Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Circadian-independent light regulation of mammalian metabolism

Abstract

The daily light–dark cycle is a key zeitgeber (time cue) for entraining an organism’s biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of physiological daytime light versus LAN in humans.
Fig. 2: Brain circuits mediating non-circadian effects of light.
Fig. 3: Direct light perception by opsins expressed in peripheral tissues triggers metabolic activities.

Similar content being viewed by others

References

  1. Palczewski, K. et al. Crystal structure of rhodopsin: a G-protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Andrabi, M., Upton, B. A., Lang, R. A. & Vemaraju, S. An expanding role for nonvisual opsins in extraocular light sensing physiology. Annu. Rev. Vis. Sci. 9, 245–267 (2023).

    Article  PubMed  Google Scholar 

  3. Luo, D. G., Xue, T. & Yau, K. W. How vision begins: an odyssey. Proc. Natl Acad. Sci. USA 105, 9855–9862 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaidi, F. H. et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr. Biol. 17, 2122–2128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Foster, R. G. et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. A 169, 39–50 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Provencio, I., Rollag, M. D. & Castrucci, A. M. Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Yau, K. W. & Hardie, R. C. Phototransduction motifs and variations. Cell 139, 246–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng, J. J. et al. Light modulates glucose metabolism by a retina–hypothalamus–brown adipose tissue axis. Cell 186, 398–412 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Hu, J. et al. Melanopsin retinal ganglion cells mediate light-promoted brain development. Cell 185, 3124–3137 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, G. et al. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC–CeA circuit. Sci. Adv. 9, eadf4651 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Z., Beier, C., Weil, T. & Hattar, S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat. Commun. 12, 5115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, L. et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102, 128–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. An, K. et al. A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat. Neurosci. 23, 869–880 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez, D. C. et al. Light affects mood and learning through distinct retina–brain pathways. Cell 175, 71–84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazzerini Ospri, L., Prusky, G. & Hattar, S. Mood, the circadian system, and melanopsin retinal ganglion cells. Annu. Rev. Neurosci. 40, 539–556 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, X. et al. A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron 109, 347–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Fu, Y. et al. A visual circuit related to the habenula mediates the prevention of cocaine relapse by bright light treatment. Sci. Bull. 68, 2063–2076 (2023).

    Article  CAS  Google Scholar 

  20. Hu, Z. et al. A visual circuit related to the periaqueductal gray area for the antinociceptive effects of bright light treatment. Neuron 110, 1712–1727 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, X., Tao, Q. & Ren, C. A comprehensive overview of the neural mechanisms of light therapy. Neurosci. Bull. 40, 350–362 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burns, A. C. et al. Day and night light exposure are associated with psychiatric disorders: an objective light study in >85,000 people. Nat. Mental Health 1, 853–862 (2023).

    Article  Google Scholar 

  23. Park, Y. M., White, A. J., Jackson, C. L., Weinberg, C. R. & Sandler, D. P. Association of exposure to artificial light at night while sleeping with risk of obesity in women. JAMA Intern. Med. 179, 1061–1071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mason, I. C. et al. Light exposure during sleep impairs cardiometabolic function. Proc. Natl Acad. Sci. USA 119, e2113290119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendoza, J. Nighttime light hurts mammalian physiology: what diurnal rodent models are telling us. Clocks Sleep 3, 236–250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aschoff, J. & von Goetz, C. Masking of circadian activity rhythms in hamsters by darkness. J. Comp. Physiol. A 162, 559–562 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Mrosovsky, N. Masking: history, definitions, and measurement. Chronobiol. Int. 16, 415–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Ozdeslik, R. N., Olinski, L. E., Trieu, M. M., Oprian, D. D. & Oancea, E. Human nonvisual opsin 3 regulates pigmentation of epidermal melanocytes through functional interaction with melanocortin 1 receptor. Proc. Natl Acad. Sci. USA 116, 11508–11517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lan, Y., Zeng, W., Dong, X. & Lu, H. Opsin 5 is a key regulator of ultraviolet radiation-induced melanogenesis in human epidermal melanocytes. Br. J. Dermatol. 185, 391–404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Assis, L. V. M., Moraes, M. N., Magalhaes-Marques, K. K. & Castrucci, A. M. L. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: unravelling the photosensitive system of the skin. Eur. J. Cell Biol. 97, 150–162 (2018).

    Article  PubMed  Google Scholar 

  31. Regazzetti, C. et al. Melanocytes sense blue light and regulate pigmentation through Opsin-3. J. Invest. Dermatol. 138, 171–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Buhr, E. D., Vemaraju, S., Diaz, N., Lang, R. A. & Van Gelder, R. N. Neuropsin (OPN5) mediates local light-dependent induction of circadian clock genes and circadian photoentrainment in exposed murine skin. Curr. Biol. 29, 3478–3487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sikka, G. et al. Melanopsin mediates light-dependent relaxation in blood vessels. Proc. Natl Acad. Sci. USA 111, 17977–17982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yim, P. D. et al. Airway smooth muscle photorelaxation via opsin receptor activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L82–L93 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Nayak, G. et al. Adaptive thermogenesis in mice is enhanced by opsin 3-dependent adipocyte light sensing. Cell Rep. 30, 672–686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato, M. et al. Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes. PLoS Biol. 18, e3000630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Falchi, F. & Bara, S. Light pollution is skyrocketing. Science 379, 234–235 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Borniger, J. C., Maurya, S. K., Periasamy, M. & Nelson, R. J. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol. Int. 31, 917–925 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Fleury, G., Masis-Vargas, A. & Kalsbeek, A. Metabolic implications of exposure to light at night: lessons from animal and human studies. Obesity 28, S18–S28 (2020).

    Article  PubMed  Google Scholar 

  40. Knutsson, A. Health disorders of shift workers. Occup. Med. 53, 103–108 (2003).

    Article  Google Scholar 

  41. Kervezee, L., Cuesta, M., Cermakian, N. & Boivin, D. B. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome. Proc. Natl Acad. Sci. USA 115, 5540–5545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cedernaes, J., Waldeck, N. & Bass, J. Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev. 33, 1136–1158 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gau, D. et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  PubMed  Google Scholar 

  45. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garaulet, M. et al. Melatonin effects on glucose metabolism: time to unlock the controversy. Trends Endocrinol. Metab. 31, 192–204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buijs, F. N. et al. Suprachiasmatic nucleus interaction with the arcuate nucleus; essential for organizing physiological rhythms. eNeuro 4, ENEURO.0028-17.2017 (2017).

  48. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Reddy, A. B. et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45, 1478–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. John, K., Marino, J. S., Sanchez, E. R. & Hinds, T. D. Jr. The glucocorticoid receptor: cause of or cure for obesity? Am. J. Physiol. Endocrinol. Metab. 310, E249–E257 (2016).

    Article  PubMed  Google Scholar 

  51. Akalestou, E., Genser, L. & Rutter, G. A. Glucocorticoid metabolism in obesity and following weight loss. Front. Endocrinol. 11, 59 (2020).

    Article  Google Scholar 

  52. Buijs, R. M. et al. Organization of circadian functions: interaction with the body. Prog. Brain Res. 153, 341–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Buijs, R. M. et al. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J. Comp. Neurol. 464, 36–48 (2003).

    Article  PubMed  Google Scholar 

  54. Cailotto, C. et al. Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4, e5650 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Opperhuizen, A. L. et al. Effects of light-at-night on the rat liver—a role for the autonomic nervous system. Front. Neurosci. 13, 647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu, Z., Lin, D. & Li, Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat. Rev. Neurosci. 23, 257–274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Czeisler, C. A. et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 332, 6–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Moore, R. Y. Neural control of the pineal gland. Behav. Brain Res 73, 125–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Teclemariam-Mesbah, R., Ter Horst, G. J., Postema, F., Wortel, J. & Buijs, R. M. Anatomical demonstration of the suprachiasmatic nucleus–pineal pathway. J. Comp. Neurol. 406, 171–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Ishida, A. et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Opperhuizen, A. L. et al. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia 60, 1333–1343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, K. X. et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Studholme, K. M., Gompf, H. S. & Morin, L. P. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R459–R471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rupp, A. C. et al. Distinct ipRGC subpopulations mediate light’s acute and circadian effects on body temperature and sleep. Elife 8, e44358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Santoso, P., Nakata, M., Ueta, Y. & Yada, T. Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior. Am. J. Physiol. Endocrinol. Metab. 315, E478–E488 (2018).

    Article  PubMed  Google Scholar 

  67. Jones, J. R., Chaturvedi, S., Granados-Fuentes, D. & Herzog, E. D. Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nat. Commun. 12, 5763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Delwig, A. et al. Retinofugal projections from melanopsin-expressing retinal ganglion cells revealed by intraocular injections of cre-dependent virus. PLoS ONE 11, e0149501 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dietrich, M. O. & Horvath, T. L. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 36, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Masis-Vargas, A., Hicks, D., Kalsbeek, A. & Mendoza, J. Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner. Physiol. Rep. 7, e14257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vujovic, N. et al. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metab. 34, 1486–1498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moraes, M. N., de Assis, L. V. M., Provencio, I. & Castrucci, A. M. L. Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell Tissue Res. 385, 519–538 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G-protein-coupled receptor expression. Cell 135, 561–571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ondrusova, K. et al. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis. Sci. Rep. 7, 16332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Blackshaw, S. & Snyder, S. H. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J. Neurosci. 19, 3681–3690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Parikh, S. et al. Food-seeking behavior is triggered by skin ultraviolet exposure in males. Nat. Metab. 4, 883–900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. Skin beta-endorphin mediates addiction to UV light. Cell 157, 1527–1534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu, H. et al. Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell 173, 1716–1727 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Castellano-Pellicena, I. et al. Does blue light restore human epidermal barrier function via activation of opsin during cutaneous wound healing? Lasers Surg. Med. 51, 370–382 (2019).

    Article  PubMed  Google Scholar 

  80. Resuehr, D. et al. Shift work disrupts circadian regulation of the transcriptome in hospital nurses. J. Biol. Rhythms 34, 167–177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

    Article  PubMed  Google Scholar 

  82. Walker, W. H. 2nd, Walton, J. C. & Nelson, R. J. Disrupted circadian rhythms and mental health. Handb. Clin. Neurol. 179, 259–270 (2021).

    Article  PubMed  Google Scholar 

  83. Hemmer, A. et al. The effects of shift work on cardio-metabolic diseases and eating patterns. Nutrients 13, 4178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koritala, B. S. C. et al. Night shift schedule causes circadian dysregulation of DNA repair genes and elevated DNA damage in humans. J. Pineal Res. 70, e12726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Okechukwu, C. E. et al. The relationship between working night shifts and depression among nurses: a systematic review and meta-analysis. Healthcare 11, 937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wei, T. et al. Association between night-shift work and level of melatonin: systematic review and meta-analysis. Sleep. Med. 75, 502–509 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Li for graphic assistance. We are grateful to colleagues studying light signalling whose works have collectively shaped our understanding of this field. F.R. acknowledges support from the National Natural Science Foundation of China (32122026), the Shenzhen Medical Academy of Research and Translation (B2301008), the Shenzhen Science and Technology Innovation Commission (RCJC20221008092757096) and the Shenzhen Science and Technology Program (ZDSYS20220402111000001). T.X. acknowledges support from the National Natural Science Foundation of China (32121002, 81925009), the National Key Basic Research Program of China (2020YFA0112200), the CAS Project for Young Scientists in Basic Research (YSBR-013), the New Cornerstone Science Foundation, and the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

F.R. and T.X. equally conceived the idea, selected the content and wrote the manuscript.

Corresponding authors

Correspondence to Feng Rao or Tian Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Richard Lang, Daniela Cota and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ashley Castellanos-Jankiewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, F., Xue, T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 6, 1000–1007 (2024). https://doi.org/10.1038/s42255-024-01051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-01051-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing