Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management

Abstract

The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15–25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of proglucagon and its processing in the pancreas and in the gut and brain.
Fig. 2: Structures of the currently approved GLP-1RAs.
Fig. 3: Secretion, degradation and neural transmission of the actions of endogenous GLP-1.

Similar content being viewed by others

References

  1. Wilding, J. P. The importance of weight management in type 2 diabetes mellitus. Int. J. Clin. Pract. 68, 682–691 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Look, A. R. G. et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 4, 913–921 (2016).

    Article  Google Scholar 

  3. Bell, G. I., Sanchez-Pescador, R., Laybourn, P. J. & Najarian, R. C. Exon duplication and divergence in the human preproglucagon gene. Nature 304, 368–371 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77, 257–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Orskov, C. et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119, 1467–1475 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Mojsov, S. et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J. Biol. Chem. 261, 11880–11889 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Rouille, Y., Westermark, G., Martin, S. K. & Steiner, D. F. Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells. Proc. Natl Acad. Sci. USA 91, 3242–3246 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holst, J. J. et al. Proglucagon processing in porcine and human pancreas. J. Biol. Chem. 269, 18827–18833 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Thim, L. & Moody, A. J. The amino acid sequence of porcine glicentin. Peptides 2, 37–39 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Holst, J. J., Orskov, C., Nielsen, O. V. & Schwartz, T. W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Buhl, T. et al. Naturally occurring products of proglucagon 111–160 in the porcine and human small intestine. J. Biol. Chem. 263, 8621–8624 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Orskov, C., Rabenhoj, L., Wettergren, A., Kofod, H. & Holst, J. J. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43, 535–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Orskov, C., Bersani, M., Johnsen, A. H., Hojrup, P. & Holst, J. J. Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J. Biol. Chem. 264, 12826–12829 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Orskov, C. & Holst, J. J. Radio-immunoassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). Scand. J. Clin. Lab. Invest. 47, 165–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Holst, J. J., Wewer Albrechtsen, N. J., Rosenkilde, M. M. & Deacon, C. F. Physiology of the incretin hormones, GIP and GLP-1—regulation of release and post-translational modifications. Compr. Physiol. 9, 1339–1381 (2019).

    Article  PubMed  Google Scholar 

  16. Eissele, R. et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Invest. 22, 283–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Svendsen, B. et al. An analysis of co-secretion and co-expression of gut hormones from male rat proximal and distal small intestine. Endocrinology 156, 847–857 (2014).

    Article  PubMed  Google Scholar 

  18. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Kuhre, R. E., Christiansen, C. B., Saltiel, M. Y., Wewer Albrechtsen, N. J. & Holst, J. J. On the relationship between glucose absorption and glucose-stimulated secretion of GLP-1, neurotensin, and PYY from different intestinal segments in the rat. Physiol. Rep. 5, e13507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martinussen, C. et al. Augmented GLP-1 secretion as seen after gastric bypass may be obtained by delaying carbohydrate digestion. J. Clin. Endocrinol. Metab. 104, 3233–3244 (2019).

    Article  PubMed  Google Scholar 

  21. Layer, P., Holst, J. J., Grandt, D. & Goebell, H. Ileal release of glucagon-like peptide-1 (GLP-1). Association with inhibition of gastric acid secretion in humans. Dig. Dis. Sci. 40, 1074–1082 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Christiansen, C. B. et al. Colonic lactulose fermentation has no impact on glucagon-like peptide-1 and peptide-YY secretion in healthy young men. J. Clin. Endocrinol. Metab. 107, 77–87 (2022).

    Article  PubMed  Google Scholar 

  23. Christiansen, C. B. et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G574–G584 (2019).

    Article  CAS  Google Scholar 

  24. Christiansen, C. B. et al. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G53–G65 (2018).

    Article  CAS  Google Scholar 

  25. Mojsov, S., Weir, G. C. & Habener, J. F. Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79, 616–619 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orskov, C., Holst, J. J. & Nielsen, O. V. Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123, 2009–2013 (1988). .

  27. Kreymann, B., Williams, G., Ghatei, M. A. & Bloom, S. R. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Nauck, M. et al. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J. Clin. Endocrinol. Metab. 69, 654–662 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Gasbjerg, L. S. et al. Separate and combined glucometabolic effects of endogenous glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 in healthy individuals. Diabetes 68, 906–917 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wettergren, A. et al. Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig. Dis. Sci. 38, 665–673 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Nagell, C. F., Wettergren, A., Pedersen, J. F., Mortensen, D. & Holst, J. J. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand. J. Gastroenterol. 39, 353–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Willms, B. et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J. Clin. Endocrinol. Metab. 81, 327–332 (1996).

    CAS  PubMed  Google Scholar 

  33. Tolessa, T., Gutniak, M., Holst, J. J., Efendic, S. & Hellstrom, P. M. Inhibitory effect of glucagon-like peptide-1 on small bowel motility. Fasting but not fed motility inhibited via nitric oxide independently of insulin and somatostatin. J. Clin. Invest. 102, 764–774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wettergren, A., Wojdemann, M. & Holst, J. J. Glucagon-like peptide-1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am. J. Physiol. 275, G984–G992 (1998).

    CAS  PubMed  Google Scholar 

  35. Wettergren, A., Wojdemann, M., Meisner, S., Stadil, F. & Holst, J. J. The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7–36 amide on gastric acid secretion in humans depends on an intact vagal innervation. Gut 40, 597–601 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nauck, M. A. et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol. 273, E981–E988 (1997).

    CAS  PubMed  Google Scholar 

  37. Holst, J. J. Glucagon-like peptide 1 (GLP-1): an intestinal hormone signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol. Metab. 10, 229–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Schirra, J. & Goke, B. The physiological role of GLP-1 in human: incretin, ileal brake or more? Regul. Pept. 128, 109–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Geary, N. In Glucagon III (Handbook of Experimental Pharmacology, 123) (ed. Lefebvre, P. J.) Ch. 14, 223–238 (Springer, 1996).

  40. Schick, R. R., vorm Walde, T., Zimmermann, J. P., Schusdziarra, V. & Classen, M. In Obesity in Europe 1993 (eds Ditschuneit, H. et al.) Ch. 53, 363–367 (John Libbey, 1994).

  41. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Tang-Christensen, M. et al. Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am. J. Physiol. 271, R848–R856 (1996).

    CAS  PubMed  Google Scholar 

  43. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verdich, C. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001).

    CAS  PubMed  Google Scholar 

  45. Gao, W. et al. Human GLP1R variants affecting GLP1R cell surface expression are associated with impaired glucose control and increased adiposity. Nat. Metab. 5, 1673–1684 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Fehmann, H. C., Goke, R. & Goke, B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr. Rev. 16, 390–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Buteau, J. et al. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47, 806–815 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, G., Stoffers, D. A., Habener, J. F. & Bonner-Weir, S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270–2276 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Vilsboll, T. et al. The pathogenesis of diabetes involves a defective amplification of the late phase insulin response to glucose by GIP—regardless of aetiology and phenotype. J. Clin. Endocrinol. Metab. 88, 4897–4903 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kjems, L. L., Holst, J. J., Volund, A. & Madsbad, S. The influence of GLP-1 on the glucose-induced insulin secretion: effects on beta cell sensitivity in type 2 diabetic patients and controls. Diabetes 52, 380–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Vilsboll, T., Agerso, H., Krarup, T. & Holst, J. J. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J. Clin. Endocrinol. Metab. 88, 220–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Deacon, C. F. et al. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 41, 271–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Fineman, M. S. et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26, 2370–2377 (2003).

    CAS  Google Scholar 

  57. Buse, J. B. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27, 2628–2635 (2004).

    CAS  Google Scholar 

  58. Drucker, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).

    Article  Google Scholar 

  60. Blonde, L. & Russell-Jones, D. The safety and efficacy of liraglutide with or without oral antidiabetic drug therapy in type 2 diabetes: an overview of the LEAD 1–5 studies. Diabetes Obes. Metab. 11, 26–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Garber, A. et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373, 473–478 (2008).

  62. Ritzel, R., Orskov, C., Holst, J. J. & Nauck, M. A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36 amide] after subcutaneous injection in healthy volunteers. Dose–response-relationships.Diabetologia 38, 720–725 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Larsen, J., Hylleberg, B., Ng, K. & Damsbo, P. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care 24, 1416–1421 (2001).

    CAS  Google Scholar 

  64. Holst, J. J., Deacon, C. F., Vilsboll, T., Krarup, T. & Madsbad, S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol. Med. 14, 161–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Ostergaard, L., Frandsen, C. S., Dejgaard, T. F. & Madsbad, S. Fixed-ratio combination therapy with GLP-1 receptor agonist liraglutide and insulin degludec in people with type 2 diabetes. Expert. Rev. Clin. Pharmacol. 10, 621–632 (2017).

    Article  PubMed  Google Scholar 

  66. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article  PubMed  Google Scholar 

  68. Davies, M. J. et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 314, 687–699 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Wadden, T. A. et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int. J. Obes. 39, 187 (2015).

    Article  CAS  Google Scholar 

  70. Blackman, A. et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J. Obes. 40, 1310–1319 (2016).

    Article  CAS  Google Scholar 

  71. Le Roux, C. W. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389, 1399–1409 (2017).

    Article  PubMed  Google Scholar 

  72. Nauck, M., Stockmann, F., Ebert, R. & Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Holst, J. J., Schwartz, T. W., Lovgreen, N. A., Pedersen, O. & Beck-Nielsen, H. Diurnal profile of pancreatic polypeptide, pancreatic glucagon, gut glucagon and insulin in human morbid obesity. Int. J. Obes. 7, 529–538 (1983).

    CAS  PubMed  Google Scholar 

  74. Toft-Nielsen, M.-B. et al. Determinants of the impaired secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 86, 3717–3723 (2001).

  75. Nauck, M. A., Vardarli, I., Deacon, C. F., Holst, J. J. & Meier, J. J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54, 10–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Faerch, K. et al. GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes 64, 2513–2525 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kjems, L. L., Holst, J. J., Volund, A. & Madsbad, S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52, 380–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Hojberg, P. V. et al. Near normalisation of blood glucose improves the potentiating effect of GLP-1 on glucose-induced insulin secretion in patients with type 2 diabetes. Diabetologia 51, 632–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Verdich, C. et al. Effect of obesity and major weight reduction on gastric emptying. Int. J. Obes. Relat. Metab. Disord. 24, 899–905 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Muscelli, E. et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 57, 1340–1348 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Matikainen, N. et al. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance. Diabetes Care 37, 242–251 (2013).

    Google Scholar 

  82. Watkins, J. D. et al. Glucagon-like peptide-1 secretion in people with versus without type 2 diabetes: a systematic review and meta-analysis of cross-sectional studies. Metabolism 140, 155375 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Hunt, J. E., Holst, J. J. & Jepsen, S. L. Glucose- and bile acid-stimulated secretion of gut hormones in the isolated perfused intestine is not impaired in diet-induced obese mice. Front. Endocrinol. 13, 884501 (2022).

    Article  Google Scholar 

  84. Gerstenberg, M. K. et al. Weight loss by calorie restriction does not alter appetite-regulating gut hormone responses from perfused rat small intestine. Acta Physiol. 238, e13947 (2023).

    Article  CAS  Google Scholar 

  85. Ahren, B. et al. Semaglutide induces weight loss in subjects with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the SUSTAIN 1 to 5 trials. Diabetes Obes. Metab. 20, 2210–2219 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Flint, A., Raben, A., Rehfeld, J. F., Holst, J. J. & Astrup, A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int. J. Obes. Relat. Metab. Disord. 24, 288–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Trapp, S. & Brierley, D. I. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br. J. Pharmacol. 179, 557–570 (2021).

    Article  PubMed  Google Scholar 

  88. Larsen, P. J., Fledelius, C., Knudsen, L. B. & Tang-Christensen, M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 50, 2530–2539 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Eng, J., Kleinman, W. A., Singh, L., Singh, G. & Raufman, J. P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Scrocchi, L. A. & Drucker, D. J. Effects of aging and a high fat diet on body weight and glucose tolerance in glucagon-like peptide-1 receptor−/− mice. Endocrinology 139, 3127–3132 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Raufman, J. P., Singh, L. & Eng, J. Exendin-3, a novel peptide from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed acini from guinea pig pancreas. Description of exendin-3(9–39) amide, a specific exendin receptor antagonist. J. Biol. Chem. 266, 2897–2902 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Raufman, J. P., Singh, L., Singh, G. & Eng, J. Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin-4. J. Biol. Chem. 267, 21432–21437 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Goke, R. et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem. 268, 19650–19655 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Patterson, J. T. et al. A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1. ACS Chem. Biol. 6, 135–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Steinert, R. E. et al. Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men. Am. J. Clin. Nutr. 100, 514–523 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Melhorn, S. J., Tyagi, V., Smeraglio, A., Roth, C. L. & Schur, E. A. Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans. Appetite 82, 85–90 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Svane, M. S. et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int. J. Obes. 40, 1699–1706 (2016).

    Article  CAS  Google Scholar 

  98. Schmidt, J. B. et al. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am. J. Physiol. Endocrinol. Metab. 306, E1248–E1256 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Jepsen, S. L. et al. Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. Am. J. Physiol. Endocrinol. Metab. 317, E1081–E1093 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Le Roux, C. W. et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246, 780–785 (2007).

    Article  PubMed  Google Scholar 

  101. Bojsen-Moller, K. N. et al. Primary weight loss failure after Roux-en-Y gastric bypass is characterized by impaired gut-hormone mediated regulation of food intake. Int J. Obes. 47, 1143–1151 (2023).

    Article  Google Scholar 

  102. Thorens, B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc. Natl Acad. Sci. USA 89, 8641–8645 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Andersen, D. B. et al. Using a reporter mouse to map known and novel sites of GLP-1 receptor expression in peripheral tissues of male mice. Endocrinology 162, bqaa246 (2021).

    Article  PubMed  Google Scholar 

  105. Cork, S. C. et al. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goke, R., Larsen, P. J., Mikkelsen, J. D. & Sheikh, S. P. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur. J. Neurosci. 7, 2294–2300 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Jacobsen, S. H. et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes. Surg. 22, 1084–1096 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Christensen, M. et al. Transfer of liraglutide from blood to cerebrospinal fluid is minimal in patients with type 2 diabetes. Int. J. Obes. 39, 1651–1654 (2015).

    Article  CAS  Google Scholar 

  109. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1–albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Kanoski, S. E., Fortin, S. M., Arnold, M., Grill, H. J. & Hayes, M. R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152, 3103–3112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grunddal, K. V. et al. Expression profile of the GLP-1 receptor in the gastrointestinal tract and pancreas in adult female mice. Endocrinology 163, bqab216 (2022).

    PubMed  Google Scholar 

  113. Sisley, S. et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J. Clin. Invest. 124, 2456–2463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Adams, J. M. et al. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons. Diabetes 67, 1538–1548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brierley, D. I. & de Lartigue, G. Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating. Br. J. Pharmacol. 179, 584–599 (2021).

    Article  PubMed  Google Scholar 

  116. Zhang, C. et al. Area postrema cell types that mediate nausea-associated behaviors. Neuron 109, 461–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Dakin, C. L. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142, 4244–4250 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Gabery, S. et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5, e133429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Aroda, V. R. et al. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: insights from the SUSTAIN 1–7 trials. Diabetes Metab. 45, 409–418 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Pratley, R. E. et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 6, 275–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Frias, J. P. et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg versus dulaglutide 1.5 mg in metformin-treated patients with type 2 diabetes in a randomized controlled trial (AWARD-11). Diabetes Care 44, 765–773 (2021).

    Google Scholar 

  123. Pratley, R. E. et al. An indirect treatment comparison of the efficacy of semaglutide 1.0 mg versus dulaglutide 3.0 and 4.5 mg. Diabetes Obes. Metab. 23, 2513–2520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Frias, J. P. et al. Efficacy and safety of once-weekly semaglutide 2.0 mg versus 1.0 mg in patients with type 2 diabetes (SUSTAIN FORTE): a double-blind, randomised, phase 3B trial. Lancet Diabetes Endocrinol. 9, 563–574 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. O’Neil, P. M. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392, 637–649 (2018).

    Article  PubMed  Google Scholar 

  127. Nauck, M. A. et al. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 39, 231–241 (2016).

    CAS  Google Scholar 

  128. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  PubMed  Google Scholar 

  129. Rubino, D. et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 325, 1414–1425 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    Article  PubMed  Google Scholar 

  131. Marco, J. et al. Effect of food ingestion on intestinal glucagon-like immunoreactivity (GLI) secretion in normal and gastrectomized subjects. Diabetologia 13, 131–135 (1977).

    Article  CAS  PubMed  Google Scholar 

  132. Syn, N. L. et al. Association of metabolic–bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. Lancet 397, 1830–1841 (2021).

    Article  PubMed  Google Scholar 

  133. Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Butler, J. et al. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet 403, 1635–1648 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jorsal, A. et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double-blind, randomised, placebo-controlled trial. Eur. J. Heart Fail. 19, 69–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Sharma, A. et al. Liraglutide and weight loss among patients with advanced heart failure and a reduced ejection fraction: insights from the FIGHT trial. ESC Heart Fail. 5, 1035–1043 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Strain, W. D. et al. Effects of semaglutide on stroke subtypes in type 2 diabetes: post hoc analysis of the randomized SUSTAIN 6 and PIONEER 6. Stroke 53, 2749–2757 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Drucker, D. J. & Holst, J. J. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 66, 1765–1779 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Buse, J. B. et al. Cardiovascular risk reduction with liraglutide: an exploratory mediation analysis of the LEADER trial. Diabetes Care 43, 1546–1552 (2020).

    CAS  Google Scholar 

  140. Ray, K. K. et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373, 1765–1772 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. McLean, B. A., Wong, C. K., Kabir, M. G. & Drucker, D. J. Glucagon-like peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol. Metab. 66, 101641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014).

    Article  PubMed  Google Scholar 

  143. Sivertsen, J., Rosenmeier, J., Holst, J. J. & Vilsboll, T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat. Rev. Cardiol. 9, 209–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Sokos, G. G., Nikolaidis, L. A., Mankad, S., Elahi, D. & Shannon, R. P. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J. Card. Fail. 12, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Nikolaidis, L. A. et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109, 962–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Lonborg, J. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 33, 1491–1499 (2011).

    Article  PubMed  Google Scholar 

  147. Cahill, K. N. et al. Glucagon-like peptide-1 receptor regulates thromboxane-induced human platelet activation. JACC Basic Transl. Sci. 7, 713–715 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Asmar, A. et al. Renal extraction and acute effects of glucagon-like peptide-1 on central and renal hemodynamics in healthy men. Am. J. Physiol. Endocrinol. Metab. 308, E641–E649 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Asmar, A. et al. Extracellular fluid volume expansion uncovers a natriuretic action of GLP-1: a functional GLP-1–renal axis in man. J. Clin. Endocrinol. Metab. 104, 2509–2519 (2019).

    Article  PubMed  Google Scholar 

  150. Rakipovski, G. et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE−/− and LDLr−/− mice by a mechanism that includes inflammatory pathways. JACC Basic Transl. Sci. 3, 844–857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ripa, R. S. et al. Effect of liraglutide on arterial inflammation assessed as [18F]FDG uptake in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Circ. Cardiovasc. Imaging 14, e012174 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chaudhuri, A. et al. Exenatide exerts a potent antiinflammatory effect. J. Clin. Endocrinol. Metab. 97, 198–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Newsome, P. et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment. Pharmacol. Ther. 50, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wong, C. K. et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 36, 130–143 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2020).

    Article  PubMed  Google Scholar 

  156. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. McLean, B. A., Wong, C. K., Kaur, K. D., Seeley, R. J. & Drucker, D. J. Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight 6, e153732 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Miyawaki, K. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8, 738–742 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5, 209ra151 (2013).

    Article  PubMed  Google Scholar 

  160. Mentis, N. et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 60, 1270–1276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bergmann, N. C. et al. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia 62, 665–675 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Frias, J. P. et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 26, 343–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Frias, J. P. et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392, 2180–2193 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Frias, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Aronne, L. J. et al. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. JAMA 331, 38–48 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Gasbjerg, L. S., Rosenkilde, M. M., Meier, J. J., Holst, J. J. & Knop, F. K. The importance of glucose-dependent insulinotropic polypeptide receptor activation for the effects of tirzepatide. Diabetes Obes. Metab. 25, 3079–3092 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. Kizilkaya, H. S. et al. Loss of function glucose-dependent insulinotropic polypeptide receptor variants are associated with alterations in BMI, bone strength and cardiovascular outcomes. Front. Cell Dev. Biol. 9, 749607 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Veniant, M. M. et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. 6, 290–303 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Liskiewicz, A. et al. Glucose-dependent insulinotropic polypeptide regulates body weight and food intake via GABAergic neurons in mice. Nat. Metab. 5, 2075–2085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Samms, R. J. et al. GIPR agonism inhibits PYY-induced nausea-like behavior. Diabetes 71, 1410–1423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kurtzhals, P., Flindt Kreiner, F. & Singh Bindra, R. The role of weight control in the management of type 2 diabetes mellitus: perspectives on semaglutide. Diabetes Res. Clin. Pract. 203, 110881 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Samms, R. J. et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Invest. 131, e146353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Heise, T. et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 10, 418–429 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Boyle, C. N., Lutz, T. A. & Le, F. C. Amylin — its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol. Metab. 8, 203–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Lutz, T. A. Creating the amylin story. Appetite 172, 105965 (2022).

    Article  PubMed  Google Scholar 

  177. Boyle, C. N., Zheng, Y. & Lutz, T. A. Mediators of amylin action in metabolic control. J. Clin. Med. 11, 2207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17, 1736–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Enebo, L. B. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2.4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 397, 1736–1748 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Frias, J. P. et al. Efficacy and safety of co-administered once-weekly cagrilintide 2.4 mg with once-weekly semaglutide 2.4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 402, 720–730 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Lau, D. C. W. et al. Once-weekly cagrilintide for weight management in people with overweight and obesity: a multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 398, 2160–2172 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Bagger, J. I., Knop, F. K., Holst, J. J. & Vilsboll, T. Glucagon receptor antagonism for the treatment of type 2 diabetes. Diabetes Obes. Metab. 13, 965–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Larger, E. et al. Pancreatic alpha-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation. Endocrinol. Diabetes Metab. Case Rep. 2016, 16-0081 (2016).

    Google Scholar 

  184. Kazda, C. M. et al. Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1071–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Holst, J. J., Wewer Albrechtsen, N. J., Pedersen, J. & Knop, F. K. Glucagon and amino acids are linked in a mutual feedback cycle: the liver–alpha-cell axis. Diabetes 66, 235–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Wewer Albrechtsen, N. J. et al. The liver–alpha-cell axis and type 2 diabetes. Endocr. Rev. 40, 1353–1366 (2019).

    Article  PubMed  Google Scholar 

  187. Richter, M. M. et al. The liver–alpha-cell axis in health and in disease. Diabetes 71, 1852–1861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Winther-Sorensen, M. et al. Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis. Mol. Metab. 42, 101080 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Guzman, C. B. et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1521–1528 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Galsgaard, K. D., Pedersen, J., Knop, F. K., Holst, J. J. & Wewer Albrechtsen, N. J. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 10, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Guan, H. P. et al. Glucagon receptor antagonism induces increased cholesterol absorption. J. Lipid Res. 56, 2183–2195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Holst, J. J., Albrechtsen, N. J. W., Gabe, M. B. N. & Rosenkilde, M. M. Oxyntomodulin: actions and role in diabetes. Peptides 100, 48–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Pocai, A. et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Geary, N. Pancreatic glucagon signals postprandial satiety. Neurosci. Biobehav. Rev. 14, 323–338 (1990).

    Article  CAS  PubMed  Google Scholar 

  196. Jensen, P. B. et al. Transplantable rat glucagonomas cause acute onset of severe anorexia and adipsia despite highly elevated NPY mRNA levels in the hypothalamic arcuate nucleus. J. Clin. Invest. 101, 503–510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. van der Velden, W. J. C. et al. Molecular and in vivo phenotyping of missense variants of the human glucagon receptor. J. Biol. Chem. 298, 101413 (2022).

    Article  PubMed  Google Scholar 

  198. Parker, V. E. R. et al. Cotadutide promotes glycogenolysis in people with overweight or obesity diagnosed with type 2 diabetes. Nat. Metab. 5, 2086–2093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ji, L. et al. A phase 2 randomised controlled trial of mazdutide in Chinese overweight adults or adults with obesity. Nat. Commun. 14, 8289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bluher, M., Rosenstock, J., Hoefler, J., Manuel, R. & Hennige, A. M. Dose–response effects on HbA1c and bodyweight reduction of survodutide, a dual glucagon/GLP-1 receptor agonist, compared with placebo and open-label semaglutide in people with type 2 diabetes: a randomised clinical trial. Diabetologia 67, 470–482 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  201. le Roux, C. W. et al. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: a randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. Lancet Diabetes Endocrinol. 12, 162–173 (2024).

    Article  PubMed  Google Scholar 

  202. Wewer Albrechtsen, N. J., Kuhre, R. E., Pedersen, J., Knop, F. K. & Holst, J. J. The biology of glucagon and the consequences of hyperglucagonemia. Biomark. Med. 10, 1141–1151 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Sandhu S & Jialal I. Glucagonoma syndrome. In: StatPearls https://www.ncbi.nlm.nih.gov/books/NBK519500/ (StatPearls, 2024).

  204. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Turcot, V. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Buckley, S. T. et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10, eaar7047 (2018).

    Article  PubMed  Google Scholar 

  208. Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394, 39–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Knop, F. K. et al. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 402, 705–719 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Teng, M. et al. Small molecule ago-allosteric modulators of the human glucagon-like peptide-1 (hGLP-1) receptor. Bioorg. Med. Chem. Lett. 17, 5472–5478 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Saxena, A. R. et al. Tolerability, safety and pharmacodynamics of oral, small-molecule glucagon-like peptide-1 receptor agonist danuglipron for type 2 diabetes: a 12-week, randomized, placebo-controlled, phase 2 study comparing different dose-escalation schemes. Diabetes Obes. Metab. 25, 2805–2814 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Fatima, H. et al. Evaluating glycemic control efficacy and safety of the oral small molecule glucagon-like peptide 1 receptor agonist danuglipron in type 2 diabetes patients: a systemic review and meta-analysis. Diabetes Metab. Syndr. Obes. 16, 3567–3578 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Pratt, E. et al. Orforglipron (LY3502970), a novel, oral non-peptide glucagon-like peptide-1 receptor agonist: a phase 1b, multicentre, blinded, placebo-controlled, randomized, multiple-ascending-dose study in people with type 2 diabetes. Diabetes Obes. Metab. 25, 2642–2649 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Melson, E., Ashraf, U., Papamargaritis, D. & Davies, M. J. What is the pipeline for future medications for obesity? Int. J. Obes. https://doi.org/10.1038/s41366-024-01473-y (2024).

    Article  Google Scholar 

  216. Gogineni, P., Melson, E., Papamargaritis, D. & Davies, M. Oral glucagon-like peptide-1 receptor agonists and combinations of entero–pancreatic hormones as treatments for adults with type 2 diabetes: where are we now? Expert Opin. Pharmacother. 25, 801–818 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Heymsfield, S. B. et al. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: a phase 2 randomized clinical trial. JAMA Netw. Open 4, e2033457 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ryan, D. H. et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the SELECT trial. Nat. Med. 30, 2049–2057 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Blundell, J. et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 19, 1242–1251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995).

    Article  CAS  PubMed  Google Scholar 

  222. Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Gleason, P. P. et al. Real-world persistence and adherence to glucagon-like peptide-1 receptor agonists among obese commercially insured adults without diabetes. J. Manag. Care Spec. Pharm. 8, 1–8 (2024).

    Google Scholar 

  225. Dickson, S. L. et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J. Neurosci. 32, 4812–4820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jerlhag, E. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies. Front. Pharmacol. 14, 1063033 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Iepsen, E. W. et al. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int. J. Obes. 39, 834–841 (2015).

    Article  CAS  Google Scholar 

  228. Lundgren, J. R. et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 384, 1719–1730 (2021).

    Article  PubMed  Google Scholar 

  229. Jensen, S. B. K. et al. Healthy weight loss maintenance with exercise, GLP-1 receptor agonist, or both combined followed by one year without treatment: a post-treatment analysis of a randomised placebo-controlled trial. eClinicalMedicine 69, 102475 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  230. van Rijswijk, A. S., van Olst, N., Schats, W., van der Peet, D. L. & van de Laar, A. W. What is weight loss after bariatric surgery expressed in percentage total weight loss (%TWL)? A systematic review. Obes. Surg. 31, 3833–3847 (2021).

    Article  PubMed  Google Scholar 

  231. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Hansen, L., Deacon, C. F., Orskov, C. & Holst, J. J. Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140, 5356–5363 (1999).

    Article  CAS  PubMed  Google Scholar 

  233. Kuhre, R. E., Wewer Albrechtsen, N. J., Hartmann, B., Deacon, C. F. & Holst, J. J. Measurement of the incretin hormones: glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. J. Diabetes Complications 29, 445–450 (2014).

    Google Scholar 

  234. Holst, J. J. & Deacon, C. F. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia 48, 612–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Orskov, C., Poulsen, S. S., Moller, M. & Holst, J. J. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 45, 832–835 (1996).

    Article  CAS  PubMed  Google Scholar 

  236. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep. 25, 1127–1134 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Bak, M. J. et al. Specificity and sensitivity of commercially available assays for glucagon-like peptide-1 (GLP-1): implications for GLP-1 measurements in clinical studies. Diabetes Obes. Metab. 16, 1155–1164 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Kizilkaya, H. S. et al. Characterization of genetic variants of GIPR reveals a contribution of β-arrestin to metabolic phenotypes. Nat. Metab. 6, 1268–1281 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bowker, N. et al. Genetically predicted glucose-dependent insulinotropic polypeptide (GIP) levels and cardiovascular disease risk are driven by distinct causal variants in the GIPR region. Diabetes 70, 2706–2719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Karhunen, V. et al. Leveraging human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide signalling. Diabetologia 64, 2773–2778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Melchiorsen, J. U. et al. Rare heterozygous loss-of-function variants in the human GLP-1 receptor do not associate with cardiometabolic phenotypes. J. Clin. Endocrinol. Metab. 108, 2821–2833 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Dorsey-Trevino, E. G., Kaur, V., Mercader, J. M., Florez, J. C. & Leong, A. Association of GLP1R polymorphisms with the incretin response. J. Clin. Endocrinol. Metab. 107, 2580–2588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Juul Holst.

Ethics declarations

Competing interests

Throughout the development of GLP-1RAs, J.J.H. has had numerous contacts with the pharmaceutical industry and has been a member of advisory boards and given paid lectures. Most contacts have been with Merck and Novo Nordisk. Currently, J.J.H. is a member of advisory boards for Novo Nordisk and gives occasional paid lectures for this and other companies. J.J.H. is a cofounder and a member of the board of Antag Therapeutics. J.J.H. does not have any economical engagements with any other company.

Peer review

Peer review information

Nature Metabolism thanks Nigel Irwin, Michael Nauck and Brian Finan for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt, in collaboration with the Nature Metabolism editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holst, J.J. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab (2024). https://doi.org/10.1038/s42255-024-01113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42255-024-01113-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing