Responsible AI for conservation

Artificial intelligence (AI) promises to be an invaluable tool for nature conservation, but its misuse could have severe real-world consequences for people and wildlife. Conservation scientists discuss how improved metrics and ethical oversight can mitigate these risks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Machine learning algorithms on the front line of conservation.

References

  1. 1.

    Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Divers. Distrib. 23, 435–447 (2017).

    Article  Google Scholar 

  2. 2.

    Kroodsma, D. A. et al. Science 908, 904–908 (2018).

    Article  Google Scholar 

  3. 3.

    Mac Aodha, O. et al. PLoS Comput. Biol. 14, e1005995 (2018).

    Article  Google Scholar 

  4. 4.

    Joppa, L. N. Nature 552, 325–328 (2017).

    Article  Google Scholar 

  5. 5.

    Gorelick, N. et al. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  6. 6.

    Kranstauber, B. et al. Environ. Model. Softw. 26, 834–835 (2011).

    Article  Google Scholar 

  7. 7.

    Amodei, D. et al. Preprint at https://arxiv.org/abs/1606.06565 (2016).

  8. 8.

    Collar, N. J. Oryx 32, 239–243 (1998).

    Article  Google Scholar 

  9. 9.

    Doshi-Velez, F. & Kim, B. Preprint at https://arxiv.org/abs/1702.08608 (2017).

  10. 10.

    Tabak, M. A. et al. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13120 (2018).

    Article  Google Scholar 

  11. 11.

    Norouzzadeh, M. S. et al. Proc. Natl Acad. Sci. USA 115, E5716–E5725 (2018).

    Article  Google Scholar 

  12. 12.

    Burgman, M. & Possingham, H. P. in Genetics, Demography and Viability of Fragmented Populations (eds Young, A. G. & Clarke, G. M.) 97–112 (Cambridge Univ. Press, Cambridge, 2000).

  13. 13.

    Reed, J. M. et al. Conserv. Biol. 16, 7–19 (2002).

    Article  Google Scholar 

  14. 14.

    Ralls, K., Beissinger, S. R. & Cochrane, J. F. in Population Viability Analysis (eds Beissinger, S. R. & McCullough, D. R.) 521–550 (Univ. Chicago Press, Chicago, 2002).

  15. 15.

    Crawford, K. & Calo, R. T. Nature 538, 311–313 (2016).

    Article  Google Scholar 

  16. 16.

    Zou, J. & Schiebinger, L. Nature 559, 324–326 (2018).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Oliver R. Wearn or David M. P. Jacoby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wearn, O.R., Freeman, R. & Jacoby, D.M.P. Responsible AI for conservation. Nat Mach Intell 1, 72–73 (2019). https://doi.org/10.1038/s42256-019-0022-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing