. Breazeal, C. Emotion and sociable humanoid robots. Int. J. Hum. Comput. Stud. 59, 119–155 (2003).

    Article  Google Scholar 

  19. Jonas, H. The Phenomenon of Life: Toward a Philosophical Biology (Northwestern Univ. Press, 1966).

  20. Di Paolo, E. in Dynamical Systems Approach to Embodiment and Sociality (eds Murase, K. & Asakura, T.) 19–42 (Advanced Knowledge International, 2003).

  21. Legg, S. & Hutter, M. Universal intelligence: a definition of machine intelligence. Minds Mach. 17, 391–444 (2007).

    Article  Google Scholar 

  22. Maturana, H. R. & Varela, F. J. Autopoiesis and Cognition: The Realization of the Living (Springer, 1991).

  23. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  Google Scholar 

  24. Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    Article  Google Scholar 

  25. Majidi, C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1, 5–11 (2014).

    Article  Google Scholar 

  26. Lu, N. & Kim, D.-H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1, 53–62 (2014).

    Article  Google Scholar 

  27. Pfeifer, R., Iida, F. & Lungarella, M. Cognition from the bottom up: on biological inspiration, body morphology, and soft materials. Trends Cogn. Sci. 18, 404–413 (2014).

    Article  Google Scholar 

  28. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  Google Scholar 

  29. Markvicka, E. J., Tutika, R., Bartlett, M. D. & Majidi, C. Soft electronic skin for multi‐site damage detection and localization. Adv. Funct. Mater. 29, 1900160 (2019).

    Article  Google Scholar 

  30. Martinez, R. V., Glavan, A. C., Keplinger, C., Oyetibo, A. I. & Whitesides, G. M. Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 24, 3003–3010 (2014).

    Article  Google Scholar 

  31. Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article  Google Scholar 

  32. Bartlett, M. D., Dickey, M. D. & Majidi, C. Self-healing materials for soft-matter machines and electronics. npg Asia Mater. 11, 19–22 (2019).

    Article  Google Scholar 

  33. Cao, Y. et al. Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019).

    Article  Google Scholar 

  34. Laschi, C. et al. Soft robot arm inspired by the octopus. Adv. Robot. 26, 709–727 (2012).

    Article  Google Scholar 

  35. Duriez, C. in Proc. IEEE International Conference on Robotics and Automation 3982–3987 (IEEE, 2013).

  36. Goldberg, N. N. et al. On planar discrete elastic rod models for the locomotion of soft robots. Soft Robot. (2019).

  37. Hiller, J. & Lipson, H. Dynamic simulation of soft multimaterial 3D-printed objects. Soft Robot. 1, 88–101 (2014).

    Article  Google Scholar 

  38. Rieffel, J., Knox, D., Smith, S. & Trimmer, B. Growing and evolving soft robots. Artif. Life 20, 143–162 (2014).

    Article  Google Scholar 

  39. Ricotti, L. et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2, eaaq0495 (2017).

    Article  Google Scholar 

  40. Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

    Article  Google Scholar 

  41. Damasio, A. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989).

    Article  Google Scholar 

  42. Damasio, A. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62 (1989).

    Article  Google Scholar 

  43. Meyer, K. & Damasio, A. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 32, 376–82 (2009).

    Article  Google Scholar 

  44. Man, K., Kaplan, J., Damasio, H. & Damasio, A. Neural convergence and divergence in the mammalian cerebral cortex: from experimental neuroanatomy to functional neuroimaging. J. Comp. Neurol. 521, 4097–4111 (2013).

    Article  Google Scholar 

  45. Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. Artif. Intell. Stat. 5, 448–455 (2009).

    MATH  Google Scholar 

  46. Hinton, G. E. & Sejnowski, T. J. Optimal perceptual inference. in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition 448–453 (IEEE, 1983).

  47. Ackley, D., Hinton, G. & Sejnowski, T. A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

    Article  Google Scholar 

  48. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article  Google Scholar 

  49. Graves, A., Eck, D., Beringer, N. & Schmidhuber, J. in Biologically Inspired Approaches to Advanced Information Technology (eds Ijspeert, A. J., Murata, M. & Wakamiya, N.) 127–136 (Springer, 2003).

  50. Ngiam, J., Khosla, A. & Kim, M. Multimodal deep learning. In Proc. 28th International Conference on Maching Learning (eds Getoor, L. & Scheffer, T.) 689–696 (2011).

  51. Aytar, Y., Vondrick, C. & Torralba, A. SoundNet: learning sound representations from unlabeled video. In Proc. 30th International Conference on Neural Information Processing Systems 892–900 (NIPS, 2016).

  52. Man, K., Kaplan, J. T., Damasio, A. & Meyer, K. Sight and sound converge to form modality-invariant representations in temporoparietal cortex. J. Neurosci. 32, 16629–36 (2012).

    Article  Google Scholar 

  53. Lenz, I., Lee, H. & Saxena, A. Deep learning for detecting robotic grasps. Int. J. Rob. Res. 34, 705–724 (2015).

    Article  Google Scholar 

  54. Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P. & Downing, P. E. Surface-based information mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex. J. Neurophysiol. 104, 1077–89 (2010).

    Article  Google Scholar 

  55. Man, K., Damasio, A., Meyer, K. & Kaplan, J. T. Convergent and invariant object representations for sight, sound, and touch. Hum. Brain Mapp. 36, 3629–3640 (2015).

    Article  Google Scholar 

  56. Damasio, A. Self Comes to Mind (Pantheon, 2010).

  57. Seth, A. K., Suzuki, K. & Critchley, H. D. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2, 395 (2012).

    Article  Google Scholar 

  58. Bersini, H. in Proc. Third International Conference on Simulation of Adaptive Behaviour 325–333 (MIT Press-Bradford Books, 1994).

  59. Konidaris, G. & Barto, A. in From Animals to Animats 9 (ed. Nolfi, S.) 346–356 (Springer, 2006).

  60. Keramati, M. & Gutkin, B. Homeostatic reinforcement learning for integrating reward collection and physiological stability. eLife 3, e04811 (2014).

    Article  Google Scholar 

  61. Moerland, T. M., Broekens, J. & Jonker, C. M. Emotion in reinforcement learning agents and robots: a survey. Mach. Learning 107, 443–480 (2018).

    Article  MathSciNet  Google Scholar 

  62. Juechems, K. & Summerfield, C. Where does value come from? Preprint at (2019).

  63. Morville, T., Friston, K., Burdakov, D., Siebner, H. R. & Hulme, O. J. The homeostatic logic of reward. Preprint at (2018).

  64. Johnson, M. Morality for Humans (Univ. Chicago Press, 2014).

  65. Levy, N. Consciousness and Moral Responsibility (Oxford Univ. Press, 2014).

  66. Omohundro, S. M. The basic AI drives. In Proc. 2008 Conference on Artificial General Intelligence 483–492 (ACM, 2008).

  67. DeYoung, C. G. in The Cambridge Handbook of Intelligence 711–737 (Cambridge Univ. Press, 2012).

  68. Searle, J. R. Minds, brains and programs. Behav. Brain Sci. 3, 417–457 (1980).

    Article  Google Scholar 

Download references


We are grateful to H. Damasio for comments on this Perspective. This work was supported by grants from the Berggruen Foundation and the Templeton World Charity Foundation to A.D.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Kingson Man or Antonio Damasio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, K., Damasio, A. Homeostasis and soft robotics in the design of feeling machines. Nat Mach Intell 1, 446–452 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics