To create less harmful technologies and ignite positive social change, AI engineers need to enlist ideas and expertise from a broad range of social science disciplines, including those embracing qualitative methods, say Mona Sloane and Emanuel Moss.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Machine learning and power relations
AI & SOCIETY Open Access 25 February 2022
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Eubanks, V. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St Martin’s, 2018).
Noble, S. U. Algorithms of Oppression: How Search Engines Reinforce Racism (New York Univ. Press, 2018).
Buolamwini, J. & Gebru, T. Proc. Mach. Learn. Res. 81, 77–91 (2018).
Wilson, B., Hoffman, J. & Morgenstern, J. Preprint at https://arxiv.org/abs/1902.11097 (2019).
Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Preprint https://arxiv.org/abs/1606.06121 (2016).
Keyes, O. in Proc. ACM on Human-Computer Interaction 2, 88 (ACM, 2018).
Amodei, D. et al. Preprint at https://arxiv.org/abs/1606.06565 (2016).
Greene, D., Hoffmann, A. L. & Stark, L. in Proc. 52nd Hawaii International Conference on System Sciences 2122–2131 (HICSS, 2019).
Sloane, M. in Proc. Weizenbaum Conference 2019 ‘Challenges of Digital Inequality - Digital Education, Digital Work, Digital Life’ https://doi.org/10.34669/wi.cp/2.9 (2019).
Metcalf, J., Moss, E. & boyd, d. Soc. Res. 86, 449–476 (2019).
Awad, E. et al. Nature 563, 59–64 (2018).
Irving, G. & Askell, A. Distill https://doi.org/10.23915/distill.00014 (2019).
Katz, Y. Preprint at https://doi.org/10.2139/ssrn.3078224 (2017).
Stark, L. Soc. Stud. Sci. 48, 204–231 (2018).
boyd, d. & Crawford, K. Inform. Commun. Soc. 15, 662–679 (2012).
Elish, M. C. & boyd, d Commun. Monogr. 85, 57–80 (2017).
Benthall, S. & Haynes, B. D. in Proc. ACM Fairness, Accountability, and Transparency Conference (FAT*) 289–298 (ACM, 2019).
Bowker, G. C. & Star, S. L. Sorting Things Out: Classification and Its Consequences (MIT Press, 2000).
Benjamin, R. Race After Technology: Abolitionist Tools for the New Jim Code (Polity Books, 2019).
Stark, L. XRDS Crossroads 25, 50–55 (Spring, 2019).
Daniels, J., Nkonde, M. & Mir, D. Advancing Racial Literacy in Tech: Why Ethics, Diversity in Hiring and Implicit Bias Trainings Aren’t Enough (Data & Society’s Fellowship Program, 2019).
Wagner, C., Garcia, D., Jadidi, M. & Strohmaier, M. in The International AAAI Conference on Web and Social Media 454–463 (AAAI, 2015).
Richardson, R., Schultz, J. & Crawford, K. NYU Law Rev. 94, 192–233 (2019).
Metcalf, J. et al. Medium https://medium.com/pervade-team/the-study-has-been-approved-by-the-irb-gayface-ai-research-hype-and-the-pervasive-data-ethics-ed76171b882c (2017).
Back, L. The Art of Listening (Berg, 2007).
Nature 562, 7 (2018).
Howard, D. & Irani, L. in Proc. 2019 CHI Conference on Human Factors in Computing Systems 97 (ACM, 2019).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sloane, M., Moss, E. AI’s social sciences deficit. Nat Mach Intell 1, 330–331 (2019). https://doi.org/10.1038/s42256-019-0084-6
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-019-0084-6
This article is cited by
-
Machine learning and power relations
AI & SOCIETY (2022)
-
On the importance of ethnographic methods in AI research
Nature Machine Intelligence (2021)
-
Applying a principle of explicability to AI research in Africa: should we do it?
Ethics and Information Technology (2021)
-
Consider ethical and social challenges in smart grid research
Nature Machine Intelligence (2019)