Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
JF, C. Discovery of a new cure for goiter [De´- couverte d’un nouveau reme’de contre le goıˆtre]. Ann Chim Phys Paris 15, 49–59 (1820).
Trohler, U. Towards endocrinology: Theodor Kocher’s 1883 account of the unexpected effects of total ablation of the thyroid. J. R. Soc. Med 104, 129–132 (2011).
Clinical Society of London-Conclusions of the Myxoedema Committee. South Med Rec 18, 33−336 (1888).
Murray, G. R. Note on the Treatment of Myxoedema by Hypodermic Injections of an Extract of the Thyroid Gland of a Sheep. Br. Med J. 2, 796–797 (1891).
Kendall, E. C. Landmark article, June 19, 1915. The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid. Its chemical nature and physiologic activity. By E.C. Kendall. JAMA 250, 2045–2046 (1983).
Harington, C. R. & Barger, G. Chemistry of Thyroxine: Constitution and Synthesis of Thyroxine. Biochem. J. 21, 169–183 (1927).
Gross, J. & Pitt-Rivers, R. 3:5:3’ -triiodothyronine. 1. Isolation from thyroid gland and synthesis. Biochem. J. 53, 645–650 (1953).
Berson, S. A., Yalow, R. S., Sorrentino, J. & Roswit, B. The determination of thyroidal and renal plasma I131 clearance rates as a routine diagnostic test of thyroid dysfunction. J. Clin. Invest. 31, 141–158 (1952).
Gharib, H., Ryan, R. J., Mayberry, W. E. & Hockert, T. Radioimmunoassay for triiodothyronine (T 3): I. Affinity and specificity of the antibody for T 3. J. Clin. Endocrinol. Metab. 33, 509–516 (1971).
Chopra, I. J. A radioimmunoassay for measurement of thyroxine in unextracted serum. J. Clin. Endocrinol. Metab. 34, 938–947 (1972).
Tata, J. R. Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature 197, 1167–1168 (1963).
Oppenheimer, J. H., Schwartz, H. L. & Surks, M. I. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology 95, 897–903 (1974).
Samuels, H. H. & Tsai, J. S. Thyroid hormone action in cell culture: domonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl Acad. Sci. USA 70, 3488–3492 (1973).
Larsen, P. R., Dick, T. E., Markovitz, B. P., Kaplan, M. M. & Gard, T. G. Inhibition of intrapituitary thyroxine to 3.5.3’-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. J. Clin. Invest. 64, 117–128 (1979).
Sap, J. et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324, 635–640 (1986).
Weinberger, C. et al. The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646 (1986).
Magner, J. A. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr. Rev. 11, 354–385 (1990).
Mariotti, S. & Beck-Peccoz, P. in Endotext (eds K. R. Feingold et al.) (2000).
Rousset, B. et al. Chapter 2 Thyroid hormone synthesis and secretion. Endotext [Internet] https://www.ncbi.nlm.nih.gov/books/NBK285550/ (updated 2 Sep 2015).
Moreno, J. C. & Visser, T. J. Genetics and phenomics of hypothyroidism and goiter due to iodotyrosine deiodinase (DEHAL1) gene mutations. Mol. Cell. Endocrinol. 322, 91–98 (2010).
Refetoff, S. in Endotext (eds K. R. Feingold et al.) (2000).
Groeneweg, S., van Geest, F. S., Peeters, R. P., Heuer, H. & Visser, W. E. Thyroid Hormone Transporters. Endocr Rev 41, https://doi.org/10.1210/endrev/bnz008 (2020).
Friesema, E. C. et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol. Endocrinol. 22, 1357–1369 (2008).
Mayerl, S. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Invest. 124, 1987–1999 (2014).
Dumitrescu, A. M., Liao, X. H., Best, T. B., Brockmann, K. & Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet 74, 168–175 (2004).
Friesema, E. C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).
Russo, S. C., Salas-Lucia, F. & Bianco, A. C. Deiodinases and the Metabolic Code for Thyroid Hormone Action. Endocrinology 162, https://doi.org/10.1210/endocr/bqab059 (2021).
Galton, V. A. & Hernandez, A. Thyroid Hormone Metabolism: A Historical Perspective. Thyroid 33, 24–31 (2023).
Aw, D. K. et al. Studies of molecular mechanisms associated with increased deiodinase 3 expression in a case of consumptive hypothyroidism. J. Clin. Endocrinol. Metab. 99, 3965–3971 (2014).
Dumitrescu, A. M., Di Cosmo, C., Liao, X. H., Weiss, R. E. & Refetoff, S. The syndrome of inherited partial SBP2 deficiency in humans. Antioxid. redox Signal. 12, 905–920 (2010).
Fu, J., Fujisawa, H., Follman, B., Liao, X. H. & Dumitrescu, A. M. Thyroid Hormone Metabolism Defects in a Mouse Model of SBP2 Deficiency. Endocrinology 158, 4317–4330 (2017).
Lazar, M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14, 184–193 (1993).
Frigo, D. E., Bondesson, M. & Williams, C. Nuclear receptors: from molecular mechanisms to therapeutics. Essays Biochem 65, 847–856 (2021).
Vella, K. R. & Hollenberg, A. N. The actions of thyroid hormone signaling in the nucleus. Mol. Cell. Endocrinol. 458, 127–135 (2017).
Grontved, L. et al. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nat. Commun. 6, 7048 (2015).
Ramadoss, P. et al. Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver. J. Biol. Chem. 289, 1313–1328 (2014).
Shabtai, Y. et al. A coregulator shift, rather than the canonical switch, underlies thyroid hormone action in the liver. Genes Dev. 35, 367–378 (2021).
Carr, F. E., Kaseem, L. L. & Wong, N. C. Thyroid hormone inhibits thyrotropin gene expression via a position-independent negative L-triiodothyronine-responsive element. J. Biol. Chem. 267, 18689–18694 (1992).
Wang, D. et al. Negative regulation of TSHalpha target gene by thyroid hormone involves histone acetylation and corepressor complex dissociation. Mol. Endocrinol. 23, 600–609 (2009).
Forrest, D. & Vennstrom, B. Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52 (2000).
Singh, B. K., Sinha, R. A. & Yen, P. M. Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. Int J Mol Sci 19, https://doi.org/10.3390/ijms19103284 (2018).
Aranda, A. MicroRNAs and thyroid hormone action. Mol. Cell. Endocrinol. 525, 111175 (2021).
Singh, B. K. et al. Thyroid hormone receptor and ERRalpha coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Science signaling 11, https://doi.org/10.1126/scisignal.aam5855 (2018).
Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem. 288, 30365–30372 (2013).
Thakran, S. et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J. Biol. Chem. 288, 807–818 (2013).
Refetoff, S., Weiss, R. E. & Usala, S. J. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14, 348–399 (1993).
Chaves, C., Bruinstroop, E., Refetoff, S., Yen, P. M. & Anselmo, J. Increased Hepatic Fat Content in Patients with Resistance to Thyroid Hormone Beta. Thyroid 31, 1127–1134 (2021).
Bochukova, E. et al. A mutation in the thyroid hormone receptor alpha gene. N. Engl. J. Med. 366, 243–249 (2012).
Moran, C. & Chatterjee, K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best. Pr. Res Clin. Endocrinol. Metab. 29, 647–657 (2015).
Dore, R. et al. Resistance to thyroid hormone induced tachycardia in RTHalpha syndrome. Nat. Commun. 14, 3312 (2023).
Singh, B. K. & Yen, P. M. A clinician’s guide to understanding resistance to thyroid hormone due to receptor mutations in the TRalpha and TRbeta isoforms. Clin. Diabetes Endocrinol. 3, 8 (2017).
Davis, P. J., Leonard, J. L., Lin, H. Y., Leinung, M. & Mousa, S. A. Molecular Basis of Nongenomic Actions of Thyroid Hormone. Vitam. Horm. 106, 67–96 (2018).
Moeller, L. C., Cao, X., Dumitrescu, A. M., Seo, H. & Refetoff, S. Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl. Recept Signal 4, e020 (2006).
Siegrist-Kaiser, C. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M. & Leonard, J. L. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J. Biol. Chem. 265, 5296–5302 (1990).
Dekkers, B. G. et al. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-beta1. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L301–L306 (2015).
Scarlett, A. et al. Thyroid hormone stimulation of extracellular signal-regulated kinase and cell proliferation in human osteoblast-like cells is initiated at integrin alphaVbeta3. J. Endocrinol. 196, 509–517 (2008).
Mousa, S. A., O’Connor, L., Davis, F. B. & Davis, P. J. Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147, 1602–1607 (2006).
Scapin, S., Leoni, S., Spagnuolo, S., Fiore, A. M. & Incerpi, S. Short-term effects of thyroid hormones on Na+-K+-ATPase activity of chick embryo hepatocytes during development: focus on signal transduction. Am. J. Physiol. Cell Physiol. 296, C4–C12 (2009).
Horst, C., Rokos, H. & Seitz, H. J. Rapid stimulation of hepatic oxygen consumption by 3,5-di-iodo-L-thyronine. Biochem. J. 261, 945–950 (1989).
Rodd, C., Schwartz, H. L., Strait, K. A. & Oppenheimer, J. H. Ontogeny of hepatic nuclear triiodothyronine receptor isoforms in the rat. Endocrinology 131, 2559–2564 (1992).
Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2018).
Ritter, M. J., Amano, I. & Hollenberg, A. N. Thyroid Hormone Signaling and the Liver. Hepatology 72, 742–752 (2020).
Kawai, K. et al. Unliganded thyroid hormone receptor-beta1 represses liver X receptor alpha/oxysterol-dependent transactivation. Endocrinology 145, 5515–5524 (2004).
Sinha, R. A. et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 122, 2428–2438 (2012).
Jackson-Hayes, L. et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. J. Biol. Chem. 278, 7964–7972 (2003).
Djouadi, F., Riveau, B., Merlet-Benichou, C. & Bastin, J. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat. Biochem. J. 324, 289–294 (1997).
Singh, B. K. et al. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Science signaling 11, https://doi.org/10.1126/scisignal.aam5855 (2018).
Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11, 1341–1357 (2015).
Abrams, J. J. & Grundy, S. M. Cholesterol metabolism in hypothyroidism and hyperthyroidism in man. J. Lipid Res. 22, 323–338 (1981).
Lopez, D., Abisambra Socarras, J. F., Bedi, M. & Ness, G. C. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim. Biophys. Acta 1771, 1216–1225 (2007).
Bakker, O., Hudig, F., Meijssen, S. & Wiersinga, W. M. Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem. Biophys. Res. Commun. 249, 517–521 (1998).
Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).
van Geest, F. S., Gunhanlar, N., Groeneweg, S. & Visser, W. E. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol. (Lausanne) 12, 723750 (2021).
Lammel Lindemann, J. A., Angajala, A., Engler, D. A., Webb, P. & Ayers, S. D. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro. Mol. Cell. Endocrinol. 388, 32–40 (2014).
Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).
Nebioglu, S., Wathanaronchai, P., Nebioglu, D., Pruden, E. L. & Gibson, D. M. Mechanisms underlying enhanced glycogenolysis in livers of 3,5,3’-triiodothyronine-treated rats. Am. J. Physiol. 258, E109–E116 (1990).
McCulloch, A. J. et al. Evidence that thyroid hormones regulate gluconeogenesis from glycerol in man. Clin. Endocrinol. 19, 67–76 (1983).
Dimitriadis, G. D. & Raptis, S. A. Thyroid hormone excess and glucose intolerance. Exp. Clin. Endocrinol. Diabetes 109, S225–S239 (2001). Suppl 2.
Sinha, R. A., Singh, B. K. & Yen, P. M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 25, 538–545 (2014).
Park, E. A., Song, S., Vinson, C. & Roesler, W. J. Role of CCAAT enhancer-binding protein beta in the thyroid hormone and cAMP induction of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 274, 211–217 (1999).
Suh, J. H. et al. SIRT1 is a direct coactivator of thyroid hormone receptor beta1 with gene-specific actions. PLoS One 8, e70097 (2013).
Attia, R. R. et al. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: role of the peroxisome proliferator-activated receptor gamma coactivator (PGC-1 alpha). J. Biol. Chem. 285, 2375–2385 (2010).
Singh, B. K. et al. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition. J. Biol. Chem. 291, 198–214 (2016).
Zhou, J. et al. Thyroid Hormone Receptor alpha Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology 162, https://doi.org/10.1210/endocr/bqab112 (2021).
Salvatore, D., Simonides, W. S., Dentice, M., Zavacki, A. M. & Larsen, P. R. Thyroid hormones and skeletal muscle–new insights and potential implications. Nat. Rev. Endocrinol. 10, 206–214 (2014).
Bloise, F. F., Cordeiro, A. & Ortiga-Carvalho, T. M. Role of thyroid hormone in skeletal muscle physiology. J. Endocrinol. 236, R57–R68 (2018).
Lombardi, A. et al. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am. J. Physiol. Endocrinol. Metab. 296, E497–E502 (2009).
Nicolaisen, T. S. et al. Thyroid hormone receptor alpha in skeletal muscle is essential for T3-mediated increase in energy expenditure. FASEB J. 34, 15480–15491 (2020).
Lesmana, R. et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology 157, 23–38 (2016).
Zhou, J. et al. Thyroid Hormone Receptor α Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology 162, https://doi.org/10.1210/endocr/bqab112 (2021).
Brunetto, E. L., da Silva Teixeira, S., Giannocco, G., Machado, U. F. & Nunes, M. T. T3 rapidly increases SLC2A4 gene expression and GLUT4 trafficking to the plasma membrane in skeletal muscle of rat and improves glucose homeostasis. Thyroid 22, 70–79 (2012).
Wikstrom, L. et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 17, 455–461 (1998).
Razvi, S. et al. Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll. Cardiol. 71, 1781–1796 (2018).
Geist, D. et al. Noncanonical Thyroid Hormone Receptor alpha Action Mediates Arterial Vasodilation. Endocrinology 162, https://doi.org/10.1210/endocr/bqab099 (2021).
Hones, G. S. et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc. Natl Acad. Sci. USA 114, E11323–E11332 (2017).
Graham, N. & Huang, G. N. Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology 162, https://doi.org/10.1210/endocr/bqab081 (2021).
Portman, M. A. Thyroid hormone regulation of heart metabolism. Thyroid 18, 217–225 (2008).
Triandafillou, J., Gwilliam, C. & Himms-Hagen, J. Role of thyroid hormone in cold-induced changes in rat brown adipose tissue mitochondria. Can. J. Biochem. 60, 530–537 (1982).
Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).
Skarulis, M. C. et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab. 95, 256–262 (2010).
Bianco, A. C. & McAninch, E. A. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 1, 250–258 (2013).
Liu, Y. Y., Schultz, J. J. & Brent, G. A. A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J. Biol. Chem. 278, 38913–38920 (2003).
Marrif, H. et al. Temperature homeostasis in transgenic mice lacking thyroid hormone receptor-alpha gene products. Endocrinology 146, 2872–2884 (2005).
Weiner, J. et al. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci. Rep. 6, 38124 (2016).
Broeders, E. P. et al. Thyroid Hormone Activates Brown Adipose Tissue and Increases Non-Shivering Thermogenesis–A Cohort Study in a Group of Thyroid Carcinoma Patients. PLoS One 11, e0145049 (2016).
Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metab. 26, 212–229 e212 (2017).
Zekri, Y. et al. Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice. eLife 11, https://doi.org/10.7554/eLife.81996 (2022).
Yau, W. W. et al. Thyroid hormone (T(3)) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 15, 131–150 (2019).
Rabelo, R., Schifman, A., Rubio, A., Sheng, X. & Silva, J. E. Delineation of thyroid hormone-responsive sequences within a critical enhancer in the rat uncoupling protein gene. Endocrinology 136, 1003–1013 (1995).
Liu, S. et al. Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat. Commun. 13, 3394 (2022).
Fonseca, T. L., Russo, S. C., Luongo, C., Salvatore, D. & Bianco, A. C. Inactivation of Type 3 Deiodinase Results in Life-long Changes in the Brown Adipose Tissue Transcriptome in the Male Mouse. Endocrinology 163, https://doi.org/10.1210/endocr/bqac026 (2022).
Chen, K. et al. Adipose-targeted triiodothyronine therapy counteracts obesity-related metabolic complications and atherosclerosis with negligible side effects. Nat. Commun. 13, 7838 (2022).
Obregon, M. J. Adipose tissues and thyroid hormones. Front. Physiol. 5, 479 (2014).
Ma, Y. et al. Adipocyte Thyroid Hormone beta Receptor-Mediated Hormone Action Fine-tunes Intracellular Glucose and Lipid Metabolism and Systemic Homeostasis. Diabetes 72, 562–574 (2023).
Kristensen, K., Pedersen, S. B., Langdahl, B. L. & Richelsen, B. Regulation of leptin by thyroid hormone in humans: studies in vivo and in vitro. Metabolism 48, 1603–1607 (1999).
El Amrousy, D., El-Afify, D. & Salah, S. Insulin resistance, leptin and adiponectin in lean and hypothyroid children and adolescents with obesity. BMC Pediatr. 22, 245 (2022).
Valcavi, R., Zini, M., Peino, R., Casanueva, F. F. & Dieguez, C. Influence of thyroid status on serum immunoreactive leptin levels. J. Clin. Endocrinol. Metab. 82, 1632–1634 (1997).
Mantzoros, C. S. et al. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans. J. Clin. Endocrinol. Metab. 86, 3284–3291 (2001).
Flier, J. S., Harris, M. & Hollenberg, A. N. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J. Clin. Invest. 105, 859–861 (2000).
Machado, S. A. et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr. Metab. (Lond.) 19, 61 (2022).
Volke, L. & Krause, K. Effect of Thyroid Hormones on Adipose Tissue Flexibility. Eur. Thyroid J. 10, 1–9 (2021).
Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).
Matesanz, N. et al. MKK6 controls T3-mediated browning of white adipose tissue. Nat. Commun. 8, 856 (2017).
Martinez-Sanchez, N. et al. Thyroid hormones induce browning of white fat. J. Endocrinol. 232, 351–362 (2017).
Johann, K. et al. Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Rep. 27, 3385–3400 e3383 (2019).
Fliers, E., Klieverik, L. P. & Kalsbeek, A. Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol. Metab. 21, 230–236 (2010).
Coppola, A. et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33 (2007).
Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).
Pensado, E. R. et al. Neuronal blockade of thyroid hormone signaling increases sensitivity to diet-induced obesity in adult male mice. Endocrinology, https://doi.org/10.1210/endocr/bqad034 (2023).
Davies, K. L. et al. Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a region-specific manner. FASEB J. 35, e21591 (2021).
Gothié, J. D. et al. Adult neural stem cell fate is determined by thyroid hormone activation of mitochondrial metabolism. Mol. Metab. 6, 1551–1561 (2017).
Jansen, H. I., Bruinstroop, E., Heijboer, A. C. & Boelen, A. Biomarkers indicating tissue thyroid hormone status: ready to be implemented yet? J. Endocrinol. 253, R21–R45 (2022).
Ohba, K. et al. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice. Endocrinology 157, 1660–1672 (2016).
Shao, F. et al. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism. J. Clin. Endocrinol. Metab. 108, 13–25 (2022).
Galioni, E. F. et al. Long-term effect of dried thyroid on serum-lipoprotein and serum-cholesterol levels. Lancet 272, 120–123 (1957).
Sinha, R. A., Bruinstroop, E., Singh, B. K. & Yen, P. M. Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid 29, 1173–1191 (2019).
Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).
Assadi-Porter, F. M. et al. Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19, https://doi.org/10.3390/ijms19051535 (2018).
Rutigliano, G., Bandini, L., Sestito, S. & Chiellini, G. 3-Iodothyronamine and Derivatives: New Allies Against Metabolic Syndrome? Int J Mol Sci 21, https://doi.org/10.3390/ijms21062005 (2020).
Eslam, M., Sanyal, A. J., George, J. & International Consensus, P. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 158, 1999–2014 e1991 (2020).
Raza, S., Rajak, S., Upadhyay, A., Tewari, A. & Anthony Sinha, R. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci. (Landmark Ed.) 26, 206–237 (2021).
Mantovani, A. et al. Association Between Primary Hypothyroidism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Thyroid 28, 1270–1284 (2018).
Bruinstroop, E. et al. Low-Dose Levothyroxine Reduces Intrahepatic Lipid Content in Patients With Type 2 Diabetes Mellitus and NAFLD. J. Clin. Endocrinol. Metab. 103, 2698–2706 (2018).
Perra, A. et al. Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008).
Zhou, J. et al. Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid 32, 725–738 (2022).
Grasselli, E. et al. Models of non-Alcoholic Fatty Liver Disease and Potential Translational Value: the Effects of 3,5-L-diiodothyronine. Ann. Hepatol. 16, 707–719 (2017).
Iannucci, L. F. et al. Metabolomic analysis shows differential hepatic effects of T(2) and T(3) in rats after short-term feeding with high fat diet. Sci. Rep. 7, 2023 (2017).
Martagon, A. J., Lin, J. Z., Cimini, S. L., Webb, P. & Phillips, K. J. The amelioration of hepatic steatosis by thyroid hormone receptor agonists is insufficient to restore insulin sensitivity in ob/ob mice. PLoS One 10, e0122987 (2015).
Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).
Hönes, G. S. et al. Cell-Specific Transport and Thyroid Hormone Receptor Isoform Selectivity Account for Hepatocyte-Targeted Thyromimetic Action of MGL-3196. Int J Mol Sci 23, https://doi.org/10.3390/ijms232213714 (2022).
Harrison, S. A. et al. A Phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).
Wu, R. et al. Conferring liver selectivity to a thyromimetic using a novel nanoparticle increases therapeutic efficacy in a diet-induced obesity animal model. PNAS Nexus 2, pgad252 (2023).
Heuer, H. et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146, 1701–1706 (2005).
Visser, W. E. Therapeutic applications of thyroid hormone analogues. Ann. Endocrinol. (Paris) 82, 170–172 (2021).
Groeneweg, S. et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 7, 695–706 (2019).
Hartley, M. D., Kirkemo, L. L., Banerji, T. & Scanlan, T. S. A Thyroid hormone-based strategy for correcting the biochemical abnormality in X-linked adrenoleukodystrophy. Endocrinol. 158, 1328–1338 (2017).
Acknowledgements
This work is supported by Wellcome Trust/DBT India Alliance Fellowship [IA/I/16/2/502691] & SERB (CRG/2022/002149) awarded to RAS and CSASI19may-0002 and NMRC/CIRG/1457/2016 to PMY.
Author information
Authors and Affiliations
Contributions
R.A.S. and P.M.Y. co-wrote this article.
Corresponding authors
Ethics declarations
Competing interests
There are no competing interests.
Peer review
Peer review information
Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Ashley Castellanos-Jankiewicz, Alfredo Giménez-Cassina and Isabella Samuelson, in collaboration with the Nature Metabolism
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sinha, R.A., Yen, P.M. Metabolic Messengers: Thyroid Hormones. Nat Metab 6, 639–650 (2024). https://doi.org/10.1038/s42255-024-00986-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42255-024-00986-0