Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Metabolic Messengers
  • Published:

Metabolic Messengers: Thyroid Hormones

Abstract

Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of TH discovery and clinical development.
Fig. 2: Cellular and metabolic actions of TH.
Fig. 3: Target tissues and metabolic effects of THs in rodents and humans.

Similar content being viewed by others

References

  1. JF, C. Discovery of a new cure for goiter [De´- couverte d’un nouveau reme’de contre le goıˆtre]. Ann Chim Phys Paris 15, 49–59 (1820).

  2. Trohler, U. Towards endocrinology: Theodor Kocher’s 1883 account of the unexpected effects of total ablation of the thyroid. J. R. Soc. Med 104, 129–132 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clinical Society of London-Conclusions of the Myxoedema Committee. South Med Rec 18, 33−336 (1888).

  4. Murray, G. R. Note on the Treatment of Myxoedema by Hypodermic Injections of an Extract of the Thyroid Gland of a Sheep. Br. Med J. 2, 796–797 (1891).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kendall, E. C. Landmark article, June 19, 1915. The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid. Its chemical nature and physiologic activity. By E.C. Kendall. JAMA 250, 2045–2046 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Harington, C. R. & Barger, G. Chemistry of Thyroxine: Constitution and Synthesis of Thyroxine. Biochem. J. 21, 169–183 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gross, J. & Pitt-Rivers, R. 3:5:3’ -triiodothyronine. 1. Isolation from thyroid gland and synthesis. Biochem. J. 53, 645–650 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berson, S. A., Yalow, R. S., Sorrentino, J. & Roswit, B. The determination of thyroidal and renal plasma I131 clearance rates as a routine diagnostic test of thyroid dysfunction. J. Clin. Invest. 31, 141–158 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gharib, H., Ryan, R. J., Mayberry, W. E. & Hockert, T. Radioimmunoassay for triiodothyronine (T 3): I. Affinity and specificity of the antibody for T 3. J. Clin. Endocrinol. Metab. 33, 509–516 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Chopra, I. J. A radioimmunoassay for measurement of thyroxine in unextracted serum. J. Clin. Endocrinol. Metab. 34, 938–947 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Tata, J. R. Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature 197, 1167–1168 (1963).

    Article  CAS  PubMed  Google Scholar 

  12. Oppenheimer, J. H., Schwartz, H. L. & Surks, M. I. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology 95, 897–903 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Samuels, H. H. & Tsai, J. S. Thyroid hormone action in cell culture: domonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl Acad. Sci. USA 70, 3488–3492 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larsen, P. R., Dick, T. E., Markovitz, B. P., Kaplan, M. M. & Gard, T. G. Inhibition of intrapituitary thyroxine to 3.5.3’-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. J. Clin. Invest. 64, 117–128 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sap, J. et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Weinberger, C. et al. The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Magner, J. A. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr. Rev. 11, 354–385 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Mariotti, S. & Beck-Peccoz, P. in Endotext (eds K. R. Feingold et al.) (2000).

  19. Rousset, B. et al. Chapter 2 Thyroid hormone synthesis and secretion. Endotext [Internet] https://www.ncbi.nlm.nih.gov/books/NBK285550/ (updated 2 Sep 2015).

  20. Moreno, J. C. & Visser, T. J. Genetics and phenomics of hypothyroidism and goiter due to iodotyrosine deiodinase (DEHAL1) gene mutations. Mol. Cell. Endocrinol. 322, 91–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Refetoff, S. in Endotext (eds K. R. Feingold et al.) (2000).

  22. Groeneweg, S., van Geest, F. S., Peeters, R. P., Heuer, H. & Visser, W. E. Thyroid Hormone Transporters. Endocr Rev 41, https://doi.org/10.1210/endrev/bnz008 (2020).

  23. Friesema, E. C. et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol. Endocrinol. 22, 1357–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mayerl, S. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Invest. 124, 1987–1999 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dumitrescu, A. M., Liao, X. H., Best, T. B., Brockmann, K. & Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet 74, 168–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Friesema, E. C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Russo, S. C., Salas-Lucia, F. & Bianco, A. C. Deiodinases and the Metabolic Code for Thyroid Hormone Action. Endocrinology 162, https://doi.org/10.1210/endocr/bqab059 (2021).

  28. Galton, V. A. & Hernandez, A. Thyroid Hormone Metabolism: A Historical Perspective. Thyroid 33, 24–31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aw, D. K. et al. Studies of molecular mechanisms associated with increased deiodinase 3 expression in a case of consumptive hypothyroidism. J. Clin. Endocrinol. Metab. 99, 3965–3971 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Dumitrescu, A. M., Di Cosmo, C., Liao, X. H., Weiss, R. E. & Refetoff, S. The syndrome of inherited partial SBP2 deficiency in humans. Antioxid. redox Signal. 12, 905–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu, J., Fujisawa, H., Follman, B., Liao, X. H. & Dumitrescu, A. M. Thyroid Hormone Metabolism Defects in a Mouse Model of SBP2 Deficiency. Endocrinology 158, 4317–4330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lazar, M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14, 184–193 (1993).

    CAS  PubMed  Google Scholar 

  33. Frigo, D. E., Bondesson, M. & Williams, C. Nuclear receptors: from molecular mechanisms to therapeutics. Essays Biochem 65, 847–856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vella, K. R. & Hollenberg, A. N. The actions of thyroid hormone signaling in the nucleus. Mol. Cell. Endocrinol. 458, 127–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grontved, L. et al. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nat. Commun. 6, 7048 (2015).

    Article  PubMed  Google Scholar 

  36. Ramadoss, P. et al. Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver. J. Biol. Chem. 289, 1313–1328 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Shabtai, Y. et al. A coregulator shift, rather than the canonical switch, underlies thyroid hormone action in the liver. Genes Dev. 35, 367–378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carr, F. E., Kaseem, L. L. & Wong, N. C. Thyroid hormone inhibits thyrotropin gene expression via a position-independent negative L-triiodothyronine-responsive element. J. Biol. Chem. 267, 18689–18694 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, D. et al. Negative regulation of TSHalpha target gene by thyroid hormone involves histone acetylation and corepressor complex dissociation. Mol. Endocrinol. 23, 600–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Forrest, D. & Vennstrom, B. Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Singh, B. K., Sinha, R. A. & Yen, P. M. Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. Int J Mol Sci 19, https://doi.org/10.3390/ijms19103284 (2018).

  42. Aranda, A. MicroRNAs and thyroid hormone action. Mol. Cell. Endocrinol. 525, 111175 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Singh, B. K. et al. Thyroid hormone receptor and ERRalpha coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Science signaling 11, https://doi.org/10.1126/scisignal.aam5855 (2018).

  44. Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem. 288, 30365–30372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thakran, S. et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J. Biol. Chem. 288, 807–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Refetoff, S., Weiss, R. E. & Usala, S. J. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14, 348–399 (1993).

    CAS  PubMed  Google Scholar 

  47. Chaves, C., Bruinstroop, E., Refetoff, S., Yen, P. M. & Anselmo, J. Increased Hepatic Fat Content in Patients with Resistance to Thyroid Hormone Beta. Thyroid 31, 1127–1134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bochukova, E. et al. A mutation in the thyroid hormone receptor alpha gene. N. Engl. J. Med. 366, 243–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Moran, C. & Chatterjee, K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best. Pr. Res Clin. Endocrinol. Metab. 29, 647–657 (2015).

    Article  CAS  Google Scholar 

  50. Dore, R. et al. Resistance to thyroid hormone induced tachycardia in RTHalpha syndrome. Nat. Commun. 14, 3312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh, B. K. & Yen, P. M. A clinician’s guide to understanding resistance to thyroid hormone due to receptor mutations in the TRalpha and TRbeta isoforms. Clin. Diabetes Endocrinol. 3, 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Davis, P. J., Leonard, J. L., Lin, H. Y., Leinung, M. & Mousa, S. A. Molecular Basis of Nongenomic Actions of Thyroid Hormone. Vitam. Horm. 106, 67–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Moeller, L. C., Cao, X., Dumitrescu, A. M., Seo, H. & Refetoff, S. Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl. Recept Signal 4, e020 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Siegrist-Kaiser, C. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M. & Leonard, J. L. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J. Biol. Chem. 265, 5296–5302 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Dekkers, B. G. et al. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-beta1. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L301–L306 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Scarlett, A. et al. Thyroid hormone stimulation of extracellular signal-regulated kinase and cell proliferation in human osteoblast-like cells is initiated at integrin alphaVbeta3. J. Endocrinol. 196, 509–517 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Mousa, S. A., O’Connor, L., Davis, F. B. & Davis, P. J. Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147, 1602–1607 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Scapin, S., Leoni, S., Spagnuolo, S., Fiore, A. M. & Incerpi, S. Short-term effects of thyroid hormones on Na+-K+-ATPase activity of chick embryo hepatocytes during development: focus on signal transduction. Am. J. Physiol. Cell Physiol. 296, C4–C12 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Horst, C., Rokos, H. & Seitz, H. J. Rapid stimulation of hepatic oxygen consumption by 3,5-di-iodo-L-thyronine. Biochem. J. 261, 945–950 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodd, C., Schwartz, H. L., Strait, K. A. & Oppenheimer, J. H. Ontogeny of hepatic nuclear triiodothyronine receptor isoforms in the rat. Endocrinology 131, 2559–2564 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ritter, M. J., Amano, I. & Hollenberg, A. N. Thyroid Hormone Signaling and the Liver. Hepatology 72, 742–752 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Kawai, K. et al. Unliganded thyroid hormone receptor-beta1 represses liver X receptor alpha/oxysterol-dependent transactivation. Endocrinology 145, 5515–5524 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Sinha, R. A. et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 122, 2428–2438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jackson-Hayes, L. et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. J. Biol. Chem. 278, 7964–7972 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Djouadi, F., Riveau, B., Merlet-Benichou, C. & Bastin, J. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat. Biochem. J. 324, 289–294 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh, B. K. et al. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Science signaling 11, https://doi.org/10.1126/scisignal.aam5855 (2018).

  68. Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11, 1341–1357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abrams, J. J. & Grundy, S. M. Cholesterol metabolism in hypothyroidism and hyperthyroidism in man. J. Lipid Res. 22, 323–338 (1981).

    Article  CAS  PubMed  Google Scholar 

  70. Lopez, D., Abisambra Socarras, J. F., Bedi, M. & Ness, G. C. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim. Biophys. Acta 1771, 1216–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Bakker, O., Hudig, F., Meijssen, S. & Wiersinga, W. M. Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem. Biophys. Res. Commun. 249, 517–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Geest, F. S., Gunhanlar, N., Groeneweg, S. & Visser, W. E. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol. (Lausanne) 12, 723750 (2021).

    Article  PubMed  Google Scholar 

  74. Lammel Lindemann, J. A., Angajala, A., Engler, D. A., Webb, P. & Ayers, S. D. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro. Mol. Cell. Endocrinol. 388, 32–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nebioglu, S., Wathanaronchai, P., Nebioglu, D., Pruden, E. L. & Gibson, D. M. Mechanisms underlying enhanced glycogenolysis in livers of 3,5,3’-triiodothyronine-treated rats. Am. J. Physiol. 258, E109–E116 (1990).

    CAS  PubMed  Google Scholar 

  77. McCulloch, A. J. et al. Evidence that thyroid hormones regulate gluconeogenesis from glycerol in man. Clin. Endocrinol. 19, 67–76 (1983).

    Article  CAS  Google Scholar 

  78. Dimitriadis, G. D. & Raptis, S. A. Thyroid hormone excess and glucose intolerance. Exp. Clin. Endocrinol. Diabetes 109, S225–S239 (2001). Suppl 2.

    Article  CAS  PubMed  Google Scholar 

  79. Sinha, R. A., Singh, B. K. & Yen, P. M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 25, 538–545 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Park, E. A., Song, S., Vinson, C. & Roesler, W. J. Role of CCAAT enhancer-binding protein beta in the thyroid hormone and cAMP induction of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 274, 211–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Suh, J. H. et al. SIRT1 is a direct coactivator of thyroid hormone receptor beta1 with gene-specific actions. PLoS One 8, e70097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Attia, R. R. et al. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: role of the peroxisome proliferator-activated receptor gamma coactivator (PGC-1 alpha). J. Biol. Chem. 285, 2375–2385 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Singh, B. K. et al. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition. J. Biol. Chem. 291, 198–214 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, J. et al. Thyroid Hormone Receptor alpha Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology 162, https://doi.org/10.1210/endocr/bqab112 (2021).

  85. Salvatore, D., Simonides, W. S., Dentice, M., Zavacki, A. M. & Larsen, P. R. Thyroid hormones and skeletal muscle–new insights and potential implications. Nat. Rev. Endocrinol. 10, 206–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Bloise, F. F., Cordeiro, A. & Ortiga-Carvalho, T. M. Role of thyroid hormone in skeletal muscle physiology. J. Endocrinol. 236, R57–R68 (2018).

    Article  PubMed  Google Scholar 

  87. Lombardi, A. et al. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am. J. Physiol. Endocrinol. Metab. 296, E497–E502 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Nicolaisen, T. S. et al. Thyroid hormone receptor alpha in skeletal muscle is essential for T3-mediated increase in energy expenditure. FASEB J. 34, 15480–15491 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Lesmana, R. et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology 157, 23–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, J. et al. Thyroid Hormone Receptor α Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology 162, https://doi.org/10.1210/endocr/bqab112 (2021).

  91. Brunetto, E. L., da Silva Teixeira, S., Giannocco, G., Machado, U. F. & Nunes, M. T. T3 rapidly increases SLC2A4 gene expression and GLUT4 trafficking to the plasma membrane in skeletal muscle of rat and improves glucose homeostasis. Thyroid 22, 70–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Wikstrom, L. et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 17, 455–461 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Razvi, S. et al. Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll. Cardiol. 71, 1781–1796 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Geist, D. et al. Noncanonical Thyroid Hormone Receptor alpha Action Mediates Arterial Vasodilation. Endocrinology 162, https://doi.org/10.1210/endocr/bqab099 (2021).

  95. Hones, G. S. et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc. Natl Acad. Sci. USA 114, E11323–E11332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Graham, N. & Huang, G. N. Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology 162, https://doi.org/10.1210/endocr/bqab081 (2021).

  97. Portman, M. A. Thyroid hormone regulation of heart metabolism. Thyroid 18, 217–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Triandafillou, J., Gwilliam, C. & Himms-Hagen, J. Role of thyroid hormone in cold-induced changes in rat brown adipose tissue mitochondria. Can. J. Biochem. 60, 530–537 (1982).

    Article  CAS  PubMed  Google Scholar 

  99. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Skarulis, M. C. et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab. 95, 256–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Bianco, A. C. & McAninch, E. A. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 1, 250–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y. Y., Schultz, J. J. & Brent, G. A. A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J. Biol. Chem. 278, 38913–38920 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Marrif, H. et al. Temperature homeostasis in transgenic mice lacking thyroid hormone receptor-alpha gene products. Endocrinology 146, 2872–2884 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Weiner, J. et al. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci. Rep. 6, 38124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Broeders, E. P. et al. Thyroid Hormone Activates Brown Adipose Tissue and Increases Non-Shivering Thermogenesis–A Cohort Study in a Group of Thyroid Carcinoma Patients. PLoS One 11, e0145049 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metab. 26, 212–229 e212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zekri, Y. et al. Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice. eLife 11, https://doi.org/10.7554/eLife.81996 (2022).

  108. Yau, W. W. et al. Thyroid hormone (T(3)) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 15, 131–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Rabelo, R., Schifman, A., Rubio, A., Sheng, X. & Silva, J. E. Delineation of thyroid hormone-responsive sequences within a critical enhancer in the rat uncoupling protein gene. Endocrinology 136, 1003–1013 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, S. et al. Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat. Commun. 13, 3394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fonseca, T. L., Russo, S. C., Luongo, C., Salvatore, D. & Bianco, A. C. Inactivation of Type 3 Deiodinase Results in Life-long Changes in the Brown Adipose Tissue Transcriptome in the Male Mouse. Endocrinology 163, https://doi.org/10.1210/endocr/bqac026 (2022).

  112. Chen, K. et al. Adipose-targeted triiodothyronine therapy counteracts obesity-related metabolic complications and atherosclerosis with negligible side effects. Nat. Commun. 13, 7838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Obregon, M. J. Adipose tissues and thyroid hormones. Front. Physiol. 5, 479 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ma, Y. et al. Adipocyte Thyroid Hormone beta Receptor-Mediated Hormone Action Fine-tunes Intracellular Glucose and Lipid Metabolism and Systemic Homeostasis. Diabetes 72, 562–574 (2023).

    Article  PubMed  Google Scholar 

  115. Kristensen, K., Pedersen, S. B., Langdahl, B. L. & Richelsen, B. Regulation of leptin by thyroid hormone in humans: studies in vivo and in vitro. Metabolism 48, 1603–1607 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. El Amrousy, D., El-Afify, D. & Salah, S. Insulin resistance, leptin and adiponectin in lean and hypothyroid children and adolescents with obesity. BMC Pediatr. 22, 245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Valcavi, R., Zini, M., Peino, R., Casanueva, F. F. & Dieguez, C. Influence of thyroid status on serum immunoreactive leptin levels. J. Clin. Endocrinol. Metab. 82, 1632–1634 (1997).

    CAS  PubMed  Google Scholar 

  118. Mantzoros, C. S. et al. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans. J. Clin. Endocrinol. Metab. 86, 3284–3291 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Flier, J. S., Harris, M. & Hollenberg, A. N. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J. Clin. Invest. 105, 859–861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Machado, S. A. et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr. Metab. (Lond.) 19, 61 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Volke, L. & Krause, K. Effect of Thyroid Hormones on Adipose Tissue Flexibility. Eur. Thyroid J. 10, 1–9 (2021).

    CAS  PubMed  Google Scholar 

  122. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Matesanz, N. et al. MKK6 controls T3-mediated browning of white adipose tissue. Nat. Commun. 8, 856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Martinez-Sanchez, N. et al. Thyroid hormones induce browning of white fat. J. Endocrinol. 232, 351–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Johann, K. et al. Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Rep. 27, 3385–3400 e3383 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Fliers, E., Klieverik, L. P. & Kalsbeek, A. Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol. Metab. 21, 230–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Coppola, A. et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pensado, E. R. et al. Neuronal blockade of thyroid hormone signaling increases sensitivity to diet-induced obesity in adult male mice. Endocrinology, https://doi.org/10.1210/endocr/bqad034 (2023).

  130. Davies, K. L. et al. Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a region-specific manner. FASEB J. 35, e21591 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Gothié, J. D. et al. Adult neural stem cell fate is determined by thyroid hormone activation of mitochondrial metabolism. Mol. Metab. 6, 1551–1561 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jansen, H. I., Bruinstroop, E., Heijboer, A. C. & Boelen, A. Biomarkers indicating tissue thyroid hormone status: ready to be implemented yet? J. Endocrinol. 253, R21–R45 (2022).

  133. Ohba, K. et al. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice. Endocrinology 157, 1660–1672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shao, F. et al. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism. J. Clin. Endocrinol. Metab. 108, 13–25 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Galioni, E. F. et al. Long-term effect of dried thyroid on serum-lipoprotein and serum-cholesterol levels. Lancet 272, 120–123 (1957).

    CAS  PubMed  Google Scholar 

  136. Sinha, R. A., Bruinstroop, E., Singh, B. K. & Yen, P. M. Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid 29, 1173–1191 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Assadi-Porter, F. M. et al. Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19, https://doi.org/10.3390/ijms19051535 (2018).

  139. Rutigliano, G., Bandini, L., Sestito, S. & Chiellini, G. 3-Iodothyronamine and Derivatives: New Allies Against Metabolic Syndrome? Int J Mol Sci 21, https://doi.org/10.3390/ijms21062005 (2020).

  140. Eslam, M., Sanyal, A. J., George, J. & International Consensus, P. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 158, 1999–2014 e1991 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Raza, S., Rajak, S., Upadhyay, A., Tewari, A. & Anthony Sinha, R. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci. (Landmark Ed.) 26, 206–237 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Mantovani, A. et al. Association Between Primary Hypothyroidism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Thyroid 28, 1270–1284 (2018).

    Article  PubMed  Google Scholar 

  143. Bruinstroop, E. et al. Low-Dose Levothyroxine Reduces Intrahepatic Lipid Content in Patients With Type 2 Diabetes Mellitus and NAFLD. J. Clin. Endocrinol. Metab. 103, 2698–2706 (2018).

    Article  PubMed  Google Scholar 

  144. Perra, A. et al. Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Zhou, J. et al. Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid 32, 725–738 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Grasselli, E. et al. Models of non-Alcoholic Fatty Liver Disease and Potential Translational Value: the Effects of 3,5-L-diiodothyronine. Ann. Hepatol. 16, 707–719 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Iannucci, L. F. et al. Metabolomic analysis shows differential hepatic effects of T(2) and T(3) in rats after short-term feeding with high fat diet. Sci. Rep. 7, 2023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Martagon, A. J., Lin, J. Z., Cimini, S. L., Webb, P. & Phillips, K. J. The amelioration of hepatic steatosis by thyroid hormone receptor agonists is insufficient to restore insulin sensitivity in ob/ob mice. PLoS One 10, e0122987 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Hönes, G. S. et al. Cell-Specific Transport and Thyroid Hormone Receptor Isoform Selectivity Account for Hepatocyte-Targeted Thyromimetic Action of MGL-3196. Int J Mol Sci 23, https://doi.org/10.3390/ijms232213714 (2022).

  151. Harrison, S. A. et al. A Phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Article  PubMed  Google Scholar 

  152. Wu, R. et al. Conferring liver selectivity to a thyromimetic using a novel nanoparticle increases therapeutic efficacy in a diet-induced obesity animal model. PNAS Nexus 2, pgad252 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Heuer, H. et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146, 1701–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Visser, W. E. Therapeutic applications of thyroid hormone analogues. Ann. Endocrinol. (Paris) 82, 170–172 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Groeneweg, S. et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 7, 695–706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hartley, M. D., Kirkemo, L. L., Banerji, T. & Scanlan, T. S. A Thyroid hormone-based strategy for correcting the biochemical abnormality in X-linked adrenoleukodystrophy. Endocrinol. 158, 1328–1338 (2017).

Download references

Acknowledgements

This work is supported by Wellcome Trust/DBT India Alliance Fellowship [IA/I/16/2/502691] & SERB (CRG/2022/002149) awarded to RAS and CSASI19may-0002 and NMRC/CIRG/1457/2016 to PMY.

Author information

Authors and Affiliations

Authors

Contributions

R.A.S. and P.M.Y. co-wrote this article.

Corresponding authors

Correspondence to Rohit A. Sinha or Paul M. Yen.

Ethics declarations

Competing interests

There are no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Ashley Castellanos-Jankiewicz, Alfredo Giménez-Cassina and Isabella Samuelson, in collaboration with the Nature Metabolism

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R.A., Yen, P.M. Metabolic Messengers: Thyroid Hormones. Nat Metab 6, 639–650 (2024). https://doi.org/10.1038/s42255-024-00986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-00986-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing