Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards nutrition with precision: unlocking biomarkers as dietary assessment tools

Abstract

Precision nutrition requires precise tools to monitor dietary habits. Yet current dietary assessment instruments are subjective, limiting our understanding of the causal relationships between diet and health. Biomarkers of food intake (BFIs) hold promise to increase the objectivity and accuracy of dietary assessment, enabling adjustment for compliance and misreporting. Here, we update current concepts and provide a comprehensive overview of BFIs measured in urine and blood. We rank BFIs based on a four-level utility scale to guide selection and identify combinations of BFIs that specifically reflect complex food intakes, making them applicable as dietary instruments. We discuss the main challenges in biomarker development and illustrate key solutions for the application of BFIs in human studies, highlighting different strategies for selecting and combining BFIs to support specific study designs. Finally, we present a roadmap for BFI development and implementation to leverage current knowledge and enable precision in nutrition research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors affecting the detection of a BFI in a blood or urine sample.
Fig. 2: Examples of approaches for selecting and combining BFIs based on the intended dietary assessment.
Fig. 3: Roadmap for the implementation of BFIs for objective dietary assessment.

Similar content being viewed by others

References

  1. Forouhi, N. G. & Unwin, N. Global diet and health: old questions, fresh evidence, and new horizons. Lancet 393, 1916–1918 (2019).

    Article  PubMed  Google Scholar 

  2. Ioannidis, J. P. The challenge of reforming nutritional epidemiologic research. JAMA 320, 969–970 (2018).

    Article  PubMed  Google Scholar 

  3. Bingham, S. A., Nelson, M., Paul, A. A., Loken, E. B. & van Staveren, W. A. Methods for data collection at an individual level. in Manual on Methodology for Food Consumption Studies (eds Cameron, M. & Van Staveren, W. A.) 53–106 (Oxford University Press, 1988).

  4. Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Jenab, M., Slimani, N., Bictash, M., Ferrari, P. & Bingham, S. A. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum. Genet. 125, 507–525 (2009).

    Article  PubMed  Google Scholar 

  6. Brouwer-Brolsma, E. M. et al. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 76, 619–627 (2017).

    Article  PubMed  Google Scholar 

  7. Gao, Q. et al. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr. 12, 34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brennan, L. & Hu, F. B. Metabolomics‐based dietary biomarkers in nutritional epidemiology-current status and future opportunities. Mol. Nutr. Food Res. 63, 1701064 (2019).

    Article  Google Scholar 

  9. Dragsted, L. O. et al. Validation of biomarkers of food intake—critical assessment of candidate biomarkers. Genes Nutr. 13, 14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Andersen, M. B. S. et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res. 13, 1405–1418 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Gürdeniz, G. et al. Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids. Clin. Nutr. 41, 441–451 (2022).

    Article  PubMed  Google Scholar 

  12. McNamara, A. E. et al. The potential of multi-biomarker panels in nutrition research: total fruit intake as an example. Front. Nutr. 7, 577720 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castellano-Escuder, P. et al. Assessing adherence to healthy dietary habits through the urinary food metabolome: results from a european two-center study. Front. Nutr. 9, 880770 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Perez, I. et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 5, 184–195 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beckmann, M. et al. Challenges associated with the design and deployment of food intake urine biomarker technology for assessment of habitual diet in free-living individuals and populations–a perspective. Front. Nutr. 7, 602515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sobiecki, J. G. et al. A nutritional biomarker score of the Mediterranean diet and incident type 2 diabetes: Integrated analysis of data from the MedLey randomised controlled trial and the EPIC-InterAct case-cohort study. PLoS Med. 20, e1004221 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wadell, A. T. et al. Dietary biomarkers and food records indicate compliance to study diets in the ADIRA (anti-inflammatory diet in rheumatoid arthritis) trial. Front. Nutr. 10, 1209787 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vázquez-Manjarrez, N. et al. Discovery and validation of banana intake biomarkers using untargeted metabolomics in human intervention and cross-sectional studies. J. Nutr. 149, 1701–1713 (2019).

    Article  PubMed  Google Scholar 

  19. Cuparencu, C. et al. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. Eur. J. Nutr. 60, 179–192 (2021).

    Article  PubMed  CAS  Google Scholar 

  20. Zheng, C. et al. Biomarker-calibrated red and combined red and processed meat intakes with chronic disease risk in a cohort of postmenopausal women. J. Nutr. 7, 1711–1720 (2022).

    Article  Google Scholar 

  21. Li, C. et al. Development and validation of a metabolite score for red meat intake: an observational cohort study and randomized controlled dietary intervention. Am. J. Clin. Nutr. 116, 511–522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brouwer-Brolsma, E. M., Brandl, B., Buso, M. E., Skurk, T. & Manach, C. Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review. Genes Nutr. 15, 7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cuparencu, C. et al. Biomarkers of meat and seafood intake: an extensive literature review. Genes Nutr. 14, 35 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Garcia-Aloy, M. et al. Biomarkers of food intake for nuts and vegetable oils: an extensive literature search. Genes Nutr. 14, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Landberg, R. et al. Biomarkers of cereal food intake. Genes Nutr. 14, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Münger, L. H. et al. Biomarker of food intake for assessing the consumption of dairy and egg products. Genes Nutr. 13, 26 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Praticò, G., Gao, Q., Manach, C. & Dragsted, L. O. Biomarkers of food intake for Allium vegetables. Genes Nutr. 13, 34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rothwell, J. A. et al. Biomarkers of intake for coffee, tea, and sweetened beverages. Genes Nutr. 13, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sri Harsha, P. S. et al. Biomarkers of legume intake in human intervention and observational studies: a systematic review. Genes Nutr. 13, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ulaszewska, M. et al. Food intake biomarkers for apple, pear, and stone fruit. Genes Nutr. 13, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ulaszewska, M. et al. Food intake biomarkers for berries and grapes. Genes Nutr. 15, 17 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vázquez-Manjarrez, N. et al. Biomarkers of intake for tropical fruits. Genes Nutr. 15, 11 (2020).

    Article  Google Scholar 

  33. Zhou, X., Gao, Q., Praticò, G., Chen, J. & Dragsted, L. O. Biomarkers of tuber intake. Genes Nutr. 14, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trius-Soler, M. et al. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. Genes Nutr. 18, 7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xi, M. & Dragsted, L. O. Biomarkers of seaweed intake. Genes Nutr. 14, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rafiq, T. et al. Nutritional metabolomics and the classification of dietary biomarker candidates: a critical review. Adv. Nutr. 12, 2333–2357 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Landberg, R. et al. Dietary biomarkers—an update on their validity and applicability in epidemiological studies. Nutr. Rev. https://doi.org/10.1093/nutrit/nuad119 (2023).

  38. Praticò, G. et al. Guidelines for biomarker of food intake reviews (BFIRev): how to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr. 13, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Playdon, M. C. et al. Measuring diet by metabolomics: a 14-d controlled feeding study of weighed food intake. Am. J. Clin. Nutr. 119, 511–526 (2024).

    Article  PubMed  CAS  Google Scholar 

  40. Landberg, R. et al. Dose response of whole-grain biomarkers: alkylresorcinols in human plasma and their metabolites in urine in relation to intake. Am. J. Clin. Nutr. 89, 290–296 (2008).

    Article  PubMed  Google Scholar 

  41. McNamara, A. E. et al. Metabolomic‐based approach to identify biomarkers of apple intake. Mol. Nutr. Food Res. 64, 1901158 (2020).

    Article  CAS  Google Scholar 

  42. Gibbons, H. et al. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. 61, 1700037 (2017).

    Article  Google Scholar 

  43. Yin, X. et al. Estimation of chicken intake by adults using metabolomics-derived markers. J. Nutr. 147, 1850–1857 (2017).

    Article  PubMed  CAS  Google Scholar 

  44. Xi, M. et al. Combined urinary biomarkers to assess coffee intake using untargeted metabolomics: discovery in three pilot human intervention studies and validation in cross-sectional studies. J. Agric. Food Chem. 69, 7230–7242 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Martínez, M. E., Marshall, J. R. & Sechrest, L. Invited commentary: Factor analysis and the search for objectivity. Am. J. Epidemiol. 148, 17–19 (1998).

    Article  PubMed  Google Scholar 

  46. Shan, Z. et al. Healthy eating patterns and risk of total and cause-specific mortality. JAMA Intern. Med. 183, 142–153 (2023).

    Article  PubMed  Google Scholar 

  47. Playdon, M. C. et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 104, 776–789 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shibutami, E. et al. Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan. PLoS ONE 16, e0246456 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cuparencu, C., Rinnan, Å. & Dragsted, L. O. Combined markers to assess meat intake—human metabolomic studies of discovery and validation. Mol. Nutr. Food Res. 63, 1900106 (2019).

    Article  Google Scholar 

  50. Canyelles, M. et al. Gut microbiota-derived TMAO: A causal factor promoting atherosclerotic cardiovascular disease? Int. J. Mol. Sci. 24, 1940 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cheung, W. et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 105, 600–608 (2017).

    Article  PubMed  CAS  Google Scholar 

  52. Roager, H. M. & Dragsted, L. O. Diet-derived microbial metabolites in health and disease. Nutr. Bull. 44, 216–227 (2019).

    Article  Google Scholar 

  53. Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. D’Angelo, S. et al. Combining biomarker and food intake data: calibration equations for citrus intake. Am. J. Clin. Nutr. 110, 977–983 (2019).

    Article  PubMed  Google Scholar 

  55. Buso, M. E. et al. Relative validity of habitual sugar and low/no-calorie sweetener consumption assessed by FFQ, multiple 24-h dietary recalls and urinary biomarkers: an observational study within the SWEET project. Am. J. Clin. Nutr. 119, 546–559 (2023).

    Article  PubMed  Google Scholar 

  56. Fogelholm, M. et al. PREVIEW: prevention of diabetes through lifestyle intervention and population studies in Europe and around the world. design, methods, and baseline participant description of an adult cohort enrolled into a three-year randomised clinical trial. Nutrients 9, 632 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Santoro, A. et al. Combating inflammaging through a Mediterranean whole diet approach: the NU-AGE project’s conceptual framework and design. Mech. Ageing Dev. 136, 3–13 (2014).

    Article  PubMed  Google Scholar 

  58. Neuhouser, M. L. et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 167, 1247–1259 (2008).

    Article  PubMed  Google Scholar 

  59. El-Sohemy, A., Cornelis, M. C., Kabagambe, E. K. & Campos, H. Coffee, CYP1A2 genotype and risk of myocardial infarction. Genes Nutr. 2, 155–156 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    Article  PubMed  CAS  Google Scholar 

  61. Nestel, N. et al. The gut microbiome and abiotic factors as potential determinants of postprandial glucose responses: a single-arm meal study. Front. Nutr. 7, 594850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cuparencu, C. S. et al. Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: a meal study in adult men. Metabolomics 12, 1–20 (2016).

    Article  CAS  Google Scholar 

  63. Roager, H. M. & Christensen, L. H. Personal diet–microbiota interactions and weight loss. Proc. Nutr. Soc. 81, 243–254 (2022).

  64. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article  PubMed  CAS  Google Scholar 

  65. Procházková, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2022).

    Article  PubMed  Google Scholar 

  66. Xiao, Q. et al. Sources of variability in metabolite measurements from urinary samples. PLoS ONE 9, e95749 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y., Hodge, R. A., Stevens, V. L., Hartman, T. J. & McCullough, M. L. Identification and reproducibility of plasma metabolomic biomarkers of habitual food intake in a US diet validation study. Metabolites 10, 382 (2020).

  68. Townsend, M. K. et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin. Chem. 59, 1657–1667 (2013).

    Article  PubMed  CAS  Google Scholar 

  69. Sampson, J. N. et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol. Biomarkers Prev. 22, 631–640 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kruve, A. et al. Tutorial review on validation of liquid chromatography-mass spectrometry methods: part I. Anal. Chim. Acta 870, 29–44 (2015).

    Article  PubMed  CAS  Google Scholar 

  71. Kruve, A. et al. Tutorial review on validation of liquid chromatography-mass spectrometry methods: part II. Anal. Chim. Acta 870, 8–28 (2015).

    Article  PubMed  CAS  Google Scholar 

  72. Garcia‐Aloy, M. et al. Discovery of intake biomarkers of lentils, chickpeas, and white beans by untargeted LC–MS metabolomics in serum and urine. Mol. Nutr. Food Res. 64, 1901137 (2020).

    Article  Google Scholar 

  73. Acar, E. et al. Forecasting chronic diseases using data fusion. J. Proteome Res. 16, 2435–2444 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Singh, A. et al. Direct supplementation with urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur. J. Clin. Nutr. 76, 297–308 (2022).

    Article  PubMed  CAS  Google Scholar 

  75. Gao, Q. et al. Identification of urinary biomarkers of food intake for onion by untargeted LC–MS metabolomics. Preprint at https://arxiv.org/abs/2311.17194 (2023).

  76. Couillard, C., Lemieux, S., Vohl, M. C., Couture, P. & Lamarche, B. Carotenoids as biomarkers of fruit and vegetable intake in men and women. Br. J. Nutr. 116, 1206–1215 (2016).

    Article  PubMed  CAS  Google Scholar 

  77. Marklund, M. et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. J. Nutr. 144, 1642–1649 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Hidalgo-Liberona, N. et al. Adherence to the Mediterranean diet assessed by a novel dietary biomarker score and mortality in older adults: the InCHIANTI cohort study. BMC Med. 19, 280 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bütikofer, U. et al. Serum and urine metabolites in healthy men after consumption of acidified milk and yogurt. Nutrients 14, 4794 (2022).

  80. Zhou, X. et al. Urine metabolome profiling reveals imprints of food heating processes after dietary intervention with differently cooked potatoes. J. Agric. Food Chem. 68, 6122–6131 (2020).

    Article  PubMed  CAS  Google Scholar 

  81. Yan, J. W. et al. The aroma volatile repertoire in strawberry fruit: a review. J. Sci. Food Agric. 98, 4395–4402 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Tokitomo, Y., Steinhaus, M., Büttner, A. & Schieberle, P. Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation. Biosci. Biotechnol. Biochem. 69, 1323–1330 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Haag, F., Hoffmann, S. & Krautwurst, D. Key food furanones furaneol and sotolone specifically activate distinct odorant receptors. J. Agric. Food Chem. 69, 10999–11005 (2021).

    Article  PubMed  CAS  Google Scholar 

  84. Garcia-Aloy, M. et al. Novel multimetabolite prediction of walnut consumption by a urinary biomarker model in a free-living population: the PREDIMED study. J. Proteome Res. 13, 3476–3483 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Gürdeniz, G. et al. Detecting beer intake by unique metabolite patterns. J. Proteome Res. 15, 4544–4556 (2016).

    Article  PubMed  Google Scholar 

  86. Quifer-Rada, P., Chiva-Blanch, G., Jáuregui, O., Estruch, R. & Lamuela-Raventós, R. M. A discovery-driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 61, 10 (2017).

  87. Lindberg, M., Midthjell, K. & Bjerve, K. S. Long-term tracking of plasma phospholipid fatty acid concentrations and their correlation with the dietary intake of marine foods in newly diagnosed diabetic patients: results from a follow-up of the HUNT Study, Norway. Br. J. Nutr. 109, 1123–1134 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Quifer‐Rada, P., Chiva‐Blanch, G., Jauregui, O., Estruch, R. & Lamuela‐Raventós, R. M. A discovery‐driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 61, 1600980 (2017).

    Article  Google Scholar 

  89. Noerman, S. & Landberg, R. Blood metabolite profiles linking dietary patterns with health—toward precision nutrition. J. Intern. Med. 4, 408–432 (2023).

    Article  Google Scholar 

  90. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article  PubMed  CAS  Google Scholar 

  91. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  92. García-Gavilán, J. F. et al. Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease. Cardiovasc. Diabetol. 22, 340 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kolar, A. S. et al. A practical method for collecting 3-day food records in a large cohort. Epidemiology 16, 579–583 (2005).

    Article  PubMed  Google Scholar 

  94. Bjerregaard, A. A., Halldorsson, T. I., Kampmann, F. B., Olsen, S. F. & Tetens, I. Relative validity of a web-based food frequency questionnaire for Danish adolescents. Nutr. J. 17, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sun, Q. et al. Reproducibility of urinary biomarkers in multiple 24-h urine samples. Am. J. Clin. Nutr. 105, 159–168 (2017).

    Article  PubMed  CAS  Google Scholar 

  96. Wilson, T. et al. Spot and cumulative urine samples are suitable replacements for 24-hour urine collections for objective measures of dietary exposure in adults using metabolite biomarkers. J. Nutr. 149, 1692–1700 (2019).

    Article  PubMed  CAS  Google Scholar 

  97. Monošík, R. & Dragsted, L. O. Dried urine swabs as a tool for monitoring metabolite excretion. Bioanalysis 10, 1371–1381 (2018).

    Article  PubMed  Google Scholar 

  98. Lloyd, A. J. et al. Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure. Public Health Nutr. 23, 3081–3092 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Palmer, E. A., Cooper, H. J. & Dunn, W. B. Investigation of the 12-month stability of dried blood and urine spots applying untargeted UHPLC-MS metabolomic assays. Anal. Chem. 91, 14306–14313 (2019).

    Article  PubMed  CAS  Google Scholar 

  100. Shen, X. et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat. Biomed. Eng. 8, 11–29 (2023).

  101. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Berger, L. et al. Ethyl glucuronide in hair and fingernails as a long‐term alcohol biomarker. Addiction 109, 425–431 (2014).

    Article  PubMed  Google Scholar 

  103. Pragst, F. et al. Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages. Forensic Sci. Int. 196, 101–110 (2010).

    Article  PubMed  CAS  Google Scholar 

  104. Hoffmann, M. A. et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 40, 411–421 (2022).

    Article  PubMed  CAS  Google Scholar 

  105. Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714 (2010).

    Article  PubMed  CAS  Google Scholar 

  106. Montenegro-Burke, J. R., Guijas, C. & Siuzdak, G. METLIN: a tandem mass spectral library of standards. Methods Mol. Biol. 2104, 149–163 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xue, J., Guijas, C., Benton, H. P., Warth, B. & Siuzdak, G. METLIN MS(2) molecular standards database: a broad chemical and biological resource. Nat. Methods 17, 953–954 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Baker, E. S. et al. METLIN-CCS: an ion mobility spectrometry collision cross section database. Nat. Methods 20, 1836–1837 (2023).

  109. Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wang, M. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. West, K. A., Schmid, R., Gauglitz, J. M., Wang, M. & Dorrestein, P. C. foodMASST a mass spectrometry search tool for foods and beverages. NPJ Sci. Food 6, 22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 48, D440–D444 (2019).

    PubMed Central  Google Scholar 

  115. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–D470 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Willis, N. D. et al. Design and characterisation of a randomized food intervention that mimics exposure to a typical UK diet to provide urine samples for identification and validation of metabolite biomarkers of food intake. Front. Nutr. 7, 561010 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. González-Domínguez, R. et al. Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites. Int. J. Obes. 44, 2372–2381 (2020).

    Article  Google Scholar 

  118. González-Domínguez, R., Jáuregui, O., Queipo-Ortuño, M. I. & Andrés-Lacueva, C. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. Anal. Chem. 92, 13767–13775 (2020).

    Article  PubMed  Google Scholar 

  119. Brennan, L. & de Roos, B. Role of metabolomics in the delivery of precision nutrition. Redox Biol. 65, 102808 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Dragsted, L. O. The metabolic nature of individuality. Nat. Food 1, 327–328 (2020).

    Article  PubMed  Google Scholar 

  121. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Merino, J. Precision nutrition in diabetes: when population-based dietary advice gets personal. Diabetologia 65, 1839–1848 (2022).

    Article  PubMed  Google Scholar 

  123. van der Haar, S. et al. Exploring the potential of personalized dietary advice for health improvement in motivated individuals with premetabolic syndrome: pretest-posttest study. JMIR Form. Res. 5, e25043 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Semper Ardens grant from the Carlsberg Foundation (CF15-0574) to L.O.D., a grant from Novo Nordisk Foundation (NNF19OC0056246: PRIMA - towards Personalized dietary Recommendations based on the Interaction between diet, Microbiome and Abiotic conditions in the gut) to L.O.D. and H.M.R. and an International Postdoctoral Research Fellowship Programme 2219 from The Scientific and Technological Research Council of Türkiye - TÜBİTAK - to T.B.-T.

Author information

Authors and Affiliations

Authors

Contributions

C.C., conceptualization; data curation, writing original draft, overall editing, primary responsibility for the final content; figures; Supplementary Information; supervision; project management; T.B.-T., literature search; data curation; references; Supplementary Information; figures; J.S., writing original draft; kinetics simulations figures; G.L.B., writing original draft, overall editing; figures; H.M.R., conceptualization; writing original draft; figures; L.O.D., conceptualization, data curation, writing original draft, overall editing, primary responsibility for the final content; figures, Supplementary Information; supervision. All authors contributed substantially to discussions around article content, and finally reviewed, revised and accepted the final version of the manuscript.

Corresponding author

Correspondence to Cătălina Cuparencu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Rikard Landberg, Nicola Guess and Gary Frost for their contribution to the peer review of this work. Primary Handling Editor: Ashley Castellanos-Jankiewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Fig. 1

Overview of literature search.

Supplementary Table 1

Evidence for ranking BFIs measured in urine and blood according to the utility levels defined in Fig. 1, together with estimated time windows for sampling for each reported biomarker.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuparencu, C., Bulmuş-Tüccar, T., Stanstrup, J. et al. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat Metab 6, 1438–1453 (2024). https://doi.org/10.1038/s42255-024-01067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-01067-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research