AI’s social sciences deficit

Article metrics

To create less harmful technologies and ignite positive social change, AI engineers need to enlist ideas and expertise from a broad range of social science disciplines, including those embracing qualitative methods, say Mona Sloane and Emanuel Moss.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Eubanks, V. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St Martin’s, 2018).

  2. 2.

    Noble, S. U. Algorithms of Oppression: How Search Engines Reinforce Racism (New York Univ. Press, 2018).

  3. 3.

    Buolamwini, J. & Gebru, T. Proc. Mach. Learn. Res. 81, 77–91 (2018).

  4. 4.

    Wilson, B., Hoffman, J. & Morgenstern, J. Preprint at https://arxiv.org/abs/1902.11097 (2019).

  5. 5.

    Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Preprint https://arxiv.org/abs/1606.06121 (2016).

  6. 6.

    Keyes, O. in Proc. ACM on Human-Computer Interaction 2, 88 (ACM, 2018).

  7. 7.

    Amodei, D. et al. Preprint at https://arxiv.org/abs/1606.06565 (2016).

  8. 8.

    Greene, D., Hoffmann, A. L. & Stark, L. in Proc. 52nd Hawaii International Conference on System Sciences 2122–2131 (HICSS, 2019).

  9. 9.

    Sloane, M. in Proc. Weizenbaum Conference 2019 ‘Challenges of Digital Inequality - Digital Education, Digital Work, Digital Life’ https://doi.org/10.34669/wi.cp/2.9 (2019).

  10. 10.

    Metcalf, J., Moss, E. & boyd, d. Soc. Res. 86, 449–476 (2019).

  11. 11.

    Awad, E. et al. Nature 563, 59–64 (2018).

  12. 12.

    Irving, G. & Askell, A. Distill https://doi.org/10.23915/distill.00014 (2019).

  13. 13.

    Katz, Y. Preprint at https://doi.org/10.2139/ssrn.3078224 (2017).

  14. 14.

    Stark, L. Soc. Stud. Sci. 48, 204–231 (2018).

  15. 15.

    boyd, d. & Crawford, K. Inform. Commun. Soc. 15, 662–679 (2012).

  16. 16.

    Elish, M. C. & boyd, d Commun. Monogr. 85, 57–80 (2017).

  17. 17.

    Benthall, S. & Haynes, B. D. in Proc. ACM Fairness, Accountability, and Transparency Conference (FAT*) 289–298 (ACM, 2019).

  18. 18.

    Bowker, G. C. & Star, S. L. Sorting Things Out: Classification and Its Consequences (MIT Press, 2000).

  19. 19.

    Benjamin, R. Race After Technology: Abolitionist Tools for the New Jim Code (Polity Books, 2019).

  20. 20.

    Stark, L. XRDS Crossroads 25, 50–55 (Spring, 2019).

  21. 21.

    Daniels, J., Nkonde, M. & Mir, D. Advancing Racial Literacy in Tech: Why Ethics, Diversity in Hiring and Implicit Bias Trainings Aren’t Enough (Data & Society’s Fellowship Program, 2019).

  22. 22.

    Wagner, C., Garcia, D., Jadidi, M. & Strohmaier, M. in The International AAAI Conference on Web and Social Media 454–463 (AAAI, 2015).

  23. 23.

    Richardson, R., Schultz, J. & Crawford, K. NYU Law Rev. 94, 192–233 (2019).

  24. 24.

    Metcalf, J. et al. Medium https://medium.com/pervade-team/the-study-has-been-approved-by-the-irb-gayface-ai-research-hype-and-the-pervasive-data-ethics-ed76171b882c (2017).

  25. 25.

    Back, L. The Art of Listening (Berg, 2007).

  26. 26.

    Nature 562, 7 (2018).

  27. 27.

    Howard, D. & Irani, L. in Proc. 2019 CHI Conference on Human Factors in Computing Systems 97 (ACM, 2019).

Download references

Author information

Correspondence to Mona Sloane.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark