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Non-invasive measurements of blood 
glucose levels by time-gating mid-infrared 
optoacoustic signals

Nasire Uluç    1,2, Sarah Glasl1,2, Francesca Gasparin    1,2, Tao Yuan1,2, 
Hailong He1,2, Dominik Jüstel    1,2,3, Miguel A. Pleitez    1,2  & 
Vasilis Ntziachristos    1,2,4 

Non-invasive glucose monitoring (NIGM) represents an attractive 
alternative to finger pricking for blood glucose assessment and management 
of diabetes. Nevertheless, current NIGM techniques do not measure glucose 
concentrations in blood but rely on indirect bulk measurement of glucose in 
interstitial fluid, where glucose is diluted and glucose dynamics are different 
from those in the blood, which impairs NIGM accuracy. Here we introduce 
a new biosensor, termed depth-gated mid-infrared optoacoustic sensor 
(DIROS), which allows, for the first time, non-invasive glucose detection 
in blood-rich volumes in the skin. DIROS minimizes interference caused 
by the stratum corneum and other superficial skin layers by time-gating 
mid-infrared optoacoustic signals to enable depth-selective localization 
of glucose readings in skin. In measurements on the ears of (female) mice, 
DIROS displays improved accuracy over bulk-tissue glucose measurements. 
Our work demonstrates how signal localization can improve NIGM accuracy 
and positions DIROS as a holistic approach, with high translational potential, 
that addresses a key limitation of current NIGM methods.

Intracutaneously implanted electrochemical microneedles on wear-
able patches, such as the Libre Style (Abbott) and Dexcom G6/G7 
(Dexcom), have advanced glucose measurements in diabetes man-
agement beyond painful finger pricks1–6, but these tools assess the 
levels of glucose diluted in the interstitial fluid (ISF), not the glucose 
concentration in blood. ISF glucose diffuses from blood capillaries7–9 
in a delayed fashion and is present at lower concentrations than the 
clinically relevant glucose in circulation. Moreover, pH values and vari-
ations in ISF volume due to hydration level or temperature could chal-
lenge the accuracy of glucose determination. Importantly, the invasive 
nature of microneedle electrodes carries the risk for skin irritation 
and microbial infections. In response, several technologies have been 
considered for NIGM, to avoid the use of microneedles10–12. Terahertz 

(THz) spectroscopy detects glucose on the basis of its absorption 
spectrum at the 0.1–2.5 THz range1–4,13, but the low signal-to-noise 
ratio, broad absorption bands and overlapping spectra of glucose 
with other biomolecules challenge its sensitivity and specificity14. 
In the broad range of optical methods3,14–16, NIGM based on Raman 
scattering spectroscopy17 resolves specific vibrational spectral sig-
natures of glucose at the fingerprint region of carbohydrates (900–
13,000 cm−1)18,19. Although the method notoriously suffers from weak 
signals, signal-enhancing methods such as coherent anti-stokes Raman 
spectroscopy (CARS) and stimulated Raman scattering (SRS) could 
improve detection sensitivity20–22. Mid-infrared (mid-IR) absorption 
spectroscopy using optical, optoacoustic or thermal detection has 
also been explored for taking glucose measurements23–30, but its in vivo 
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microvasculature-rich volumes. For this reason, we examined the depth 
achieved by mid-IR optoacoustics in vivo, using a broadband ultra-
sound detector (bandwidth, ~6–36 MHz; central frequency, ~21 MHz) 
to achieve an axial resolution of 30 µm at the upper frequency band 
(~45-µm resolution when all frequencies are used). Mid-IR measure-
ments were contrasted with congruent microvasculature-sensitive 
optoacoustic measurements at 532 nm illumination, the latter serving 
as validation of the depths and structures probed. Then, using the mer-
its of depth-selective optoacoustic detection, we examined the effects 
of signal localization in blood-rich volumes, validating the hypotheses 
above. In the following, we present the results of the depth interroga-
tion and the DIROS glucose detection and discuss how DIROS may offer 
a preferred technology towards non-invasive glucose monitoring for 
improving diabetes management.

DIROS was implemented using an optical path shared by mid-IR 
and 532-nm-wavelength illumination so that mid-IR measurements 
could be cross-referenced with vascular features detected in the vis-
ible spectrum. The optical path (Fig. 1a) consisted of a pulsed mid-IR 
beam (pulse duration, 20 ns; 909–2,941 cm−1 and 3.4-11 µm spectral 
range) and a co-aligned 532-nm-wavelength pulsed beam (pulse dura-
tion, 3 ns). Both beams were focused on the surface of tissue (mouse 
ear) by a broadband reflective objective (see Methods for details). 

application has been challenged by non-glucose-specific absorption 
of light at superficial skin layers9.

To combine the strong signals produced by mid-IR absorption 
while overcoming the limitations of bulk glucose measurements in 
ISF, we developed DIROS, which operates by time-gating optoacous-
tic signals generated by mid-IR excitation31. We hypothesized that 
depth-gating would improve the sensitivity and accuracy of glucose 
sensing, on the basis of two key premises.

First, it can preferentially detect glucose in skin areas that are rich 
in microvasculature, i.e. in regions with high blood concentration. 
In-blood sensing can provide real-time reporting of glucose fluctua-
tions, unlike measurements of ISF glucose, which are subject to delays. 
Moreover, the concentration of glucose in blood is the clinically rel-
evant parameter, and it is higher than the ISF concentration, possibly 
leading to higher detection sensitivity. Second, it can minimize con-
tributions from the metabolically inactive stratum corneum and from 
the overall epidermis; changes in skin humidity, superficial lipids and 
other molecules can contaminate glucose measurements and affect 
their reliability and reproducibility29,30.

Of critical importance in examining these two hypotheses was 
the depth probed by mid-IR excitation and optoacoustic detec-
tion, especially concerning its ability to reach subcutaneous, 
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Fig. 1 | Imaging-depth capabilities of DIROS for label-free biomolecular 
sensing. a, Schematic of the combined mid-IR–visible (mid-IR/VIS) in vivo 
optoacoustic (OA) microscopy system for image-guided, non-invasive glucose 
monitoring (ND, neutral density filter; L, lens; P, pinhole). b, Schematic of 
different layers of mouse skin (EP, epidermis; DR, dermis; HR, hypodermis; SC, 
stratum corneum; SGr, stratum granulosum; SS, stratum spinosum; SB, stratum 
basale; SG, sebaceous glands; HF, hair follicles; BV, blood vessels; G, glucose).  
c, Merged mid-IR/VIS OA images; a representative example from ten independent 
experiments. d, Raw OA signal corresponding to a glucose-relevant wavenumber 
(1,080 cm−1; (d) indicates depth, ti indicates initial gate time, tend indicates final 
gate time), showing its Hilbert transform and the corresponding Gaussian fit. 
e, Representative maximum amplitude projected image (MAP) of a mouse 

ear at a 532-nm wavelength (NOAS, normalized OA signal) (n = 10). f, x–z MAP 
image, of the same micrograph in e, showing OA contrast distribution in depth. 
g, x–z cross-section image along the dashed line in e. In f and g, +d indicates the 
1 / e2 depth (at 150 µm) defined by the Hilbert transform of the OA transient at 
a wavenumber of 1,080 cm−1. h, Depth contrast profile (532-nm wavelength) 
of a blood vessel at P1, marked by the dashed line in f and g. The depth of the 
maximum blood vessel contrast is indicated by the red dashed line (161 µm).  
i, Depth contrast profile at P1 for a wavenumber of 1,080 cm−1; the OA transient is 
also shown for reference (blue line). In h and i, the dashed magenta line indicates 
the penetration depth, defined by the 1 / e2 intensity of the Hilbert transform 
at a wavenumber of 1,080 cm−1 (150 µm). Data in c–i are representative of ten 
independent experiments (n = 10).
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Optoacoustic measurements were collected in vivo using a focused 
ultrasound transducer placed on the opposite side of the tissue, estab-
lishing a slab geometry (Supplementary Fig. 1). For referencing pur-
poses, we raster-scanned the sample under the sensor and generated 
merged mid-IR–visible optoacoustic images of tissue (Fig. 1c) to obtain 
anatomical references (Methods). Depth selection was implemented 
by gating the time-dependent optoacoustic signal (Fig. 1d) to select 
those generated within specific epidermal layers (Fig. 1b). Optoacoustic 
signals were processed using the Hilbert transform to ensure that the 
results correspond to the energy of the measured signal.

We previously postulated that mid-IR optoacoustic sensing can 
penetrate deeper in tissues than can conventional mid-IR optical tech-
niques because it uses ultrasound and not optical detection, that is, it 
operates under strong optical attenuation only on the incident, but 
not the collection, path31. To experimentally examine the maximum 
depth reached, we obtained three-dimensional microvasculature maps 
from 1 × 1 mm2 scans from mouse ears in vivo, using 532-nm-wavelength 
excitation (Fig. 1e–g). Maximum amplitude projection (MAP) along 
the three dimensions enabled observation of vascular-rich volumes, 
as exemplified in the images. Then, we plotted the signal profiles col-
lected at wavelengths of 532 nm (Fig. 1h) and 9,259 nm (wavenumber, 
1,080 cm−1; Fig. 1i), taken from a volume with strong vasculature (point 
1 (P1): see Fig. 1e–g), to assess the DIROS penetration depth—9,259 nm 
(wavenumber, 1,080 cm−1) was selected as a representative wavelength 
for glucose sensing (see Fig. 4h). The maximum depth reached was 

determined as the width of 1 / e2 of a Gaussian curve fitted to the Hilbert 
transform of the mid-IR optoacoustic signals (here, e is the exponential 
constant with a value of ~2.71828) (Methods). Figure 1i shows a repre-
sentative example in which a penetration depth of ∼150 µm at a wave-
number of 1,080 cm−1 was reached, and the average maximum depth 
penetration at 1,080 cm−1 for all mice was ~140 µm (see Supplementary 
Fig. 2). Such depths are sufficient to reach capillary-rich layers at the 
epidermal–dermal junction of the human skin32,33 (Supplementary 
Fig. 3), so DIROS can be used to take measurements in people.

To further support these findings, we plotted the penetration 
depth of 4,900 optoacoustic measurement points, obtained by using 
DIROS to scan a 70 × 70 point grid. The measurements were collected 
from adjacent positions on the mouse skin (see Supplementary Fig. 4) 
and showed that depth variations at different skin locations are small. 
For instance, the relative s.d. (RSD) of the mean penetration depth at 
wavenumbers of 1,080 cm−1 and 1,034 cm−1 was 4% and 6%, respectively.

Having verified that depth-dependent detection from 
capillary-rich layers is feasible, we investigated the glucose-detection 
performance of DIROS in blood and in ISF. To achieve this, we per-
formed a glucose tolerance test in ten mice, in which a 20% glucose 
solution (2 g kg-1 body weight) injected into the abdomen of each 
mouse. First, for each mouse in the study, an absorption map at a 
wavelength of 532 nm was acquired using scanning steps of ~5 µm, 
to provide a morphological reference of the microvascular distribu-
tion in the area under the sensor and to select locations to test blood 
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Fig. 2 | Location-selective non-invasive glucose monitoring with DIROS. a, OA 
image of a mouse ear (532-nm wavelength), representative of ten independent 
experiments (n = 10). b, Raw DIROS spectra at different glucose values over 
time, measured at P1. arb.u., arbitrary units. c, A plot of four DIROS spectra: two 
corresponding to the lower glucometer value following glucose administration, 
that is at 37 and 39 mg dl–1, and two corresponding to the highest observed 
values, that is at 157 and 210 mg dl–1. LG indicates “low glucose” with a value of 
39 mg dl–1. d, Time profile of calculated glucose concentrations at P1 and P2 

compared with reference blood glucose measurements. e,f, PCEGs showing the 
correlation between reference and OA glucose values at P1 (e) and P2 (f) from  
the mouse in a. The PCEG is divided into five regions (A–E) representing risk 
zones when determining glucose concentration; while zone A represents  
no risk, values falling in zone E could have dangerous consequences.  
g, Tabulation of the distribution of results per region, and RMSECVs by cross-
validation, for e and f. h–j, PCEGs and tabulations for measurements at P1 and P2 
for all ten mice in the study.
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versus ISF measurements. To exemplify performance, we showcase 
results obtained from the same volume (Fig. 2a) used for depth evalu-
ation in Fig. 1. All DIROS scans were performed at two points on the 
532-nm maps: a first point (P1) at an area with vasculature presence, 
and a second point (P2) at an area with poor vascularization (that is, an 
area representative of measurement in the ISF). Ten baseline spectra 
(wavenumber, 900–1,300 cm−1) were recorded over the 10 min before 
glucose administration, and 90 spectra were recorded over the 150 min  
after glucose administration; the sensor was continuously alternated 
over the positions P1 and P2. Each spectrum was generated by aver-
aging 1,000 optoacoustic signals. Each point in the spectrum cor-
responds to the peak amplitude value of the Hilbert transform of 
the averaged optoacoustic signal for the selected time gate. Each 
spectrum consists of measurements at 100 wavenumbers acquired in 
the 900–1,300 cm−1 region with a spectral step size of 4 cm−1, requiring 
1.5 min for acquisition. After one spectrum measurement was com-
pleted from P1 or P2, the sensor was moved to the other position. For 
validation purposes, 0.6 µl of blood was obtained from each mouse 
every 3 min during the period in which a motorized stage moved the 
sensor from P1 to P2. The blood sample was analysed using a standard 

glucometer (Methods). Figure 2b shows raw optoacoustic spectra 
obtained from P1 at different time points, corresponding to different 
blood glucose concentration values (for colour coding, see Supple-
mentary Fig. 5). Observation of the spectra revealed that optoacoustic 
intensity changed as a function of glucose concentration (which was 
found to be linear, as shown in Fig. 4). To illustrate the spectral change 
as a function of glucose concentration, we subtracted one baseline 
spectrum, obtained before glucose administration, from four spectra 
obtained after glucose administration (Fig. 2c): that is, two spectra 
corresponding to the lowest glucose concentrations (37 and 39 mg dl–1)  
and two spectra corresponding to the highest concentrations  
(157 and 210 mg dl–1) recorded by the glucometer. These four spectra 
show that, in all cases, there is a clear difference between the spectra 
and the baseline, and that the signal is well above the noise level. The 
change in intensity observed for the low glucose values is ~20% of 
the maximum change in intensity observed in the collected data set, 
confirming that the signal-to-noise ratio (SNR) is sufficient for in vivo 
glucose detection at physiological concentrations. The difference 
spectra of the raw spectra displayed in Figure 2b are shown in detail 
in Supplementary Figure 5.
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Fig. 3 | Depth-selective non-invasive glucose monitoring with time-gated 
OA sensing. a, OA micrograph (532-nm wavelength), representative of ten 
independent experiments (n = 10). b, Time course of glucose measurements 
at different depths (37, 75 and 97.5 µm) at P1, compared with reference blood 
glucose values. c,d, PCEGs for a representative experiment in a single mouse. 
Measurements were taken at P1 without skin rejection (SR) (c) and with SR (d).  
e, Table comparing the distribution of results per region, and average RMSECV 

with and without SR at P1. f,g, PCEGs for ten experiments. Measurements were 
taken at P1 without SR (f) and with SR (g). h, Table comparing the distribution of 
results per region, and average RMSECV for measurements with and without SR 
at P1. i,j, PCEGs for ten experiments. Measurements were taken at P1 without SR 
(i) and with SR (j). k, Table comparing the distribution of results per region, and 
average RMSECV for measurements with and without SR at P2.
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To better understand the nature of the collected spectra, we per-
formed Fourier transform infrared (FTIR) spectroscopy measurements 
on phantoms (namely, liquid solutions of biomolecules found in tis-
sues) mimicking the composition of blood and skin (as above), includ-
ing key components such as cholesterol, triglycerides and keratin. The 
FTIR experiments indicate potential interference and overlap from 
the measured metabolites only at concentrations considerably above 
the physiological range (Supplementary Fig. 6a). Lactate showed the 
highest potential interference, with two distinct peaks partially over-
lapping with those from glucose (wavenumbers, 1,040 and 1,125 cm−1). 
For this reason, we further performed DIROS measurements of a solu-
tion containing lactate and albumin at physiological concentrations 
(6–12 mg dl–1 and 2,000–4,500 mg dl–1, respectively)34,35, and observed 
that lactate did not contribute to a spectrum that interferes with the 
glucose spectrum, possibly owing to its low concentration (see Supple-
mentary Fig. 6b). Fetal bovine serum (FBS) may also interfere with the 
measurements; however, it exhibits a slowly varying spectral compo-
nent and no distinct peaks in the spectral region of interest that could 
interfere with the glucose measurements. Therefore, similar to water 
contributions, it can be accounted for as a background contribution 
in the multivariate analysis (MVA) used to determine glucose levels, 
described in the following text.

To quantitatively investigate the relation between spectral 
changes and blood glucose concentration beyond the observation 
of raw spectra, we used a MVA method based on partial least squares 
regression (PLSR). MVA is the typical approach for computing analyte 
concentrations from spectroscopic glucose sensors36, and it consid-
ers the structure of the entire spectrum (100 variables) when com-
puting a single glucose value in the presence of other contributors 

(metabolites) in tissue. Given a number of spectra (measurements) 
and ground-truth glucose values (obtained from the glucometer), 
the PLSR describes the spectral data as a linear combination of a new 
set of spectral components (basis spectra) and identifies the subset 
of components that provides the most information about the glucose 
level. Then, it computes a glucose value on the basis of the particular 
combination of these spectral components that describes a given 
spectrum. We applied a leave-one-out cross-correlation, whereby each 
spectrum used for a glucose measurement was excluded once from the 
decomposition to basis spectra (Methods) to determine features that 
represent spectral variation.

Using MVA analysis, we plotted the glucose values obtained from P1 
and P2 versus the glucometer values over the time course of a measure-
ment (Fig. 2d). Although both P1 and P2 exhibited changes in glucose 
levels corresponding to the administration of glucose, the data from loca-
tion P1 more closely resembled the blood glucose dynamics recorded by 
the glucometer. The curves also showed a delayed appearance of glucose 
measured at position P2. This is consistent with the fact that changes to 
glucose levels in interstitial fluids, represented in our work by measure-
ments at P2, appear in a delayed manner compared with the dynamics of 
blood glucose, represented by measurements at P1. We also performed 
time-course control experiments in which phosphate-buffered saline 
(PBS) was injected in three mice. The results showed a minimum base-
line increase that was essentially constant throughout the time course 
of measurement (Supplementary Fig. 7), supporting the interpretation 
that the signals in Figure 2d are due to glucose injection.

To study the accuracy of the glucose measurement in relation 
to the two measurement locations, we applied the Parkes consen-
sus error grid (PCEG) to locations P1 and P2, for the mouse shown in 
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Fig. 4 | Different time gates measure different spectral compositions at 
different skin layers. a–c, A representation of different section slices (a), 
selected by time-gating the OA signals and corresponding spectra for P1 at 
depths of 37 µm (b) and 97.5 µm (c). d–f, Plots of the change of the area under 
the curve of the subtracted spectra as a function of reference glucose values 
determined by the glucometer for the 97.5-µm-deep layer at P1 (d) the 37-µm-

deep layer at P1 (e) and the 97.5-µm-deep layer at P2 (f). g, Correlation of intensity 
changes as a function of reference glucose values determined by the glucometer 
for peaks in the spectrum, corresponding to the 1,109, 1,080, 1,036 and 994 cm−1 
wavenumbers. h, Glucose spectra measured by DIROS in water solution at 
different concentrations (G1, 2,500 mg dl–1; G2, 1,250 mg dl–1; G3, 625 mg dl–1; G4, 
312 mg dl–1).
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Figure 2a (Fig. 2e–g) and for the entire data set collected from all mice 
(Fig. 2h–j). The PCEG is divided into five regions (A–E), representing 
degrees of accuracy of glucose estimations. Values falling into differ-
ent zones have various levels of accuracy: those in zone A are the most 
accurate (within 20% of the reference measurement), and those in 
zones D and E represent erroneous readings37. Visually, the measure-
ments at P1 appear less scattered and better confined to zone A than 
do the measurements at P2. In accordance, the root mean square error 
cross-validation (RMSECV) value between the measurements at P1 and 
P2 and the reference glucometer values were found to be 28 mg dl–1 
versus 42 mg dl–1 for the example mouse in Figure 2a, and 40 mg dl–1 
versus. 47 mg dl–1 for the entire cohort.

The glucose-measurement results shown in Figure 2 were obtained 
by selecting areas with and without vasculature, but without depth 
selection, confirming the hypothesis that measurements from 
blood-rich volumes are more accurate than are measurements in ISF. 
The next critical step, and a key point of the development of the DIROS 
sensor, was to examine whether depth selection could further improve 
DIROS performance beyond the capabilities of current sensors. Time 
gating avoids bulk measurements and can localize readings from 
blood-rich layers or volumes that lie under the epidermis. Therefore, 
this approach does not integrate non-specific contributions from the 
epidermis and bulk ISF measurements, offering measurements that can 
be labelled as in-blood. Although our work is guided by images, it can 
be applied in vivo without imaging by targeting the epidermal–dermal 
junction layer, which is rich in blood-filled capillaries across the skin in 
animals and humans (Supplementary Fig. 3).

Glucose concentrations were computed with and without gate 
selection at points P1 and P2. Showcased results (Fig. 3) are from a dif-
ferent mouse (Fig. 3a) than the one shown in Figures 1 and 2, to illustrate 
the diversity seen in the collected vascular maps. Similar to the analysis 
in Figure 2, we selected two measurement locations: one with higher 
(P1) and one with lower (P2) microvascular density. However, here we 
applied a time-gate algorithm (Methods) that was optimized so that the 
optoacoustic signal could be sectioned to obtain spectra at time gates 
(depths) that minimized the error between the DIROS measurements 
(that is, the Hilbert transform of the optoacoustic signal) and the ref-
erence glucose measurements. Different layers correlated differently 
with the measured glucose values, confirming that DIROS performance 
varies with depth. The layer at a depth of 97.5 ± 20 µm gave an optimal 
error minimization for all mice and was therefore selected as the gate 
for all mice in all measurements. Insight into the effects of time gating is 
seen in Figure 3b, which compares glucose values at different gates, that 
is, at different skin layers (depths), with the reference measurements 
and shows that the selected time gate provides the best match. Super-
ficial measurements can correspond to bulk measurements from the 
stratum corneum and top of the epidermis, similar to measurements 
performed by other sensors, and show a worse match to the glucom-
eter values, offering a first validation of the main DIROS hypothesis 
that depth selection can improve accuracy. We computed the Pearson 
correlation coefficient between DIROS measurements and glucometer 
values to quantify the match between the two techniques. We found a 
Pearson correlation coefficient of r = 0.92 for measurements at a depth 
of 97.5 µm, but lower correlation coefficients of r = 0. 80 and r = 0.72 as 
the gate was moved towards the skin surface.

To further validate the effect of depth selection, we plotted the 
PCEG with and without gate selection (Fig. 3c–k) and show an up to 
approximately twofold improvement in sensitivity when using the 
optimal gate (Fig. 3e). The representative results from a single mouse 
show that measurements from microvascular-rich volumes with depth 
selectivity by rejecting signals generated by the epidermis (i.e. skin 
rejection), (Fig. 3d) yielded higher accuracy (88% of the points in zone 
A) than do measurements obtained without skin rejection (with only 
60% of the points in zone A, see Fig. 3c,e). When comparing the results 
from all mice, 79% of the measurement points fell in zone A of the 

PCEG for the P1 location using skin rejection, whereas only 65% of the 
measurement points fell in zone A without the time gate (Fig. 3f–h). 
Therefore, the most sensitive performance was achieved for measure-
ments obtained from the P1 position after applying a time gate. Overall, 
the root mean squared errors (RMSEs) for the entire cohort of mice 
improved from 47 mg dl–1 for bulk ISF measurements (P2; Fig. 3k) to 
34 mg dl–1 for measurements of blood-rich volumes with depth selec-
tion (P1; Fig. 3h).

To better elucidate the differences in glucose measurements at 
different time gates (Fig. 4a), we plotted the spectra collected from 
a superficial layer (at 37 µm, Fig. 4b) and a deeper layer (at 97.5 µm, 
Fig. 4c) from location P1 at different time points, that is, different 
glucose concentrations. The spectra recorded from the deeper layer 
show increasing intensities as glucose concentrations increase (for 
colour coding, see Supplementary Fig. 5). Furthermore, it is visually 
evident that the changes in the deeper layer are more prominent than 
in the superficial layer. Moreover, in contrast to the spectral changes 
observable at the superficial layers, which resemble the spectrum 
of water, the spectra at the deeper layers resemble that of glucose 
(see Fig. 4h).

To study the linearity of the scaling of the spectra observed, we 
plotted the area under the curve versus glucose concentration for the 
deep and superficial layers at position P1 (Fig. 4d,e) and for the deep 
layer at position P2 (Fig. 4f). We observed approximate linear cor-
relations at all locations; however, the best correlation (r = 0.91) was 
obtained for the deeper layer at position P1, which is closer to vascu-
lature and rejects signal contributions from the skin. Measurements at 
the more superficial layer at position P1 gave a correlation coefficient 
of r = 0.61, whereas measurements from the deeper layer at the poorly 
vascularized position P2 exhibited the worst correlation (r = 0.30).

Although area-under-the-curve plots are useful in understanding 
the energy signal of the entire measurement, we were also interested in 
investigating whether individual wavenumbers would be sufficient for 
glucose prediction. Therefore, we plotted the intensities of four wave-
numbers corresponding to peaks in the glucose spectrum (Fig. 4h), 
obtained from the 97.5-µm-deep layer of P1, as a function of glucose 
concentration (Fig. 4g). Individual wavenumbers also showed good 
correlation with the measured glucose values, with the peak at 994 cm−1 
demonstrating the highest correlation at r = 0.92. A possible reason 
for a better performance at 994 cm−1 than, for instance, at 1,080 cm−1, 
is that 994 cm−1 has lower interference from spectral contributions of 
other tissue chromophores than do other glucose peaks (Supplemen-
tary Figs. 6 and 8).

We demonstrated depth-selective glucose sensing in vivo, capable 
of reaching micro-vessels at depths of >100 µm and therefore ena-
bling measurements from volumes with high blood concentration. 
Furthermore, by rejecting signals from superficial skin layers, DIROS 
minimizes the sensitivity to non-glucose-specific signals from the 
epithelium that are known to contribute to a highly heterogeneous 
skin appearance when observed in the mid-IR range and render optical 
NIGM measurements unreliable26,29,30. We observed that in blood meas-
urements, that is, measurements from capillary-rich volumes, offered 
higher sensitivity and better precision in recording the dynamics of 
blood glucose variation than do ISF measurements. Likewise, using 
time-gated detection to reject signals from the skin surface improved 
the glucose measurement accuracy over bulk measurements.

We presented observations from both raw data and multivariate 
data-analysis methods. Inspection of raw data demonstrated that even 
individual spectral points can report on glucose concentration, as fur-
ther detailed in Figure 4. Similar analysis was performed with Raman 
spectra19, allowing a preliminary glimpse into the relative sensitivity 
between Raman and DIROS. Raman spectra demonstrated observable 
spectral differences for glucose concentrations in the 256–456 mg 
dl–1 range, whereas DIROS raw spectral analysis could detect glucose 
concentration changes in the range below 100 mg dl–1.
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Our study has certain limitations. The measurements were 
obtained from mice and not humans, owing to what appears to be 
an erroneous interpretation of the European Union Medical Device 
Regulation 2017/745, which came into effect in May 2021. Although 
regulation 2017/745 is aimed at commercial developments regard-
ing the placement of medical products in the market or in service for 
patients, German authorities interpret this regulation as also applying 
to research investigations, making research challenging and requiring 
approvals similar to those required for commercial systems. Neverthe-
less, the epidermal–dermal junction has been found at virtually identi-
cal depths of ~20 µm in nude, white (CD-1) and grey (C57BI/6) mice38 
(see also Supplementary Fig. 3b for different skin locations in mice); 
the epidermal–dermal junction depth in humans ranges from 20 to 80 
µm in many skin locations39,40. Because DIROS can be used at depths of 
up to 100 µm, it is plausible that the results demonstrated herein will 
be confirmed not only in other mice, but also in people once DIROS 
receives approval for human studies. Although DIROS measurements 
might be affected by sweat, we anticipate that DIROS will be applied to 
dry skin and/or anhidrotic skin locations, for example the lip, earlobe 
or nail-fold; however, the study of the influence of sweat should be 
also considered in the future, under controlled protocols, so that the 
sensor can be used in more locations. A second limitation was that 
sensor signals might contain fluctuations owing to laser instability and 
electronic noise. We found that signal fluctuations had a mean of 1.4% 
of the maximum observed signal (Supplementary Fig. 9). We partially 
compensated for this instability by using a high number of averages 
and collected spectral points. In the future, a reference optoacoustic 
arm could account for such fluctuations, leading to a reduction in the 
number of acquisition points required for averaging, thus accelerating 
the measurement process.

DIROS could be extended beyond glucose measurements to other 
metabolites, such as lactate and lipids. This could allow, for instance, 
the development of a continuous metabolic sensing system to alert a 
user to deviations from healthy metabolic parameters. In summary, the 
method presented here is a powerful new tool for precise determina-
tion of clinically relevant blood glucose levels that could pave the way 
for significant advances in diabetes management.

Methods
Combined visible and mid-infrared optoacoustic microscopy
A pulsed quantum cascade laser (QCL) (MIRcat, Daylight Solutions), 
with a tuning range from 3.4 µm to 11 µm, 20-ns duration and a repeti-
tion rate of 100 kHz, was used as the optoacoustic excitation source. 
Additionally, a 3-ns laser beam at 532 nm (Cobolt, Hübner Photon-
ics) was integrated with a flip-mirror sharing the same optical path 
of the QCL (Fig. 1a). Both visible- and mid-IR-output laser beams 
were focused to the sample by a ×36 reflective objective (Newport 
Corporation). Optoacoustic signals from the sample were detected 
with an ultrasonic transducer with a central frequency of 21 MHz 
(Imasonic). To evaluate the co-registration accuracy between the two 
systems, we obtained carbon-tape images at 532 nm, the wavelength 
used to enable visualization of hemoglobin-based contrast, and at 
three specific wavenumbers in the mid-IR range, corresponding to 
glucose, lipid and protein detection in the skin (1,085, 2,850 and 
1,587 cm−1, respectively; Supplementary Fig. 10a-c). Comparison 
of the line profiles through the image centre along the x and y axes 
(Supplementary Fig. 10d) showed excellent agreement between all 
images (Supplementary Fig. 10e–f). The merged visible and mid-IR 
optoacoustic image (Supplementary Fig. 10i) revealed slight differ-
ences in the spatial localization between the two images, calculated 
by using 100-µm line profiles along the x and y axes (Supplementary 
Fig. 10j–k). This slight difference was taken as a reference when select-
ing the blood vessels, and because the vessel diameter for selective 
localization of glucose monitoring was greater than 10 µm, the selec-
tive localization was confined inside the vessels.

Glucose tolerance tests and in vivo mid-infrared optoacoustic 
spectroscopy
For location-selective non-invasive glucose monitoring in vivo, we first 
used the visible laser integrated into our mid-infrared optoacousctic 
microscopy (MiROM) system to localize vascular-rich regions, and 
the image of a mouse ear was acquired using a wavelength of 532 nm. 
Images of mouse ear tissue were then acquired at a wavenumber of 
2,850 cm−1 using MiROM to visualize skin heterogeneity (see Fig. 1c). 
The acquired signals at 532 nm and 2,850 cm−1 were averaged over 50 
consecutive signal cycles. Using these images, we selected two loca-
tions (P1 and P2) to test the correlation between spectral changes (in the 
range from 900 cm−1 to 1,300 cm−1) and blood glucose concentration. 
To this end, glucose tolerance tests were performed in ten mice at P1 
and P2. Five baseline spectra were simultaneously acquired over 10 min 
before glucose injection, and 45 spectra were collected for 150 min 
after glucose injection at each point. For each in vivo mid-IR spectra, we 
obtained a reference blood glucose value using a glucometer (Contour 
Next, Ascensia Diabetes Care) to correlate spectral changes and blood 
glucose concentration. For each glucose tolerance test, a total of 50 
blood glucose reference values and 50 in vivo mid-IR optoacoustic 
spectra (per measurement point) were obtained.

Multivariate analysis
The collected spectra were constructed by taking the maximum inten-
sity of the Hilbert transform applied to the retrieved mid-IR optoacous-
tic transients. Principal component analysis was applied to the series of 
optoacoustic spectra collected for each glucose tolerance test (that is, 
50 spectra per test for each point) to determine their common features. 
Because the size of the spectrum data set was smaller than the param-
eter of independent variables at the wavenumber, a PLSR algorithm and 
cross-validation were used to calculate the glucose concentration. The 
algorithm enabled the rotation of the coordinate system of the data 
space and the generation of new components, namely a latent variable. 
The algorithm thus maximizes variance and correlation between the 
variables coming from the measured spectrum data and reference 
glucose concentrations. The PLSR model was constructed after pre-
processing through mean scale, and a leave-one-out cross-validation 
was performed for each glucose tolerance test to obtain the root mean 
square error of cross-validation (RMSECV). For the PLSR analysis, Mat-
lab (Matlab 2019a) and PLS (PLS_Toolbox 8.9.2, Eigenvector Research) 
were employed.

Maximum penetration depth of mid-IR optoacoustic signals
Optoacoustic sensing is a positive-contrast detection method, whereas 
conventional optical detection is a negative-contrast method. There-
fore, optoacoustic sensing allows a higher signal-to-noise ratio (SNR) 
with depth than does conventional optics, enabling a higher proportion 
of the initial irradiation energy to be detected in the form of optoa-
coustic signals and allowing detection from deeper depths. In fact, 
even depths at which irradiation has dropped by up to 14% (1 / e2) of 
its initial value generate a detectable optoacoustic signal with DIROS. 
Comparatively, at depths at which irradiation has dropped by up to 
37% (1 / e) of its initial value, signals can barely be detected using con-
ventional optical detection. To calculate the penetration depth, the 
Beer–Lambert law, which states that penetration depth is inversely 
correlated to a sample’s optical absorption coefficient, is applied. 
Owing to the higher SNR, a larger width of 1 / e2 of Hilbert transform can 
be used to calculate the depth of DIROS. By contrast, a smaller width 
of 1 / e of Hilbert transform is used in conventional optical detection 
methods, owing to lower SNR.

Skin-sectioning depth-selective glucose sensing
To avoid anatomical structures in skin areas with low glucose content 
for more precise in-blood glucose detection, a specific time window of 
optoacoustic signals was used in order to interrogate deeper vessels. 
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The width of the time window (w) was selected to be 7.5 µm in the 
range of the width of 1 / e2 of the Hilbert transform of the optoacoustic 
transient, representing the achievable depth at the corresponding 
wavenumber for glucose detection of optoacoustic spectra at two 
locations (P1 and P2). For each w, the window was shifted in 7.5-µm 
steps, and for each position of the window, a spectrum was generated 
for the glucose tolerance test. The PLSR model was constructed for 
each spectrum acquired by time-gated signals, and a leave-one-out 
cross-validation was performed for the spectral information corre-
sponding to certain depth layers. The RMSECV between the reference 
and the glucose values in the specific window was calculated. This 
process of providing spectral information along the skin depth was 
used as a skin-rejection window to calculate glucose concentrations 
only from deeper seated vessels.

Sample preparation and experimental protocol for in vivo 
glucose monitoring
All mouse experiments were performed according to the guidelines 
of the committee on Animal Health Care of Upper Bavaria, Germany 
(approval number Az ROB-55.2-2532.Vet_02-14-203). The mice were 
maintained in an individually ventilated cage system (Tecniplast) at 
22 °C ambient temperature, a relative humidity of ~50% and a regular 
12-hour day–night cycle, in our specific-pathogen-free mouse facil-
ity at the Center for Translational Cancer Research of the Technical 
University of Munich. Mice aged 4–8 weeks were used in the study. 
Female athymic nude-Foxn1nu mice (Envigo, Germany) were selected 
for the glucose tolerance tests. During all the measurements, the 
mice were anesthetized with 1.6% Isoflurane (CP-Pharma) and 81 pm 
oxygen as the carrier gas. The mouse heart rate, body tempera-
ture and the SpO2 were controlled by a monitoring device (Physio 
suite, Kent Scientific). The imaging of all the mice was performed on  
the left ear.

After acquiring the baseline data, 2 g kg–1 (body weight) glucose 
(Braun, 20% glucose) was injected into the mouse intraperitoneally. For 
reference glucose measurements, glucose in the blood was measured 
in parallel with glucometer measurements using test strips (Contour 
Next, Ascensia Diabetes Care). The blood was extracted from the caudal 
vein, and the mice were euthanized immediately after measurements.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are 
provided with this paper.
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