Reconstructing quantum states with generative models

Abstract

A major bottleneck in the development of scalable many-body quantum technologies is the difficulty in benchmarking state preparations, which suffer from an exponential ‘curse of dimensionality’ inherent to the classical description of quantum states. We present an experimentally friendly method for density matrix reconstruction based on neural network generative models. The learning procedure comes with a built-in approximate certificate of the reconstruction and makes no assumptions about the purity of the state under scrutiny. It can efficiently handle a broad class of complex systems including prototypical states in quantum information, as well as ground states of local spin models common to condensed matter physics. The key insight is to reduce state tomography to an unsupervised learning problem of the statistics of an informationally complete quantum measurement. This constitutes a modern machine learning approach to the validation of complex quantum devices, which may in addition prove relevant as a neural-network ansatz over mixed states suitable for variational optimization.

A preprint version of the article is available at ArXiv.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tensor-network schematics of the formalism.
Fig. 2: Learning a Bell state under local depolarizing noise.
Fig. 3: Sample complexity of learning locally depolarized GHZ states with RNN models.
Fig. 4: Direct estimation of local observables from Ns model samples.
Fig. 5: Learning ground states of local Hamiltonians in one and two dimensions.

Data availability

The numerically generated measurements used to produce Fig. 5, the implementation of the generative models and the code to numerically generate the data sets used in this manuscript are available at https://github.com/carrasqu/POVM_GENMODEL.

References

  1. 1.

    Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).

    Article  Google Scholar 

  2. 2.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  3. 3.

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  4. 4.

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  5. 5.

    Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

    Article  Google Scholar 

  6. 6.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  Google Scholar 

  7. 7.

    Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989).

    Google Scholar 

  8. 8.

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  Google Scholar 

  9. 9.

    Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004).

    Article  Google Scholar 

  10. 10.

    Haffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).

    Article  Google Scholar 

  11. 11.

    Poulin, D., Qarry, A., Somma, R. & Verstraete, F. Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett. 106, 170501 (2011).

    Article  Google Scholar 

  12. 12.

    Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M. & Eisert, J. A dissipative quantum Church–Turing theorem. Phys. Rev. Lett. 107, 120501 (2011).

    Article  Google Scholar 

  13. 13.

    Tóth, G. et al. Permutationally invariant quantum tomography. Phys. Rev. Lett. 105, 250403 (2010).

    Article  Google Scholar 

  14. 14.

    Moroder, T. et al. Permutationally invariant state reconstruction. New J. Phys. 14, 105001 (2012).

    Article  Google Scholar 

  15. 15.

    Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).

    Article  Google Scholar 

  16. 16.

    Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2009).

    Article  Google Scholar 

  17. 17.

    Baumgratz, T., Gross, D., Cramer, M. & Plenio, M. B. Scalable reconstruction of density matrices. Phys. Rev. Lett. 111, 020401 (2013).

    Article  Google Scholar 

  18. 18.

    Han, Z.-Y. et al. Efficient quantum tomography with fidelity estimation. Preprint at https://arxiv.org/abs/1712.03213 (2017).

  19. 19.

    Lanyon, B. P. et al. Efficient tomography of a quantum many-body system. Nat. Phys. 13, 1158–1162 (2017).

    Article  Google Scholar 

  20. 20.

    Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    Article  Google Scholar 

  21. 21.

    da Silva, M. P., Landon-Cardinal, O. & Poulin, D. Practical characterisation of quantum devices without tomography. Phys. Rev. Lett. 107, 210404 (2011).

    Article  Google Scholar 

  22. 22.

    Aolita, L., Gogolin, C., Kliesch, M. & Eisert, J. Reliable quantum certification of photonic state preparations. Nat. Commun. 6, 8498 (2015).

    Article  Google Scholar 

  23. 23.

    Gluza, M., Kliesch, M., Eisert, J. & Aolita, L. Fidelity witnesses for fermionic quantum simulations. Phys. Rev. Lett. 120, 190501 (2018).

    Article  Google Scholar 

  24. 24.

    Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  25. 25.

    Torlai, G. & Melko, R. G. Latent space purification via neural density operators. Preprint at https://arxiv.org/abs/1801.09684 (2018).

  26. 26.

    Rocchetto, A., Grant, E., Strelchuk, S., Carleo, G. & Severini, S. Learning hard quantum distributions with variational autoencoders. npj Quantum Inf. 4, 28 (2018).

    Article  Google Scholar 

  27. 27.

    Deng, D.-L., Li, X. & Das Sarma, S. Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017).

    Google Scholar 

  28. 28.

    Gao, X. & Duan, L.-M. Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 8, 662 (2017).

    Article  Google Scholar 

  29. 29.

    Chen, J., Cheng, S., Xie, H., Wang, L. & Xiang, T. Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018).

    Article  Google Scholar 

  30. 30.

    Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I. Neural-network quantum states, string-bond states, and chiral topological states. Phys. Rev. X 8, 011006 (2018).

    Google Scholar 

  31. 31.

    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  32. 32.

    Raghu, M., Poole, B., Kleinberg, J., Ganguli, S. & Sohl-Dickstein, J. On the expressive power of deep neural networks. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning Research (eds Precup, D. & Teh, Y. W.) 2847–2854 (PMLR, 2017).

  33. 33.

    Levine, Y., Sharir, O., Cohen, N. & Shashua, A. Bridging many-body quantum physics and deep learning via tensor networks. Preprint at https://arxiv.org/abs/1803.09780 (2018).

  34. 34.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 10th edn (Cambridge Univ. Press, 2011).

  35. 35.

    Penrose, R. Applications of negative dimensional tensors. Combin. Math. Appl. 1, 221–244 (1971).

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    MathSciNet  Article  Google Scholar 

  37. 37.

    Deng, D.-L., Li, X. & Das Sarma, S. Machine learning topological states. Phys. Rev. B 96, 195145 (2017).

    Article  Google Scholar 

  38. 38.

    Nomura, Y., Darmawan, A. S., Yamaji, Y. & Imada, M. Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017).

    Article  Google Scholar 

  39. 39.

    Clark, S. R. Unifying neural-network quantum states and correlator product states via tensor networks. J. Phys. A Math. Theor. 51, 135301 (2018).

    MathSciNet  Article  Google Scholar 

  40. 40.

    Salakhutdinov, R., Mnih, A. & Hinton, G. Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th International Conference on Machine Learning, ICML ‘07 791–798 (ACM, 2007).

  41. 41.

    Bennett, J. & Lanning, S. The Netflix prize. In KDD Cup and Workshop in Conjunction with KDD (ACM, 2007).

  42. 42.

    Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 3104–3112 (Curran Associates, Red Hook, NY, 2014); http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

  43. 43.

    Wu, Y. et al. Google’s neural machine translation system: bridging the gap between human and machine translation. Preprint at http://arxiv.org/abs/1609.08144 (2016).

  44. 44.

    Chiu, C.-C. et al. State-of-the-art speech recognition with sequence-to-sequence models. Preprint at https://arxiv.org/abs/1712.01769 (2018).

  45. 45.

    Aaronson, S. The learnability of quantum states. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 463, 3089–3114 (2007).

    MathSciNet  Article  Google Scholar 

  46. 46.

    Rocchetto, A. et al. Experimental learning of quantum states. Preprint at https://arxiv.org/abs/1712.00127 (2017).

  47. 47.

    Barends, R. et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015).

    Article  Google Scholar 

  48. 48.

    Friedenauer, H., Schmitz, H., Glueckert, J., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008).

    Article  Google Scholar 

  49. 49.

    Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).

    Google Scholar 

  50. 50.

    Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011).

    Article  Google Scholar 

  51. 51.

    Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  Google Scholar 

  52. 52.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  Google Scholar 

  53. 53.

    King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 456–460 (2018).

    Article  Google Scholar 

  54. 54.

    Preskill, J. Quantum computing in the NISQ era and beyond. Preprint at https://arxiv.org/abs/1801.00862 (2018).

  55. 55.

    Peres, A. Quantum Theory: Concepts and Methods (Kluwer, 1995).

  56. 56.

    Tabia, G. N. M. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices. Phys. Rev. A 86, 062107 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Vidal, L. Cincio and M. Stoudenmire for discussions and encouragement, and N. Berkovits, A. Reily Rocha and P. Vieira for organizing the ICTP-SAIFR/IFT-UNESP Minicourse on Machine Learning for Many-Body Physics, where this work was started. This research was supported by the Perimeter Institute for Theoretical Physics and the Shared Hierarchical Academic Research Computing Network (SHARCNET). Research at the Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade. R.G.M. acknowledges support from NSERC of Canada and a Canada Research Chair. J.C. acknowledges financial and computational support from the AI grant and Canada CIFAR AI (CCAI) Chairs Program. L.A. acknowledges financial support from the Brazilian agencies CNPq (PQ grant no. 311416/2015-2 and INCT-IQ), FAPERJ (JCN E-26/202.701/2018), CAPES (PROCAD2013), FAPESP and the Brazilian Serrapilheira Institute (grant no. Serra-1709-17173).

Author information

Affiliations

Authors

Contributions

All authors contributed significantly to this work.

Corresponding author

Correspondence to Juan Carrasquilla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Methods and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carrasquilla, J., Torlai, G., Melko, R.G. et al. Reconstructing quantum states with generative models. Nat Mach Intell 1, 155–161 (2019). https://doi.org/10.1038/s42256-019-0028-1

Download citation

Further reading