Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clustering single-cell RNA-seq data with a model-based deep learning approach

Abstract

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Network architecture of scDeepCluster.
Fig. 2: Simulation on evaluation.
Fig. 3: Benchmark results on four real scRNA-seq datasets with true labels.
Fig. 4: Applying scDeepCluster on various down-sampled simulated data.

Similar content being viewed by others

Data availability

The scRNA-seq data that support the findings of this study are available in GitHub: https://github.com/ttgump/scDeepCluster/tree/master/scRNA-seq%20data.

Code availability

The source code, weights of trained models and the real scRNA-seq data used for experiments of scDeepCluster are available in GitHub: https://github.com/ttgump/scDeepCluster.

References

  1. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  Google Scholar 

  2. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  Google Scholar 

  3. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability Vol. 1, 281–297 (Univ. of California Press, 1967).

  4. Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).

  5. von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).

    Article  MathSciNet  Google Scholar 

  6. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  Google Scholar 

  7. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  Google Scholar 

  8. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  Google Scholar 

  9. Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107 (2018).

  10. Angerer, P. et al. Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91 (2017).

    Article  Google Scholar 

  11. Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974–1980 (2015).

    Article  Google Scholar 

  12. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  Google Scholar 

  13. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  Google Scholar 

  14. Zhang, J. M., Fan, J., Fan, H. C., Rosenfeld, D. & Tse, D. N. An interpretable framework for clustering single-cell RNA-seq datasets. BMC Bioinformatics 19, 93 (2018).

    Article  Google Scholar 

  15. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017).

    Article  Google Scholar 

  16. Park, S. & Zhao, H. Spectral clustering based on learning similarity matrix. Bioinformatics 34, 2069–2076 (2018).

    Article  Google Scholar 

  17. Jianbo, S. & Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000).

    Article  Google Scholar 

  18. Lin, P., Troup, M. & Ho, J. W. CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18, 59 (2017).

    Article  Google Scholar 

  19. Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018).

    Article  Google Scholar 

  20. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).

    Article  Google Scholar 

  21. Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15, 539–542 (2018).

    Article  Google Scholar 

  22. Arisdakessian, C., Poirion, O., Yunits, B., Zhu, X. & Garmire, L. DeepImpute: an accurate, fast and scalable deep neural network method to impute single-cell RNA-seq data. Preprint at https://doi.org/10.1101/353607 (2018).

  23. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

    Article  Google Scholar 

  24. Deng, Y., Bao, F., Dai, Q., Wu, L. & Altschuler, S. Massive single-cell RNA-seq analysis and imputation via deep learning. Preprint at https://doi.org/10.1101/315556 (2018).

  25. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  MathSciNet  Google Scholar 

  26. Chen, J. et al. An omnibus test for differential distribution analysis of microbiome sequencing data. Bioinformatics 34, 643–651 (2018).

    Article  Google Scholar 

  27. Bellman, R. E. Adaptive Control Processes: A Guided Tour (Princeton Univ. Press, 1961).

  28. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991).

    Article  Google Scholar 

  29. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

    Article  Google Scholar 

  30. Xie, J., Girshick, R. & Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proc. 33rd International Conference on Machine Learning 478–487 (2016).

  31. Guo, X., Gao, L., Liu, X. & Yin, J. Improved deep embedded clustering with local structure preservation. In Proc. 26th International Joint Conference on Artificial Intelligence 1753–1759 (2017).

  32. Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural networks for reducing the dimensions of single-cell RNA-seq data. Nucleic Acids Res. 45, e156 (2017).

    Article  Google Scholar 

  33. Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).

    Article  Google Scholar 

  34. Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proc. 25th International Conference on Machine Learning 1096–1103 (2008).

  35. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010).

    MathSciNet  MATH  Google Scholar 

  36. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).

    Article  Google Scholar 

  37. Strehl, A. & Ghosh, J. Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003).

    MathSciNet  MATH  Google Scholar 

  38. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).

    Article  Google Scholar 

  39. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    MATH  Google Scholar 

  40. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  Google Scholar 

  41. Dizaji, K. G., Herandi, A., Deng, C., Cai, W. & Huang, H. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In Proc. IEEE International Conference on Computer Vision 5747–5756 (IEEE, 2017).

  42. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  Google Scholar 

  43. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. 27th International Conference on Machine Learning 807–814 (Omnipress, 2010).

  44. Maaten, L. Learning a parametric embedding by preserving local structure. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics Vol. 5 (eds Van Dyk, D. & Welling M.) 384–391 (PMLR, 2009).

  45. Nigam, K. & Ghani, R. Analyzing the effectiveness and applicability of co-training. In Proc. Ninth International Conference on Information and Knowledge Management Vol. 5, 86–93 (2000).

  46. Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In Proc. 12th USENIX Conference on Operating Systems Design and Implementation 265–283 (USENIX Association, 2016).

  47. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  48. Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. In Sixth International Conference on Learning Representations (2018).

  49. Zeiler, M. D. ADADELTA: an adaptive learning rate method. Preprint at https://arxiv.org/abs/1212.5701 (2012).

  50. Kingma, D. P. & Welling, M. Stochastic gradient VB and the variational auto-encoder. In Second International Conference on Learning Representations (2014).

  51. Strehl, A. & Ghosh, J. Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003).

    MathSciNet  MATH  Google Scholar 

  52. Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955).

    Article  MathSciNet  Google Scholar 

  53. Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and Q.S. conceived and supervised the project. Z.W. led the study. T.T. designed the methods and conducted the experiments with input from J.W. T.T., J.W. and Z.W. wrote the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Zhi Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Figures, table and notes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Wan, J., Song, Q. et al. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 1, 191–198 (2019). https://doi.org/10.1038/s42256-019-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-019-0037-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing