Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Feeding gut microbes to nourish the brain: unravelling the diet–microbiota–gut–brain axis

Abstract

The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut–brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut–brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet–microbiota–gut–brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet–microbiota–gut–brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lifespan nutrition.
Fig. 2: Implications for neuropsychiatric disorders.
Fig. 3: Mechanisms of action.
Fig. 4: Investigating the diet–microbiota–gut–brain axis.
Fig. 5: Gut microbiota as a potential mediator/moderator.

Similar content being viewed by others

References

  1. Collaborators, G. B. D. M. D. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Article  Google Scholar 

  2. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pathare, N. N. et al. Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience. Front. Neural Circuits 17, 1170395 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  PubMed  CAS  Google Scholar 

  5. Sonnenburg, J. L. & Backhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ma, J. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci. Rep. 10, 15792 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Berding, K. & Donovan, S. M. Diet can impact microbiota composition in children with autism spectrum disorder. Front. Neurosci. 12, 515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fulling, C. et al. Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain Behav. Immun. 87, 666–678 (2020).

    Article  PubMed  CAS  Google Scholar 

  9. Oluwagbemigun, K. et al. Long-term dietary intake from infancy to late adolescence is associated with gut microbiota composition in young adulthood. Am. J. Clin. Nutr. 113, 647–656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nota, M. H. C., Nicolas, S., O’Leary, O. F. & Nolan, Y. M. Outrunning a bad diet: Interactions between exercise and a Western-style diet for adolescent mental health, metabolism and microbes. Neurosci. Biobehav Rev. 149, 105147 (2023).

    Article  PubMed  Google Scholar 

  11. Whelan, K., Bancil, A. S., Lindsay, J. O. & Chassaing, B. Ultra-processed foods and food additives in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 21, 406–427 (2024).

    Article  PubMed  Google Scholar 

  12. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). Changes in gut microbiota composition/function were observed as early as 24 h following plant-based or animal-based diets, demonstrating the ability to rapidly shift the gut microbiota with diet.

    Article  PubMed  CAS  Google Scholar 

  13. Komulainen, P. et al. Exercise, diet, and cognition in a 4-year randomized controlled trial: Dose-Responses to Exercise Training (DR’s EXTRA). Am. J. Clin. Nutr. 113, 1428–1439 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Johnson, A. J. et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25, 789–802 (2019). Daily sampling of gut microbiota for 17 days in the same individuals revealed day-to-day variability that was largely explained by dietary intake evidencing the profound relationship between gut microbiota and diet.

    Article  PubMed  CAS  Google Scholar 

  15. Salazar, N., Valdes-Varela, L., Gonzalez, S., Gueimonde, M. & de Los Reyes-Gavilan, C. G. Nutrition and the gut microbiome in the elderly. Gut Microbes 8, 82–97 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  PubMed  CAS  Google Scholar 

  17. Taylor, A. M. et al. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutr. Neurosci. 23, 983–992 (2020).

    Article  PubMed  CAS  Google Scholar 

  18. Djekic, D. et al. Effects of a vegetarian diet on cardiometabolic risk factors, gut microbiota, and plasma metabolome in subjects with ischemic heart disease: a randomized, crossover study. J. Am. Heart Assoc. 9, e016518 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Suriano, F. et al. Fat and not sugar as the determining factor for gut microbiota changes, obesity, and related metabolic disorders in mice. Am. J. Physiol. Endocrinol. Metab. 324, E85–E96 (2023).

    Article  PubMed  CAS  Google Scholar 

  22. Lassale, C. et al. Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol. Psychiatry 24, 965–986 (2019).

    Article  PubMed  Google Scholar 

  23. De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65, 1812–1821 (2016).

    Article  PubMed  Google Scholar 

  24. Rostgaard-Hansen, A. L. et al. Temporal gut microbiota variability and association with dietary patterns: from the one-year observational Diet, Cancer, and Health - Next Generations MAX study. Am. J. Clin. Nutr. 119, 1015–1026 (2024).

    Article  PubMed  CAS  Google Scholar 

  25. Jennings, A. et al. The gut microbiome modulates associations between adherence to a Mediterranean-style diet, abdominal adiposity, and C-reactive protein in population-level analysis. Am. J. Clin. Nutr. 119, 136–144 (2024).

    Article  PubMed  CAS  Google Scholar 

  26. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li, J. et al. Carbohydrate staple food modulates gut microbiota of mongolians in China. Front. Microbiol. 8, 484 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Eid, N. et al. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 3, e46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Crescenzo, R. et al. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food Nutr. Res. 61, 1331657 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smolensky, I. et al. Sex-specific differences in metabolic hormone and adipose tissue dynamics induced by moderate low-carbohydrate and ketogenic diet. Sci. Rep. 13, 16465 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, C. H., Park, J. & Kim, M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 14, 277–288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115, 432–443 (2022).

    Article  PubMed  Google Scholar 

  36. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  PubMed  CAS  Google Scholar 

  37. Zhang, S., Jin, Y., Zeng, Z., Liu, Z. & Fu, Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem. Res. Toxicol. 28, 2000–2009 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. Parker, B. J., Wearsch, P. A., Veloo, A. C. M. & Rodriguez-Palacios, A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 11, 906 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Moreno-Perez, D. et al. Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients 10, 337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Feng, Z. et al. A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice. Gut Pathog. 9, 59 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Link, V. M. et al. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 30, 560–572 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cao, G. Y. et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J. Prev. Alzheimers Dis. 6, 204–211 (2019).

    PubMed  Google Scholar 

  43. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Robertson, R. C. et al. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav. Immun. 59, 21–37 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245–257 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rodionov, D. A. et al. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 10, 1316 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pham, V. T., Dold, S., Rehman, A., Bird, J. K. & Steinert, R. E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 95, 35–53 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Kong, J. et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G208–G216 (2008).

    Article  PubMed  CAS  Google Scholar 

  49. Lima, A. A. et al. Effects of vitamin A supplementation on intestinal barrier function, growth, total parasitic, and specific Giardia spp infections in Brazilian children: a prospective randomized, double-blind, placebo-controlled trial. J. Pediatr. Gastroenterol. Nutr. 50, 309–315 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. Jaeggi, T. et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64, 731–742 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Long, S. J. & Benton, D. Effects of vitamin and mineral supplementation on stress, mild psychiatric symptoms, and mood in nonclinical samples: a meta-analysis. Psychosom. Med. 75, 144–153 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Lam, L. F. & Lawlis, T. R. Feeding the brain—the effects of micronutrient interventions on cognitive performance among school-aged children: a systematic review of randomized controlled trials. Clin. Nutr. 36, 1007–1014 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Crowley, E. K. et al. A reduction in behavioral pattern separation is attenuated by dietary supplementation with a magnesium-rich marine mineral blend in middle-aged rats. J. Med. Food 25, 924–929 (2022).

    Article  PubMed  CAS  Google Scholar 

  55. Balasubramanian, R., Schneider, E., Gunnigle, E., Cotter, P. D. & Cryan, J. F. Fermented foods: harnessing their potential to modulate the microbiota–gut–brain axis for mental health. Neurosci. Biobehav. Rev. 158, 105562 (2024).

    Article  PubMed  CAS  Google Scholar 

  56. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153 (2021). Fibre and fermented foods imparted differential effects on inflammation and gut microbiota composition/function in healthy adults, suggesting their combination may exert additive effects, in addition to providing important insights about microbiota signalling pathways.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cannavale, C. N. et al. Consumption of a fermented dairy beverage improves hippocampal-dependent relational memory in a randomized, controlled cross-over trial. Nutr. Neurosci. 26, 265–274 (2023).

    Article  PubMed  CAS  Google Scholar 

  58. Hwang, Y. H. et al. Efficacy and Safety of Lactobacillus Plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: a 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients 11, 305 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Odamaki, T. et al. Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: an open, randomised, parallel-group study. Benef. Microbes 7, 473–484 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Guse, K., Sharma, A. & Weyenberg, E. et al. Regular consumption of lacto-fermented vegetables has greater effects on the gut metabolome compared with the microbiome. Gut Microbiome 4, e11 (2023).

    Article  Google Scholar 

  61. Schneider, E. et al. Fiber and fermented foods—differential effects on the microbiota–gut–brain axis. Proceedings of the Nutrition Society In Press (2024).

  62. Tillisch, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401 (2013).

    Article  PubMed  CAS  Google Scholar 

  63. Berding, K. et al. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 28, 601–610 (2023). A gut-targeted diet high in fibre and fermented foods improved perceived stress in healthy adults, demonstrating that modulations to gut microbiota could improve emotional processing.

    Article  PubMed  CAS  Google Scholar 

  64. Garcia-Llatas, G. & Rodriguez-Estrada, M. T. Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem. Phys. Lipids 164, 607–624 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Cuevas-Tena, M. et al. Plant sterols and human gut microbiota relationship: A colonic fermentation study. J. Funct. Foods 44, 322–329 (2018).

    Article  CAS  Google Scholar 

  66. Lane, M. M. et al. Ultra-processed food consumption and mental health: a systematic review and meta-analysis of observational studies. Nutrients 14, 2568 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fernandes, A. E. et al. Differences in the gut microbiota of women according to ultra-processed food consumption. Nutr. Metab. Cardiovasc. Dis. 33, 84–89 (2023).

    Article  PubMed  Google Scholar 

  68. Partula, V. et al. Associations between usual diet and gut microbiota composition: results from the Milieu Interieur cross-sectional study. Am. J. Clin. Nutr. 109, 1472–1483 (2019).

    Article  PubMed  Google Scholar 

  69. Zapico, A. et al. Dietary xenobiotics, (poly)phenols and fibers: Exploring associations with gut microbiota in socially vulnerable individuals. Front. Nutr. 9, 1000829 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ruiz-Saavedra, S. et al. Associations of dietary factors and xenobiotic intake with faecal microbiota composition according to the presence of intestinal mucosa damage. Food Funct. 14, 9591–9605 (2023).

    Article  PubMed  CAS  Google Scholar 

  71. Agim, Z. S. & Cannon, J. R. Alterations in the nigrostriatal dopamine system after acute systemic PhIP exposure. Toxicol. Lett. 287, 31–41 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Syeda, T., Foguth, R. M., Llewellyn, E. & Cannon, J. R. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer’s disease. Toxicology 437, 152436 (2020).

    Article  PubMed  CAS  Google Scholar 

  73. Fraga, C. G., Croft, K. D., Kennedy, D. O. & Tomas-Barberan, F. A. The effects of polyphenols and other bioactives on human health. Food Funct. 10, 514–528 (2019).

    Article  PubMed  CAS  Google Scholar 

  74. Tian, Y. et al. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab. Dispos. 47, 86–93 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cui, H. X., Hu, Y. N., Li, J. W., Yuan, K. & Guo, Y. Preparation and evaluation of antidiabetic agents of berberine organic acid salts for enhancing the bioavailability. Molecules 24, 103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Berding, K. et al. Diet and the microbiota–gut–brain axis: sowing the seeds of good mental health. Adv. Nutr. 12, 1239–1285 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020). Adherence to a Mediterranean diet for 1 year altered microbial composition/function, which correlated with improvements in cognitive performance in a large sample of older adults, directly linking diet, gut microbiota and brain functioning in humans.

    Article  PubMed  CAS  Google Scholar 

  78. Del Bas, J. M. et al. Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. Int. J. Obes. 42, 746–754 (2018).

    Article  Google Scholar 

  79. Andreani, N. A. et al. Longitudinal analysis of the gut microbiome in adolescent patients with anorexia nervosa: microbiome-related factors associated with clinical outcome. Gut Microbes 16, 2304158 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fan, S. et al. Microbiota–gut–brain axis drives overeating disorders. Cell Metab. 35, 2011–2027 (2023).

    Article  PubMed  CAS  Google Scholar 

  81. Million, M. et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. 37, 1460–1466 (2013).

    Article  CAS  Google Scholar 

  82. Mack, I. et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched-chain fatty acid profiles, and gastrointestinal complaints. Sci. Rep. 6, 26752 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Reed, K. K., Abbaspour, A., Bulik, C. M. & Carroll, I. M. The intestinal microbiota and anorexia nervosa: cause or consequence of nutrient deprivation. Curr. Opin. Endocr. Metab. Res 19, 46–51 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Camilleri, G. M. et al. The associations between emotional eating and consumption of energy-dense snack foods are modified by sex and depressive symptomatology. J. Nutr. 144, 1264–1273 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Jacka, F. N. et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 15, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bizzozero-Peroni, B. et al. The impact of the Mediterranean diet on alleviating depressive symptoms in adults: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. nuad176 (2024).

  87. Bayes, J., Schloss, J. & Sibbritt, D. The effect of a Mediterranean diet on the symptoms of depression in young males (the ‘AMMEND: A Mediterranean Diet in MEN with Depression’ study): a randomized controlled trial. Am. J. Clin. Nutr. 116, 572–580 (2022).

    Article  PubMed  Google Scholar 

  88. Conti, S. et al. Adherence to Mediterranean diet is inversely associated with depressive symptoms in older women: findings from the NutBrain Study. Br. J. Nutr. 131, 1892–1901 (2024).

    Article  PubMed  CAS  Google Scholar 

  89. Francesconi, L. P. et al. Proinflammatory and anti-inflammatory biomarkers in schizophrenia and influence of simvastatin on the interleukin-6. Int. Clin. Psychopharmacol. 34, 84–88 (2019).

    Article  PubMed  Google Scholar 

  90. Mongan, D., Ramesar, M., Focking, M., Cannon, M. & Cotter, D. Role of inflammation in the pathogenesis of schizophrenia: a review of the evidence, proposed mechanisms and implications for treatment. Early Interv. Psychiatry 14, 385–397 (2020).

    Article  PubMed  Google Scholar 

  91. Brown, A. S. & Susser, E. S. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr. Bull. 34, 1054–1063 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sarker, G., Litwan, K., Kastli, R. & Peleg-Raibstein, D. Maternal overnutrition during critical developmental periods leads to different health adversities in the offspring: relevance of obesity, addiction and schizophrenia. Sci. Rep. 9, 17322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yanguas-Casas, N. et al. High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol. Dis. 159, 105495 (2021).

    Article  PubMed  CAS  Google Scholar 

  94. Zheng, P. et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 5, eaau8317 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Schreck, K. A., Williams, K. & Smith, A. F. A comparison of eating behaviors between children with and without autism. J. Autism Dev. Disord. 34, 433–438 (2004).

    Article  PubMed  Google Scholar 

  96. Gong, X. et al. Gut flora and metabolism are altered in epilepsy and partially restored after ketogenic diets. Micro. Pathog. 155, 104899 (2021).

    Article  CAS  Google Scholar 

  97. Morton, J. T. et al. Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 26, 1208–1217 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yap, C. X. et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 184, 5916–5931 (2021). Diet, as opposed to direct associations with ASD diagnosis, had a greater effect on microbial diversity in stool samples from donors with ASD, suggesting that diet may explain the relationship between ASD and gut microbiota.

    Article  PubMed  CAS  Google Scholar 

  99. Hung, L. Y. & Margolis, K. G. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 21, 142–163 (2024).

    Article  PubMed  Google Scholar 

  100. Augustin, K. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 17, 84–93 (2018).

    Article  PubMed  CAS  Google Scholar 

  101. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Cavaleri, F. & Bashar, E. Potential synergies of beta-hydroxybutyrate and butyrate on the modulation of metabolism, inflammation, cognition, and general health. J. Nutr. Metab. 2018, 7195760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hu, N. et al. Nutrition and the risk of Alzheimer’s disease. Biomed. Res. Int. 2013, 524820 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bartochowski, Z. et al. Dietary interventions to prevent or delay alzheimer’s disease: what the evidence shows. Curr. Nutr. Rep. 9, 210–225 (2020).

    Article  PubMed  Google Scholar 

  105. Chung, Y. C. et al. Fermented milk of IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J. Funct. Foods 10, 465–474 (2014).

    Article  CAS  Google Scholar 

  106. Nagpal, R., Neth, B. J., Wang, S., Craft, S. & Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47, 529–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cortese, S. & Morcillo Penalver, C. Comorbidity between ADHD and obesity: exploring shared mechanisms and clinical implications. Postgrad. Med 122, 88–96 (2010).

    Article  PubMed  Google Scholar 

  108. Skalny, A. V. et al. Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD). J. Trace Elem. Med. Biol. 58, 126445 (2020).

    Article  PubMed  CAS  Google Scholar 

  109. Gkougka, D. et al. Gut microbiome and attention deficit/hyperactivity disorder: a systematic review. Pediatr. Res. 92, 1507–1519 (2022).

    Article  PubMed  CAS  Google Scholar 

  110. Rios-Hernandez, A., Alda, J. A., Farran-Codina, A., Ferreira-Garcia, E. & Izquierdo-Pulido, M. The Mediterranean diet and ADHD in children and adolescents. Pediatrics 139, e20162027 (2017).

    Article  PubMed  Google Scholar 

  111. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  PubMed  CAS  Google Scholar 

  112. Boscaini, S. et al. Microbiota and body weight control: weight watchers within. Mol. Metab. 57, 101427 (2022).

    Article  PubMed  CAS  Google Scholar 

  113. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  PubMed  CAS  Google Scholar 

  114. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015). Variations in blood glucose response to ‘healthy’ and ‘unhealthy’ meals were underpinned by individual gut microbiome composition, highlighting the moderating capacity of individual microbiome capacity on health outcomes.

    Article  PubMed  CAS  Google Scholar 

  115. Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 4, e458 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Osadchiy, V. et al. Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects. PLoS ONE 13, e0201772 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. de Wouters d’Oplinter, A. et al. Gut microbes participate in food preference alterations during obesity. Gut Microbes 13, 1959242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Medawar, E. et al. Prebiotic diet changes neural correlates of food decision-making in overweight adults: a randomised controlled within-subject cross-over trial. Gut 73, 298–310 (2024).

    Article  PubMed  Google Scholar 

  119. Dalby, M. J. Questioning the foundations of the gut microbiota and obesity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220221 (2023).

    Article  PubMed  Google Scholar 

  120. Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2015).

    Article  PubMed  Google Scholar 

  121. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ellekilde, M. et al. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci. Rep. 4, 5922 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zecheng, L. et al. Fecal microbiota transplantation in obesity metabolism: a meta analysis and systematic review. Diabetes Res. Clin. Pract. 202, 110803 (2023).

    Article  PubMed  Google Scholar 

  124. Penninx, B. & Lange, S. M. M. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues Clin. Neurosci. 20, 63–73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Needham, B. D., Kaddurah-Daouk, R. & Mazmanian, S. K. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 21, 717–731 (2020).

    Article  PubMed  CAS  Google Scholar 

  126. Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48, 15–34 (2018).

    Article  PubMed  CAS  Google Scholar 

  127. O’Riordan, K. J. et al. Short chain fatty acids: microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

    Article  PubMed  Google Scholar 

  128. Morita, C. et al. Gut dysbiosis in patients with anorexia nervosa. PLoS ONE 10, e0145274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Unger, M. M. et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72 (2016).

    Article  PubMed  Google Scholar 

  130. Osman, A. et al. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Brain Behav. Immun. 114, 311–324 (2023).

    Article  PubMed  CAS  Google Scholar 

  131. van de Wouw, M. et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J. Physiol. 596, 4923–4944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Berding, K. & Donovan, S. M. Dietary patterns impact temporal dynamics of fecal microbiota composition in children with autism spectrum disorder. Front Nutr. 6, 193 (2019).

    Article  PubMed  Google Scholar 

  133. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell 167, 1469–1480 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ostendorf, F., Metzdorf, J., Gold, R., Haghikia, A. & Tonges, L. Propionic acid and fasudil as treatment against rotenone toxicity in an in vitro model of parkinson’s disease. Molecules 25, 2502 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Marizzoni, M. et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J. Alzheimers Dis. 78, 683–697 (2020).

    Article  PubMed  CAS  Google Scholar 

  136. Cani, P. D., Everard, A. & Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 13, 935–940 (2013).

    Article  PubMed  CAS  Google Scholar 

  137. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  Google Scholar 

  138. Soliman, M. L., Puig, K. L., Combs, C. K. & Rosenberger, T. A. Acetate reduces microglia inflammatory signaling in vitro. J. Neurochem. 123, 555–567 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Brown, A. J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  PubMed  CAS  Google Scholar 

  140. Miyauchi, S., Gopal, E., Fei, Y. J. & Ganapathy, V. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids. J. Biol. Chem. 279, 13293–13296 (2004).

    Article  PubMed  CAS  Google Scholar 

  141. Kekuda, R., Manoharan, P., Baseler, W. & Sundaram, U. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Dig. Dis. Sci. 58, 660–667 (2013).

    Article  PubMed  CAS  Google Scholar 

  142. Haenen, D. et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 143, 274–283 (2013).

    Article  PubMed  CAS  Google Scholar 

  143. Iwanaga, T., Takebe, K., Kato, I., Karaki, S. & Kuwahara, A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomed. Res. 27, 243–254 (2006).

    Article  PubMed  CAS  Google Scholar 

  144. Oufir, L. E. et al. Relationships between transit time in man and in vitro fermentation of dietary fiber by fecal bacteria. Eur. J. Clin. Nutr. 54, 603–609 (2000).

    Article  PubMed  CAS  Google Scholar 

  145. Liu, Z. et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 11, 855 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Dalile, B., Vervliet, B., Bergonzelli, G., Verbeke, K. & Van Oudenhove, L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacology 45, 2257–2266 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  PubMed  CAS  Google Scholar 

  148. Qian, W. et al. Effects of taurine on gut microbiota homeostasis: an evaluation based on two models of gut dysbiosis. Biomedicines 11, 1048 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Jangra, A. et al. Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regen. Res. 19, 62–68 (2024).

    Article  PubMed  CAS  Google Scholar 

  150. Kliewer, S. A. & Mangelsdorf, D. J. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig. Dis. 33, 327–331 (2015).

    Article  PubMed  Google Scholar 

  151. Joyce, S. A. & Gahan, C. G. Bile acid modifications at the microbe–host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 7, 313–333 (2016).

    Article  PubMed  CAS  Google Scholar 

  152. Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article  PubMed  CAS  Google Scholar 

  154. Jena, P. K. et al. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J. 32, 2866–2877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Xie, G. et al. Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure. EBioMedicine 37, 294–306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bostick, J. W., Schonhoff, A. M. & Mazmanian, S. K. Gut microbiome-mediated regulation of neuroinflammation. Curr. Opin. Immunol. 76, 102177 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Pott, J. & Hornef, M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. Embo Rep. 13, 684–698 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Allaire, J. M. et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696 (2018).

    Article  PubMed  CAS  Google Scholar 

  159. Cani, P. D. & Knauf, C. How gut microbes talk to organs: the role of endocrine and nervous routes. Mol. Metab. 5, 743–752 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29, 700–712 (2021).

    Article  PubMed  Google Scholar 

  161. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

    Article  PubMed  CAS  Google Scholar 

  162. Lyte, M. & Ernst, S. Catecholamine induced growth of gram negative bacteria. Life Sci. 50, 203–212 (1992).

    Article  PubMed  CAS  Google Scholar 

  163. Lyte, M., Varcoe, J. J. & Bailey, M. T. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol. Behav. 65, 63–68 (1998).

    Article  PubMed  CAS  Google Scholar 

  164. Wiley, N. C., Cryan, J. F., Dinan, T. G., Ross, R. P. & Stanton, C. Production of psychoactive metabolites by gut bacteria. Mod. Trends Psychiatry 32, 74–99 (2021).

    Article  PubMed  Google Scholar 

  165. Lyte, M. et al. Resistant starch alters the microbiota-gut brain axis: implications for dietary modulation of behavior. PLoS ONE 11, e0146406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol 4, 396–403 (2019).

    Article  PubMed  CAS  Google Scholar 

  168. Li, H., Gao, D., Cao, Y. & Xu, H. A high γ-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann. Microbiol. 58, 649–653 (2008).

    Article  CAS  Google Scholar 

  169. Perez-Berezo, T. et al. Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nat. Commun. 8, 1314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Petitfils, C. et al. Identification of bacterial lipopeptides as key players in IBS. Gut 72, 939–950 (2023).

    Article  PubMed  CAS  Google Scholar 

  171. Pokusaeva, K. et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 29, e12904 (2017).

    Article  PubMed  Google Scholar 

  172. De Palma, G. et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci. Transl. Med. 14, eabj1895 (2022).

    Article  PubMed  Google Scholar 

  173. Colombo, F. M., Cattaneo, P., Confalonieri, E. & Bernardi, C. Histamine food poisonings: a systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 58, 1131–1151 (2018).

    Article  PubMed  CAS  Google Scholar 

  174. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Thomas, C. M. et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 7, e31951 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Lyte, J. M. et al. Gut–brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol. Motil. 32, e13881 (2020).

    Article  PubMed  CAS  Google Scholar 

  178. Lukic, I., Getselter, D., Koren, O. & Elliott, E. Role of tryptophan in microbiota-induced depressive-like behavior: evidence from tryptophan depletion study. Front. Behav. Neurosci. 13, 123 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Clarke, G. et al. The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).

    Article  PubMed  CAS  Google Scholar 

  180. Kennedy, P. J., Cryan, J. F., Dinan, T. G. & Clarke, G. Kynurenine pathway metabolism and the microbiota–gut–brain axis. Neuropharmacology 112, 399–412 (2017).

    Article  PubMed  CAS  Google Scholar 

  181. Agus, A., Clement, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182 (2021).

    Article  PubMed  CAS  Google Scholar 

  182. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  PubMed  Google Scholar 

  183. Jaglin, M. et al. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front. Neurosci. 12, 216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Brewerton, T. D. et al. CSF isatin is elevated in bulimia nervosa. Biol. Psychiatry 37, 481–483 (1995).

    Article  PubMed  CAS  Google Scholar 

  185. Bhattarai, Y. et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 23, 775–785 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Zhu, C. et al. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutr. Res. 77, 62–72 (2020).

    Article  PubMed  CAS  Google Scholar 

  187. Zamoscik, V. et al. Tryptophan-enriched diet or 5-hydroxytryptophan supplementation given in a randomized controlled trial impacts social cognition on a neural and behavioral level. Sci. Rep. 11, 21637 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Lindseth, G., Helland, B. & Caspers, J. The effects of dietary tryptophan on affective disorders. Arch. Psychiatr. Nurs. 29, 102–107 (2015).

    Article  PubMed  Google Scholar 

  189. Ufnal, M., Zadlo, A. & Ostaszewski, R. TMAO: a small molecule of great expectations. Nutrition 31, 1317–1323 (2015).

    Article  PubMed  CAS  Google Scholar 

  190. Tu, R. & Xia, J. Stroke and vascular cognitive impairment: the role of intestinal microbiota metabolite TMAO. CNS Neurol. Disord. Drug Targets 23, 102–121 (2024).

    Article  PubMed  CAS  Google Scholar 

  191. Del Rio, D. et al. The gut microbial metabolite trimethylamine N-oxide is present in human cerebrospinal fluid. Nutrients 9, 1053 (2017).

    Article  PubMed  Google Scholar 

  192. Mudimela, S. et al. Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders. Drug Discov. Today 27, 103334 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Vogt, N. M. et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res. Ther. 10, 124 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Zhuang, Z. et al. Causal relationships between gut metabolites and Alzheimer’s disease: a bidirectional Mendelian randomization study. Neurobiol. Aging 100, 119.e115–119.e118 (2021).

    Article  Google Scholar 

  195. Velasquez, M. T., Ramezani, A., Manal, A. & Raj, D. S. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins 8, 326 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hoyles, L. et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 9, 235 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Dumas, M. E. et al. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep. 20, 136–148 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Xu, R. & Wang, Q. Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst. Biol. 10, 63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Guo, Y. et al. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl. Psychiatry 11, 328 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Fulling, C., Dinan, T. G. & Cryan, J. F. Gut microbe to brain signaling: what happens in vagus. Neuron 101, 998–1002 (2019).

    Article  PubMed  CAS  Google Scholar 

  201. Altschuler, S. M., Escardo, J., Lynn, R. B. & Miselis, R. R. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology 104, 502–509 (1993).

    Article  PubMed  CAS  Google Scholar 

  202. Siopi, E. et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Mol. Psychiatry 28, 3002–3012 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Sen, T. et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol. Behav. 173, 305–317 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Vaughn, A. C. et al. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation. Acta Neurobiol. Exp. 77, 18–30 (2017).

    Article  Google Scholar 

  205. McDougle, M. et al. Separate gut–brain circuits for fat and sugar reinforcement combine to promote overeating. Cell Metab. 36, 393–407 (2024).

    Article  PubMed  CAS  Google Scholar 

  206. De Silva, A. & Bloom, S. R. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6, 10–20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Plovier, H. & Cani, P. D. in Developmental Biology of Gastrointestinal Hormones Vol. 32 (eds Wabitsch, M. & Posovszky, C.) pp. 139–164 (Karger Publishers, 2017).

  208. van Bloemendaal, L. et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes 63, 4186–4196 (2014).

    Article  PubMed  Google Scholar 

  209. Breton, J. et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int. J. Eat. Disord. 49, 805–808 (2016).

    Article  PubMed  Google Scholar 

  210. Schellekens, H. et al. Bifidobacterium longum counters the effects of obesity: partial successful translation from rodent to human. EBioMedicine 63, 103176 (2021).

    Article  PubMed  CAS  Google Scholar 

  211. Wang, H., Braun, C., Murphy, E. F. & Enck, P. Bifidobacterium longum 1714 strain modulates brain activity of healthy volunteers during social stress. Am. J. Gastroenterol. 114, 1152–1162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Schmidt, K. et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232, 1793–1801 (2015).

    Article  PubMed  CAS  Google Scholar 

  213. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Mayer, E. A., Ryu, H. J. & Bhatt, R. R. The neurobiology of irritable bowel syndrome. Mol. Psychiatry 28, 1451–1465 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Berding, K. & Cryan, J. F. Microbiota-targeted interventions for mental health. Curr. Opin. Psychiatry 35, 3–9 (2022).

    Article  PubMed  Google Scholar 

  216. Soltani, H., Keim, N. L. & Laugero, K. D. Diet quality for sodium and vegetables mediate effects of whole food diets on 8-week changes in stress load. Nutrients 10, 1606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Casertano, M., Fogliano, V. & Ercolini, D. Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res. Int. 152, 110892 (2022).

    Article  PubMed  CAS  Google Scholar 

  218. O’Mahony, S. M. et al. The enduring effects of early-life stress on the microbiota–gut–brain axis are buffered by dietary supplementation with milk fat globule membrane and a prebiotic blend. Eur. J. Neurosci. 51, 1042–1058 (2020).

    Article  PubMed  Google Scholar 

  219. Burokas, A. et al. Targeting the microbiota–gut–brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 82, 472–487 (2017).

    Article  PubMed  CAS  Google Scholar 

  220. Muth, A. K. & Park, S. Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clin. Nutr. 40, 3999–4010 (2021).

    Article  PubMed  CAS  Google Scholar 

  221. Thomas, J. M. et al. Satiation attenuates BOLD activity in brain regions involved in reward and increases activity in dorsolateral prefrontal cortex: an fMRI study in healthy volunteers. Am. J. Clin. Nutr. 101, 697–704 (2015).

    Article  PubMed  CAS  Google Scholar 

  222. Schneider, E., Dourish, C. T. & Higgs, S. Utility of an experimental medicine model to evaluate efficacy, side-effects and mechanism of action of novel treatments for obesity and binge-eating disorder. Appetite 176, 106087 (2022).

    Article  PubMed  Google Scholar 

  223. Sereti, I. et al. Impaired gut microbiota-mediated short-chain fatty acid production precedes morbidity and mortality in people with HIV. Cell Rep. 42, 113336 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Subar, A. F. et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 145, 2639–2645 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. de la Hunty, A. et al. UK Nutrition Research Partnership (NRP) workshop: forum on advancing dietary intake assessment. Nutr. Bull. 46, 228–237 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Li, K. J., Brouwer-Brolsma, E. M., Burton-Pimentel, K. J., Vergeres, G. & Feskens, E. J. M. A systematic review to identify biomarkers of intake for fermented food products. Genes Nutr. 16, 5 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Diener, C. & Gibbons, S. M. Metagenomic estimation of dietary intake from human stool. Preprint at bioRxiv https://doi.org/10.1101/2024.02.02.578701 (2024).

  228. Gheorghe, C. E. et al. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 13, 1941711 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Liu, X. et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 54, 52–61 (2022).

    Article  PubMed  CAS  Google Scholar 

  230. Marco, M. L. et al. The International Scientific Association For Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Gibson, G. R. et al. Expert consensus document: the International Scientific Association For Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    Article  PubMed  Google Scholar 

  232. Hill, C. et al. Expert consensus document. The International Scientific Association For Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  233. Salminen, S. et al. The International Scientific Association For Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Swanson, K. S. et al. The International Scientific Association For Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Sarkar, A. et al. Psychobiotics and the manipulation of bacteria-gut–brain signals. Trends Neurosci. 39, 763–781 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Williams, S. C. Gnotobiotics. Proc. Natl Acad. Sci. USA 111, 1661 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Secombe, K. R. et al. Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols. Gut Microbes 13, 1979878 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Hiel, S. et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am. J. Clin. Nutr. 109, 1683–1695 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Uemura, M. et al. Obesity and mental health improvement following nutritional education focusing on gut microbiota composition in Japanese women: a randomised controlled trial. Eur. J. Nutr. 58, 3291–3302 (2019).

    Article  PubMed  Google Scholar 

  240. Perez-Guisado, J., Munoz-Serrano, A. & Alonso-Moraga, A. Spanish ketogenic mediterranean diet: a healthy cardiovascular diet for weight loss. Nutr. J. 7, 30 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Fritsch, J. et al. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 19, 1189–1199.e30 (2021).

    Article  PubMed  CAS  Google Scholar 

  242. Choo, J. M. et al. Interactions between mediterranean diet supplemented with dairy foods and the gut microbiota influence cardiovascular health in an Australian population. Nutrients 15, 3645 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. van Soest, A. P. M. et al. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in dutch healthy older adults: the NU-AGE Study. Nutrients 12, 3471 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Igwe, E. O. et al. Low anthocyanin plum nectar does not impact cognition, blood pressure and gut microbiota in healthy older adults: a randomized crossover trial. Nutr. Res. 82, 74–87 (2020).

    Article  PubMed  CAS  Google Scholar 

  245. Baldi, S. et al. Effect of ancient Khorasan wheat on gut microbiota, inflammation, and short-chain fatty acid production in patients with fibromyalgia. World J. Gastroenterol. 28, 1965–1980 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Fluitman, K. S. et al. Personalized dietary advice to increase protein intake in older adults does not affect the gut microbiota, appetite or central processing of food stimuli in community-dwelling older adults: a six-month randomized controlled trial. Nutrients 15, 332 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Herselman, M. F. et al. The effects of walnuts and academic stress on mental health, general well-being and the gut microbiota in a sample of university students: a randomised clinical trial. Nutrients 14, 4776 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 96, 557–567 (2009).

    Article  PubMed  CAS  Google Scholar 

  249. Jeong, M. Y., Jang, H. M. & Kim, D. H. High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neurosci. Lett. 698, 51–57 (2019).

    Article  PubMed  CAS  Google Scholar 

  250. Hassan, A. M. et al. High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutr. Neurosci. 22, 877–893 (2019).

    Article  PubMed  CAS  Google Scholar 

  251. Pyndt Jorgensen, B. et al. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS ONE 9, e103398 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Magnusson, K. R. et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140 (2015).

    Article  PubMed  CAS  Google Scholar 

  253. Li, J. M. et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome 7, 98 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Pyndt Jorgensen, B. et al. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice. Acta Neuropsychiatr. 27, 307–311 (2015).

    Article  PubMed  Google Scholar 

  255. Winther, G. et al. Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour. Acta Neuropsychiatr. 27, 168–176 (2015).

    Article  PubMed  Google Scholar 

  256. Oh, N. S. et al. Glycated milk protein fermented with Lactobacillus rhamnosus ameliorates the cognitive health of mice under mild-stress condition. Gut Microbes 11, 1643–1661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Yu, L. et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 233, 126409 (2020).

    Article  PubMed  Google Scholar 

  258. van de Wouw, M. et al. Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut–brain modules in the mouse. Microbiome 8, 67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  259. van de Wouw, M. et al. Kefir ameliorates specific microbiota–gut–brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain Behav. Immun. 97, 119–134 (2021).

    Article  PubMed  Google Scholar 

  260. Murray, E. et al. Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav. Immun. 81, 198–212 (2019).

    Article  PubMed  CAS  Google Scholar 

  261. Liu, J. et al. High-altitude Tibetan fermented milk ameliorated cognitive dysfunction by modified gut microbiota in Alzheimer’s disease transgenic mice. Food Funct. 11, 5308–5319 (2020).

    Article  PubMed  CAS  Google Scholar 

  262. Cecarini, V. et al. Modulation of gut microbiota and neuroprotective effect of a yeast-enriched beer. Nutrients 14, 2380 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Hor, P. K. et al. Antiobesity, antihyperglycemic, and antidepressive potentiality of rice fermented food through modulation of intestinal microbiota. Front. Microbiol. 13, 794503 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Han, S. K. et al. Bifidobacteria-fermented red ginseng and its constituents ginsenoside Rd and protopanaxatriol alleviate anxiety/depression in mice by the amelioration of gut dysbiosis. Nutrients 12, 901 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Leigh, S. J., Kaakoush, N. O., Bertoldo, M. J., Westbrook, R. F. & Morris, M. J. Intermittent cafeteria diet identifies fecal microbiome changes as a predictor of spatial recognition memory impairment in female rats. Transl. Psychiatry 10, 36 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Mika, A. et al. Feeding the developing brain: juvenile rats fed diet rich in prebiotics and bioactive milk fractions exhibit reduced anxiety-related behavior and modified gene expression in emotion circuits. Neurosci. Lett. 677, 103–109 (2018).

    Article  PubMed  CAS  Google Scholar 

  267. Reichelt, A. C. et al. An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats. Nutr. Neurosci. 23, 613–627 (2020).

    Article  PubMed  CAS  Google Scholar 

  268. Zhang, T. et al. Alleviation of neuronal cell death and memory deficit with chungkookjang made with Bacillus amyloliquefaciens and Bacillus subtilis potentially through promoting gut–brain axis in artery-occluded gerbils. Foods 10, 2697 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Jeong, D. Y. et al. Chungkookjang, a soy food, fermented with Bacillus amyloliquefaciens protects gerbils against ishcmeic stroke injury, and post-stroke hyperglycemia. Food Res. Int. 128, 108769 (2020).

    Article  PubMed  CAS  Google Scholar 

  270. Destrez, A., Grimm, P., Cezilly, F. & Julliand, V. Changes of the hindgut microbiota due to high-starch diet can be associated with behavioral stress response in horses. Physiol. Behav. 149, 159–164 (2015).

    Article  PubMed  CAS  Google Scholar 

  271. Bulmer, L. S. et al. High-starch diets alter equine faecal microbiota and increase behavioural reactivity. Sci. Rep. 9, 18621 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Destrez, A., Grimm, P. & Julliand, V. Dietary-induced modulation of the hindgut microbiota is related to behavioral responses during stressful events in horses. Physiol. Behav. 202, 94–100 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.S., G.C. and J.F.C. conceptualized the article. E.S. and K.J.O. drafted the manuscript. All authors contributed to interpretation, editing and finalization of the manuscript.

Corresponding author

Correspondence to John F. Cryan.

Ethics declarations

Competing interests

E.S. has received an honorarium from Janssen Sciences Ireland UC as an invited speaker. K.J.O. has received honoraria from Sanofi Genzyme and Danone. G.C. has received honoraria from Janssen, Probi and Apsen as an invited speaker, is in receipt of research funding from Pharmavite, Reckitt, Tate and Lyle, Nestle and Fonterra, and has received payments as a consultant from Yakult, Zentiva and Heel Pharmaceuticals. J.F.C. has received research funding from IFF, Nutricia and Kerry Foods and has been an invited speaker at meetings organized by Bromotech & Nestle.

Peer review

Peer review information

Nature Metabolism thanks Hariom Yadav, Sarkis Mazmanian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Yanina-Yasmin Pesch, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, E., O’Riordan, K.J., Clarke, G. et al. Feeding gut microbes to nourish the brain: unravelling the diet–microbiota–gut–brain axis. Nat Metab 6, 1454–1478 (2024). https://doi.org/10.1038/s42255-024-01108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-01108-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing