Evolving embodied intelligence from materials to machines


Natural lifeforms specialize to their environmental niches across many levels, from low-level features such as DNA and proteins, through to higher-level artefacts including eyes, limbs and overarching body plans. We propose ‘multi-level evolution’, a bottom-up automatic process that designs robots across multiple levels and niches them to tasks and environmental conditions. Multi-level evolution concurrently explores constituent molecular and material building blocks, as well as their possible assemblies into specialized morphological and sensorimotor configurations. Multi-level evolution provides a route to fully harness a recent explosion in available candidate materials and ongoing advances in rapid manufacturing processes. We outline a feasible architecture that realizes this vision, highlight the main roadblocks and how they may be overcome, and show robotic applications to which multi-level evolution is particularly suited. By forming a research agenda to stimulate discussion between researchers in related fields, we hope to inspire the pursuit of multi-level robotic design all the way from material to machine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sample MLE architecture, creation of solutions, creation of a robot and hierarchical genotype.
Fig. 2: Showing how MLE can provide a diversity of robots for a diversity of environmental niches.

Christopher Michel (Antarctica); Jean-Baptiste Mouret (Amazon); and Dimitry B. (Sahara)


  1. 1.

    Carlson, J. & Murphy, R. R. How UGVs physically fail in the field. IEEE Trans. Robot. 21, 423–437 (2005).

    Article  Google Scholar 

  2. 2.

    Atkeson, C. G. et al. in The DARPA Robotics Challenge Finals: Humanoid Robots to the Rescue (eds Spenko, M., Buerger, S. & Iagnemma, K.) 667–684 (Springer Tracts in Advanced Robotics, Springer, Basel, 2018).

  3. 3.

    Barrett, L. Beyond the Brain: How Body and Environment Shape Animal and Human minds (Princeton Univ. Press, Princeton, 2011).

  4. 4.

    Pfeifer, R. & Bongard, J. How the Body Shapes the Way We Think: A New View of Intelligence (MIT Press, Cambridge, 2006).

  5. 5.

    Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Wiley, New York, 2013).

  6. 6.

    Brooks, R. A. Intelligence without representation. Artif. Intell. 47, 139–159 (1991).

    Article  Google Scholar 

  7. 7.

    Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as a scalable alternative to reinforcement learning. Preprint at https://arxiv.org/abs/1703.03864 (2017).

  8. 8.

    Le, T. C. & Winkler, D. A. Discovery and optimization of materials using evolutionary approaches. Chem. Rev. 116, 6107–6132 (2016).

    Article  Google Scholar 

  9. 9.

    Fischer, P., Nelson, B. & Yang, G.-Z. New materials for next-generation robots.Sci. Robot. 3, eaau0448 (2018).

    Article  Google Scholar 

  10. 10.

    Soldatova, L. N., Clare, A., Sparkes, A. & King, R. D. An ontology for a robot scientist. Bioinformatics 22, E464–E471 (2006).

    Article  Google Scholar 

  11. 11.

    Maier, W. F., Stoewe, K. & Sieg, S. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46, 6016–6067 (2007).

    Article  Google Scholar 

  12. 12.

    Sans, V. & Cronin, L. Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chem. Soc. Rev. 45, 2032–2043 (2016).

    Article  Google Scholar 

  13. 13.

    King, R. D. in KI 2015: Advances in Artificial Intelligence (eds Hölldobler, S., Krötzsch, M., Peñaloza, R. & Rudolph, S.) xiv–xv (Springer, Cham, 2015).

  14. 14.

    Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  Google Scholar 

  15. 15.

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Article  Google Scholar 

  16. 16.

    Pyzer-Knapp, E. O., Suh, C., Gomez-Bombarelli, R., Aguilera-Iparraguirre, J. & Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 45, 195–216 (2015).

    Article  Google Scholar 

  17. 17.

    Meng, Y., Correll, N., Kramer, R. & Paik, J. Will robots be bodies with brains or brains with bodies? Sci. Robot. 2, eaar4527 (2017).

    Article  Google Scholar 

  18. 18.

    Calignano, F. et al. Overview on additive manufacturing technologies. Proc. IEEE 105, 593–612 (2017).

    Article  Google Scholar 

  19. 19.

    Li, L., Haghighi, A. & Yang, Y. A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J. Manuf. Process. 33, 150–160 (2018).

    Article  Google Scholar 

  20. 20.

    Eujin, P. et al. A study of 4D printing and functionally graded additive manufacturing. Assem. Autom. 37, 147–153 (2017).

    Article  Google Scholar 

  21. 21.

    Martínez, J., Hornus, S., Song, H. & Lefebvre, S. Polyhedral Voronoi diagrams for additive manufacturing. ACM Trans. Graph. 37, 129 (2018).

    Article  Google Scholar 

  22. 22.

    Chen, T., Mueller, J. & Shea, K. Integrated design and simulation of tunable, multi-state structures fabricated monolithically with multi-material 3D printing. Sci. Rep. 7, 45671 (2017).

    Article  Google Scholar 

  23. 23.

    Haghiashtiani, G. et al. 3D printed electrically-driven soft actuators. Extreme Mech. Lett. 21, 1–8 (2018).

    Article  Google Scholar 

  24. 24.

    Rosendo, A., Von Atzigen, M. & Iida, F. The trade-off between morphology and control in the co-optimized design of robots. PLoS One 12, e0186107 (2017).

    Article  Google Scholar 

  25. 25.

    Brodbeck, L., Hauser, S. & Iida, F. Morphological evolution of physical robots through model-free phenotype development. PLoS One 10, e0128444 (2015).

    Article  Google Scholar 

  26. 26.

    Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  Google Scholar 

  27. 27.

    Silva, F., Duarte, M., Correia, L., Oliveira, S. M. & Christensen, A. L. Open issues in evolutionary robotics. Evol. Comput. 24, 205–236 (2016).

    Article  Google Scholar 

  28. 28.

    Hornby, G. S., Lohn, J. D. & Linden, D. S. Computer-automated evolution of an X-band antenna for NASA’s Space Technology 5 mission. Evol. Comput. 19, 1–23 (2011).

    Article  Google Scholar 

  29. 29.

    Auerbach, J. E. & Bongard, J. C. Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10, e1003399 (2014).

    Article  Google Scholar 

  30. 30.

    Lehman, J. et al. The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Preprint at https://arxiv.org/abs/1803.03453 (2018).

  31. 31.

    Nolfi, S. & Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines (MIT Press, Cambridge, 2000).

  32. 32.

    Lipson, H. & Pollack, J. B. Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000).

    Article  Google Scholar 

  33. 33.

    Eiben, A. E., Kernbach, S. & Haasdijk, E. Embodied artificial evolution—artificial evolutionary systems in the 21st century. Evolut. Intell. 5, 261–272 (2012).

    Article  Google Scholar 

  34. 34.

    Eiben, A. E. & Smith, J. From evolutionary computation to the evolution of things. Nature 521, 476–482 (2015).

    Article  Google Scholar 

  35. 35.

    Rieffel, J., Mouret, J.-B., Bredeche, N. & Haasdijk, E. Introduction to the evolution of physical systems special issue. Artif. Life 23, 119–123 (2017).

    Article  Google Scholar 

  36. 36.

    Cheney, N., MacCurdey, R., Clune, J. & Lipson, H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. In Proc. GECCO’13 (ed. Blum, C.) 167–174 (ACM, 2013).

  37. 37.

    Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, Berlin, 2003).

  38. 38.

    Stanley, K. O. Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolv. Mach. 8, 131–162 (2007).

    Article  Google Scholar 

  39. 39.

    Doncieux, S., Bredeche, N., Mouret, J.-B. & Eiben, A. E. G. Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 10.3389/frobt.2015.00004 (2015).

    Article  Google Scholar 

  40. 40.

    Rabitz, H. Control in the sciences over vast length and time scales. Quant. Phys. Lett. 1, 1–19 (2012).

    Google Scholar 

  41. 41.

    Hansch, C et al. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology (American Chemical Society, Washington DC, 1995).

  42. 42.

    Mouret, J.-B. & Clune, J. Illuminating search spaces by mapping elites. Preprint at https://arxiv.org/abs/1504.04909 (2015).

  43. 43.

    Pugh, J. K., Soros, L. B. & Stanley, K. O. Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016).

    Article  Google Scholar 

  44. 44.

    Vassiliades, V., Chatzilygeroudis, K. & Mouret, J.-B. Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evolut. Comput. 22, 623–630 (2018).

    Article  Google Scholar 

  45. 45.

    Stanley, K. O., Clune, J., Lehman, J. & Miikkulainen, R. Designing neural networks through neuroevolution. Nat. Mach. Intell. https://doi.org/10.1038/s42256-018-0006-z (2019).

  46. 46.

    Figueiredo, M. A. et al. Adaptive sparseness for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1150–1159 (2003).

    Article  Google Scholar 

  47. 47.

    Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267–288 (1996).

  48. 48.

    Cully, A. & Demiris, Y. Hierarchical behavioral repertoires with unsupervised descriptors. In Proc. GECCO'18 (ed. Aguirre, H.) 69–76 (ACM, 2018).

  49. 49.

    Kriegman, S., Cheney, N., Corucci, F. & Bongard, J. C. Interoceptive robustness through environment-mediated morphological development. Preprint at https://arxiv.org/abs/1804.02257 (2018).

  50. 50.

    Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).

    MathSciNet  Article  Google Scholar 

  51. 51.

    Eiben, A. E. et al. The triangle of life: evolving robots in real-time and real-space. In Proc. ECAL 2013 (eds Liò, P., Miglino, O., Nicosia, G., Nolfi, S. & Pavone, M.) 1056–1063 (MIT Press, Cambridge, 2013).

  52. 52.

    Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    Article  Google Scholar 

  53. 53.

    Bhattacharya, M. Evolutionary approaches to expensive optimisation. Preprint at https://arxiv.org/abs/1303.2745 (2013).

  54. 54.

    Howard, D. A platform that directly evolves multirotor controllers. IEEE Trans. Evol. Comput. 21, 943–955 (2017).

  55. 55.

    Heijnen, H., Howard, D. & Kottege, N. A testbed that evolves hexapod controllers in hardware. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 1065–1071 (IEEE, 2017).

  56. 56.

    Bäck, T., Keßler, L. & Heinle, I. Evolutionary strategies for identification and validation of material model parameters for forming simulations. In Proc. GECCO'11 (ed. Lanzi, P. L.) 1779–1786 (ACM, 2011).

  57. 57.

    Hüsken, M., Jin, Y. & Sendhoff, B. Structure optimization of neural networks for evolutionary design optimization. Soft Comput. 9, 21–28 (2005).

    Article  Google Scholar 

  58. 58.

    Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, Cambridge, 2006)

  59. 59.

    Jin, Y. Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evolut. Comput. 1, 61–70 (2011).

    Article  Google Scholar 

  60. 60.

    Winkler, D. A. & Le, T. C. Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR. Mol. Inform. 36, 1600118 (2017).

    Article  Google Scholar 

  61. 61.

    Gaier, A., Asteroth, A. & Mouret, J.-B. Data-efficient design exploration through surrogate-assisted illumination. Evol. Comput. 26, 381–410 (2018).

  62. 62.

    Chatzilygeroudis, K. et al. Black-box data-efficient policy search for robotics. In Proc. IROS 2017 51–58 (IEEE, 2017).

  63. 63.

    Bongard, J., Zykov, V. & Lipson, H. Resilient machines through continuous self-modeling. Science 314, 1118–1121 (2006).

    Article  Google Scholar 

  64. 64.

    Zagal, J. C. & Ruiz-Del-Solar, J. Combining simulation and reality in evolutionary robotics. J. Intell. Robot. Syst. 50, 19–39 (2007).

    Article  Google Scholar 

  65. 65.

    Chatzilygeroudis, K. & Mouret, J.-B. Using parameterized black-box priors to scale up model-based policy search for robotics. In Proc. ICRA 2018 1–9 (IEEE, 2018).

  66. 66.

    Koos, S., Mouret, J.-B. & Doncieux, S. The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evolut. Comput. 17, 122–145 (2013).

    Article  Google Scholar 

  67. 67.

    Donoho, D. L. High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math. Chall. Lect. 1, 32 (2000).

    Google Scholar 

  68. 68.

    Wagy, M. D. & Bongard, J. C. Combining computational and social effort for collaborative problem solving. PLoS One 10, e0142524 (2015).

    Article  Google Scholar 

  69. 69.

    Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  70. 70.

    Tolley, M. T. et al. A resilient, untethered soft robot. Soft Robot. 1, 213–223 (2014).

    Article  Google Scholar 

  71. 71.

    Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  Google Scholar 

  72. 72.

    Lipson, H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 1, 21–27 (2014).

    Article  Google Scholar 

  73. 73.

    Yeom, S.-W. & Oh, I.-K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18, 085002 (2009).

    Article  Google Scholar 

  74. 74.

    Manti, M., Cacucciolo, V. & Cianchetti, M. Stiffening in soft robotics a review of the state of the art. IEEE Robot. Autom. Mag. 23, 93–106 (2016).

    Article  Google Scholar 

  75. 75.

    Bauer, S. et al. 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014).

    Article  Google Scholar 

  76. 76.

    Han, S.-T. et al. An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017).

  77. 77.

    Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 596 (2017).

    Article  Google Scholar 

Download references


D.H., D.F.K., P.V. and D.W. would like to acknowledge Active Integrated Matter, one of CSIRO’s Future Science Platforms, for funding this research. J.-B.M. is funded by the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 637972, project ‘ResiBots’).

Author information




All authors contributed in forming the concept of multi-level evolution, and to the writing of the Perspective. D.H., J.-B.M., P.V., D.W. and A.E contributed on the evolutionary side, and D.F.K. and D.W. on the materials side.

Corresponding author

Correspondence to David Howard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howard, D., Eiben, A.E., Kennedy, D.F. et al. Evolving embodied intelligence from materials to machines. Nat Mach Intell 1, 12–19 (2019). https://doi.org/10.1038/s42256-018-0009-9

Download citation

Further reading