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The prevalence of youth-onset type 2 diabetes (T2D) and childhood obesity 
has been rising steadily1, producing a growing public health concern1 t ha t d is-
proportionately affects minority groups2. The genetic basis of youth-onset 
T2D and its relationship to other forms of diabetes are unclear3. Here we 
report a detailed genetic characterization of youth-onset T2D by analysing 
exome sequences and common variant associations for 3,005 individuals 
with youth-onset T2D and 9,777 adult control participants matched for 
ancestry, including both males and females. We identify monogenic 
diabetes variants in 2.4% of individuals and three exome-wide significant 
(P < 2.6 × 10−6) gene-level associations (HNF1A, MC4R, ATXN2L). Furthermore, 
we report rare variant association enrichments within 25 gene sets related 
to obesity, monogenic diabetes and β-cell function. Many youth-onset T2D 
associations are shared with adult-onset T2D, but genetic risk factors of all 
frequencies—and rare variants in particular—are enriched within youth-onset 
T2D cases (5.0-fold increase in the rare variant and 3.4-fold increase in 
common variant genetic liability relative to adult-onset cases). The clinical 
presentation of participants with youth-onset T2D is influenced in part by 
the frequency of genetic risk factors within each individual. These findings 
portray youth-onset T2D as a heterogeneous disease situated on a spectrum 
between monogenic diabetes and adult-onset T2D.

Given its clinical presentation and early age of onset, youth-onset T2D 
could be proposed to be caused by (1) increased environmental risk on 
a genetic background similar to4 or at the extremes of5 adult-onset T2D, 
(2) reduced penetrance of monogenic diabetes variants6 or (3) risk fac-
tors not shared with adult-onset or monogenic diabetes. These risk fac-
tors may implicate similar genes and pathways to those for adult-onset 
and monogenic diabetes, but this is far from certain, particularly given 
that individuals with youth-onset T2D are often obese1 and therefore 
clinically distinct from those with early-onset monogenic diabetes 
caused by β-cell dysfunction7 or severe insulin resistance8. Two recent 

studies from the Progress in Diabetes Genetics in Youth (ProDiGY) 
Consortium provided glimpses into youth-onset T2D genetic risk, 
showing that affected individuals are both enriched for adult-onset 
T2D common variant polygenic risk4 and include undiagnosed mono-
genic diabetes9. However, the relative contribution of adult-onset and 
monogenic diabetes genetic risk factors to youth-onset T2D remains 
unknown, as does the extent of youth-onset T2D genetic and biologi-
cal heterogeneity10.

To further explore the genetic basis of youth-onset T2D and to 
localize the genetic risk to specific genes and pathways, we obtained 
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for adult-onset T2D, the single-variant associations showed a mean OR 
increase of 1.14-fold (Supplementary Table 5), while the MC4R (OR 3.49, 
P = 1.7 × 10−11, combined MAF 0.011 for 25 variants) and HNF1A (OR 7.54, 
P = 1.2 × 10−10, combined MAF 0.0038 for 21 variants) gene-level asso-
ciations had 1.69- and 6.13-fold higher effect sizes. Both the MC4R and 
HNF1A associations exhibited large effect sizes (OR ≥ 3) and achieved 
nominal significance in African American, European and Hispanic sub-
groups of youth-onset T2D (Supplementary Table 6). The large effect 
size was not solely attributed to the ProDiGY inclusion criteria (which 
required BMI ≥ 85th percentile for one cohort; Methods), since limiting 
the cases to a subset (n = 480) without this criterion also showed large 
effect sizes for both MC4R (OR 4.06) and HNF1A (OR 6.62).

To further explore the relationship between adult-onset and 
youth-onset T2D risk factors, we assembled broader collections 
of adult-onset T2D-associated coding variants and evaluated their 
associations in ProDiGY. First, among the 17 single variants with the 
strongest adult-onset T2D associations (P < 1.0 × 10−5) in the previous 
AMP-T2D-GENES (ref. 6) exome analysis, 13 showed nominal (P < 0.05) 
associations with youth-onset T2D in ProDiGY, all of which had con-
sistent direction of effect between the two studies and larger effect 
sizes in ProDiGY compared to AMP-T2D-GENES (binomial P < 0.0001 
accounting for control sample overlap, sample size difference and 
winner’s curse, 1.10-fold average increase; Methods and Supplemen-
tary Table 7). Second, among 38 genes in a ‘known diabetes gene 
set’ and with nominal (P < 0.05) gene-level associations in either 
AMP-T2D-GENES or ProDiGY (Methods and Supplementary Table 
8), 27 had consistent directions of effect and 21 of these (77.8%) had 
larger effect sizes in ProDiGY (binomial P < 0.016 accounting for 
control sample overlap and sample size difference, 2.86-fold average 
increase; Supplementary Table 9). Thus, the strongest adult-onset 
T2D genetic risk factors (both common and rare variants) were also 
observed in youth-onset T2D, at a greater frequency in youth-onset 
T2D compared to adult-onset T2D.

youth-onset T2D exome sequence and genome-wide association 
study (GWAS) data from the ProDiGY Consortium (Fig. 1a and Meth-
ods). Focusing first on rare coding variants, we combined the exome 
sequences with non-diabetic adult control exome sequences from the 
recent AMP-T2D-GENES study6. Joint variant calling, quality control and 
genetic clustering and matching11 (Extended Data Fig. 1 and Methods) 
produced an analysis set of 3,005 individuals with youth-onset T2D 
and 9,777 control participants (African Americans n = 4,189, Europeans 
n = 2,546, Hispanics n = 6,047; Supplementary Table 1). We applied 
a previous methodology12 to conduct single-variant and gene-level 
association analyses (Methods), neither of which showed any evidence 
of systemic test statistic inflation (Extended Data Figs. 2 and 3) or rare 
synonymous variant associations (Extended Data Fig. 4).

Four single variants (Fig. 1b and Supplementary Table 2) and three 
genes (MC4R, HNF1A and ATXN2L; Fig. 1c, Supplementary Tables 3 and 
4 and Extended Data Figs. 5–7) showed exome-wide significant asso-
ciation13 (P < 4.3 × 10−7 for single-variant and P < 2.6 × 10−6 for gene-level 
associations; Methods). All four variants were common and previously 
associated with adult-onset T2D. For the gene-level associations, all but 
the ATXN2L association (odds ratio (OR) 1.26, 95% confidence interval 
1.15–1.39, P = 1.1 × 10−6, combined minor allele frequency (MAF) 0.36 
for 73 variants) have been previously reported as being associated 
with diabetes. The gene-level ATXN2L association was primarily due to 
a single common variant (rs55719896, P = 5.7 × 10−5) within an ATXN2L 
splice acceptor site and in strong linkage disequilibrium (R2 = 0.99) 
with an intronic variant (rs9972768) of SH2B1 (a gene with a confirmed 
role in body mass index (BMI) variability), although none of the rare 
missense variants of ATXN2L were in linkage disequilibrium (R2 < 0.3) 
with variants in SH2B1. Further validation of this association is required 
to implicate ATXN2L in diabetes.

Notably, the six other significant associations had substantially 
larger effect sizes for youth-onset T2D than previously reported for 
adult-onset T2D. Compared with the previous AMP-T2D-GENES study 

ProDiGY WES 
youth-onset 

T2D cases
n = 3,650

External WES 
non-diabetic 
adult controls

n = 24,440

Joint variant calling 
(GATK Haplotype Caller)

Sample and variant level quality control

Ancestry matching by PC clustering
SVD-based matching of best controls

Matched cases (n = 3,005) and 
controls (n = 9,777) in seven clusters

Single variant association and
gene-level burden test

rs1801212, 
WFS1 p.V331I 
(OR 1.27, P = 7.8 × 10–8) 

MC4RPPARG
CCND1

HNF1A
(OR 7.54, P = 1.2 × 10–10) 

GCK

PAM
RFX6 SLC30A8 ABCC8

IGF2BP2 ABCC8

a b

c

rs13266634, 
SLC30A8 p.R325W 
(OR 0.82, P = 3.7 × 10–7) 

rs76070643, 
SLC16A13 p.Y166Y 
(OR 1.36, P = 1.1 × 10–9) 

rs11466334, 
TGFB1 intron 
(OR 1.55, P = 4.8 × 10–8) 

MC4R
(OR 3.49, P = 1.7 × 10–11) 

ATXN2L
(OR 1.26, P = 1.1 × 10–8) 

8

6

4

2

0

8

10

6

4

2

0

–l
og

10
(P

)
–l

og
10

(P
)

Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21

Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21

Fig. 1 | Scheme of the study and genetic discovery. a, Whole-exome sequence 
data of individuals with youth-onset T2D were matched to those of external 
non-diabetic control participants using genetic principal components and a 
singular-value decomposition (SVD)-based method resulting in 3,005 cases and 
9,777 control participants for single-variant and gene-level association analysis. 
b, Single-variant association analysis revealed four variants passing exome-wide 

significance (P < 4.3 × 10−7). c, Gene-level association analysis showed three genes 
associated with youth-onset T2D at exome-wide significance (P < 2.6 × 10−6). 
Blue dots represent previously known variants or genes of adult-onset T2D. Both 
single-variant and gene-level association analyses were performed with Firth’s 
penalized logistic regression. GATK, genome analysis toolkit; PC, principal 
components; WES, whole-exome sequencing.
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To also explore the contribution of monogenic diabetes risk 
factors to youth-onset T2D, we curated six gene sets, designated as 
‘monogenic OMIM + neonatal diabetes’, ‘monogenic primary’ (dia-
betes as a primary phenotype), ‘monogenic secondary’ (diabetes as 
a secondary phenotype), ‘monogenic obesity’, ‘lipodystrophy’ and 
‘type 1 diabetes’ (Supplementary Table 10 and Methods). Wilcoxon 
rank-sum tests of youth-onset T2D associations showed that the 
‘Monogenic OMIM + neonatal diabetes’ gene set with 19 genes for 
maturity-onset diabetes of the young (MODY) and neonatal diabetes 
showed the strongest gene-set enrichment (5.69-fold enrichment, 
P = 6.2 × 10−5). The set of 37 monogenic obesity genes showed a weaker 
but also nominally significant enrichment (2.05-fold enrichment, 
P = 0.034). The other four gene sets were not significantly associated 
with youth-onset T2D (P > 0.10), suggesting that youth-onset T2D is 
unlikely to primarily represent a collection of rare syndromic forms 
of diabetes. In addition to the lack of rare variant associations within 
the type 1 diabetes gene set, there were no significant youth-onset 
T2D common variant associations that aligned with a known direc-
tion of association for recognized type 1 diabetes (Supplementary 
Tables 11 and 12). These results indicate that youth-onset T2D shares 

genetic variants and genes overlapping those for some, but not all, 
forms of diabetes.

To investigate biological mechanisms underlying youth-onset 
T2D, we conducted rare variant association enrichment tests across 
5,071 gene sets delineated by Human Phenotype Ontology14 terms 
and curated from the Molecular Signature Database15,16 (Methods). 
We examined the 50 most significant youth-onset T2D gene-level 
associations, a threshold above which youth-onset T2D associations 
demonstrated increased replication in adult-onset T2D associations 
(AMP-T2D-GENES) (Supplementary Table 13, Extended Data Fig. 8). 
Thirty-eight gene sets showed significant enrichment (q value < 0.01; 
Supplementary Table 14), 25 of which were related to metabolic 
phenotypes (for example, ‘diabetes’, ‘hyperglycaemia’, ‘overweight’, 
‘waist’, ‘insulin’, ‘c peptide’, Methods). Of these 25, 14 were signifi-
cantly enriched for youth-onset T2D associations under the Wilcoxon 
rank-sum test (P < 0.002 for multiple comparison), and these were 
grouped into three clusters: ‘obesity’ (for example, ‘HP_OVERWEIGHT’), 
‘β-cell function’ (for example, ‘HP_TRANSIENT_NEONATAL_DIABE-
TES_MELLITUS’) and ‘other T2D’ (for example, ‘HP_ELEVATED_HAE-
MOGLOBIN_A1C’; Fig. 2a,b and Supplementary Table 15). The ‘obesity’ 
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Fig. 2 | Pathways involved in obesity and β-cell function are enriched in  
youth-onset T2D. a, Gene-set enrichment analysis using a hypergeometric 
test with the top 50 gene-level association signals in youth-onset T2D identified 
25 Human Phenotype Ontology gene sets that had significant overlap and 
were related to metabolic phenotypes of diabetes. These 25 gene sets were 
categorized into three subgroups of ‘obesity’, ‘β-cell function’ and ‘others’.  
b, A one-sided Wilcoxon rank-sum test (one-sided) using these 25 gene sets 
revealed representative sets with significant association enrichments beyond 
the top 50 associated genes, such as ‘HP_OVERWEIGHT’ (n = 24 genes versus 1,132 

background genes), ‘HP_TRANSIENT_NEONATAL_DIABETES_MELLITUS’ (n = 16 
genes versus 750 background genes), and ‘HP_ELEVATED_HAEMOGLOBIN_A1C’ 
(n = 15 genes versus 705 background genes). c, Gene-set clusters of ‘obesity’ 
(n = 438 genes versus 1,999 background genes) and ‘β-cell function’ (n = 108 
genes versus 519 background genes) showed significant enrichment (P < 0.05) 
when combining genes across all sets in the cluster using the one-sided Wilcoxon 
rank-sum test. Background denotes matched genes with similar numbers and 
frequencies of variants within them. All box-and-whisker plots represent the 
following: line, median; box, interquartile range (IQR) and whiskers, 1.5 × IQR.
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and ‘β-cell function’ clusters (but not the ‘other T2D’ cluster) in fact 
showed significant enrichments (P < 0.05) when we combined genes 
across all sets in the cluster (Fig. 2c). These associations were not solely 
driven by the top 50 youth-onset T2D genes, as 16 gene sets remained 
significant (P < 0.05) even after removing the top 50 genes (Supple-
mentary Table 16).

As this provided evidence for rare variant youth-onset T2D risk 
factors to be spread across many genes but falling short of exome-wide 
significance in our current analysis, we used the ProDiGY rare variant 
gene-level and gene-set associations to categorize genes into four tiers, 
each potentially harbouring rare variant risk factors for youth-onset 
T2D (Methods and Supplementary Table 17). In particular, ‘tier 3’ 
included 11 genes among the top 50 youth-onset T2D associations and 
within at least two of the significantly enriched gene sets (Supplemen-
tary Table 18); ten of these genes (all but ATXN2L) had significant rare 
variant associations. The gene-set associations and prioritized genes 
illustrate youth-onset T2D to be biologically similar to monogenic 
diabetes and adult-onset T2D, with some notable contrasts. First, 
the clustering of enriched gene sets into three subgroups of ‘obesity’, 
‘β-cell function’ and ‘other T2D’ suggests that youth-onset T2D is more 
biologically heterogeneous than other early-onset forms of diabetes 
such as monogenic diabetes or lipodystrophies. Second, three ‘tier 3’ 
genes (SIX3, HESX1, GHRL) had strongly suggestive evidence of asso-
ciation in ProDiGY despite showing no evidence of association for 
adult-onset T2D (all had P > 0.69 in AMP-T2D-GENES) and no previous 
links to monogenic diabetes. Finally, the protective ProDiGY associa-
tion in SLC30A8 (OR 0.35, P = 6.0 × 10−4) had a larger effect size than 
observed in AMP-T2D-GENES, suggesting that youth-onset T2D risk is 
influenced not only by risk-increasing variants but also by a depletion 
(even relative to adult-onset cases) of protective variants.

We next sought to compare the population-level relative con-
tributions of monogenic, rare and common variants to youth-onset 
T2D. We first integrated our rare variant associations with curated 

lists of pathogenic or likely pathogenic monogenic diabetes variants 
according to the latest guidelines provided by the ClinGen Variant 
Curation Monogenic Diabetes Expert Panel (https://cspec.genome.
network/cspec/ui/svi/affiliation/50016), with additional calibration of 
the results of multiple computational predictions17. Extending results 
reported previously9, we identified 72 (2.4%) youth-onset T2D individu-
als to have pathogenic and likely pathogenic variants of monogenic dia-
betes. Additionally, four of the ten monogenic diabetes genes (HNF1A, 
GCK, ABCC8 and INS) exhibited P < 0.05 rare variant associations with 
youth-onset T2D in our primary gene-level analysis (which included 
both pathogenic and likely pathogenic and additional variants; Sup-
plementary Table 19). Two of these genes (HNF1A and GCK) remained 
significant (P < 0.05) even after pathogenic and likely pathogenic vari-
ants were removed from analysis (Supplementary Tables 20–22). This 
suggests that youth-onset T2D is caused not only by (presumably undi-
agnosed) monogenic diabetes but also an expansion of the allelic series 
beyond what has been previously observed for monogenic diabetes18 
and adult-onset T2D (ref. 19).

To next compare liability variance explained (LVE) by the strong-
est youth-onset T2D rare coding variant and genome-wide common 
variant associations, we integrated our exome sequence data with 
common variant associations from the previous ProDiGY GWAS4. After 
correcting for winner’s curse and other confounders (Methods), the 
ten strongest ProDiGY GWAS common variant associations collec-
tively had 4.5-fold larger LVE (6.7%) than did the ten ‘tier 3’ gene-level 
rare variant associations (1.5%) (Fig. 3a and Supplementary Table 23), 
indicating that (similar to adult-onset T2D) common variants are the 
dominant genetic risk factor for youth-onset T2D. However, com-
pared to an equivalent analysis for adult-onset T2D in AMP-T2D-GENES 
(using comparable gene and variant sets and correcting for winner’s 
curse, different sample sizes and control sample overlap; Methods), 
youth-onset common variant LVE was 3.4-fold larger (P < 0.0001) 
than for adult-onset T2D (2.0%, Supplementary Tables 23 and 24), 
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Fig. 3 | Genetic architecture and LVE by common and rare variants. a, OR, 
allele frequency distribution and LVE by ten tier 3 gene-level association signals 
and ten common variant association signals and their LVE in youth-onset T2D 
and adult-onset T2D. b, LVE by common variants and gene-level associations in 
youth-onset T2D and adult-onset T2D for exome-wide significant associations 
(EWS), ten tier 3 genes and same number of common variants (tier 3), top 25 

significant gene-level and common variant associations (top 25) and 46 tier 
4 genes and same number of common variants (tier 4). The LVE by common 
variants increased by 3.5–4.2-fold in youth-onset T2D compared to adult-onset 
T2D. There was even larger 5.0–9.0-fold increase in LVE by rare variant gene-level 
associations in youth-onset T2D. Box-and-whisker plots represent the following: 
line, median; box, IQR; whiskers, minimum and maximum.
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and youth-onset rare variant LVE was 5.0-fold larger (P < 0.0001) than 
for adult-onset T2D (0.3%). We repeated these analyses across three 
alternative sets of gene-level and GWAS associations and with adjust-
ment for multiple potential confounders (Methods), observing the 
same trends: specifically, that youth-onset T2D associations, relative 
to adult-onset T2D associations, showed (1) larger absolute LVE by both 
common variants and rare variants and (2) a greater fold increase in 
rare variant LVE (5.0–9.0-fold increase) compared to common variant 
LVE (3.5–4.2-fold increase; Methods, Supplementary Tables 25–27 and  
Fig. 3b). These results support a model in which youth-onset T2D  
is enriched for genetic risk factors of all frequencies—with stronger 
enrichments for rarer variants—compared to adult-onset T2D.

To investigate the genetic heterogeneity of individual-level 
youth-onset T2D, we computed sample-level ‘contribution scores’ 
(Methods) from monogenic variants, rare coding variants, genome- 
wide common variants or rare and common variants combined. Among 
the 3,005 ProDiGY participants, 637 (21.2%) had either a MODY vari-
ant or a combined score with OR ≥ 3 (Fig. 4a). These were a mixture 
of individuals with monogenic diabetes (72, 2.4%), rare variant OR ≥ 3 
(102, 3.4%), common variant OR ≥ 3 (380, 12.6%) and combined OR ≥ 3 
(83, 2.8%), suggesting individual-level genetic heterogeneity in terms 
of which risk factors predominate. Among the 565 non-MODY par-
ticipants, rare variant scores were on average 25.1% of the combined 
scores, declining steadily from 46.8% for the first 50 individuals with 

the strongest combined variant scores to 16.4% for the last 65 individu-
als with the weakest combined variant scores (Fig. 4b). There was no 
obvious boundary to classify individuals as having ‘high’ versus ‘low’ 
rare variant scores.

Comparing clinical presentations of the youth-onset T2D par-
ticipants, we found those with MODY variants to have an earlier age of 
diagnosis (12.5 ± 2.4 versus 13.6 ± 2.3, P = 0.0001), lower BMI z score 
(1.77 ± 0.80 versus 2.18 ± 0.57, P = 0.010) and lower log10(C-peptide) 
level (0.43 ± 0.25 versus 0.55 ± 0.33, P = 0.0004) than those without 
MODY variants (Fig. 4c). Rare variant score (after removing partici-
pants with MODY) was associated with earlier age at T2D diagnosis  
(β −0.094 years per 1 s.d. increase in risk score, P = 0.031), but not with 
BMI z score or C-peptide level. (Fig. 4d). By contrast, the common vari-
ant score was associated with higher log10(C-peptide) level (β = 0.040 
per 1 s.d. increase, P = 6.9 × 10−10). These findings indicate that clinical 
heterogeneity of youth-onset T2D is in part influenced by the frequency 
of contributing genetic risk factors.

In summary, we identified a variety of youth-onset T2D genetic risk 
factors with effect sizes much larger than any observed for adult-onset 
T2D. Our study has limitations. First, our sample size was large for 
a rare disease20 but modest for a common disease, requiring some 
of our analyses to include suggestive associations or the strongest, 
rather than all, genetic risk factors. Second, despite extensive vali-
dations of our external control matching strategy (Methods), some 
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Fig. 4 | Individual genetic risk conferred by common and rare variants.  
a, Fraction of individuals having high genetic risk conferred by MODY variants, 
rare variant score, common variant score or combined variant score. Among 
3,005 youth-onset T2D cases, 2.4% carried MODY variants, 3.4% had high rare 
variant score with OR ≥ 3, 12.6% had high common variant score with OR ≥ 3 and 
2.8% had high combined score with OR ≥ 3. b, For the 565 non-MODY individuals 
having a high combined variant score with OR ≥ 3, the contribution of rare variant 
score was higher at the higher end of the combined variant score. c, Individuals 

with monogenic diabetes (n = 72) had an earlier age of diagnosis, lower BMI z 
score and lower log10(C-peptide) level compared to cases without MODY variants 
(n = 2,933). The difference in means between the two groups was tested using a 
generalized linear model. Box-and-whisker plots represent the following: line, 
median; box, IQR; whiskers, 1.5 × IQR. d, In linear regression analysis, rare variant 
score was associated with earlier age at diagnosis and common variant score was 
associated with higher log10(C-peptide) level even after excluding MODY cases 
(n = 2,933). Error bars indicate 95% confidence interval.
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population stratification probably persisted between cases and control 
participants, particularly for rare variants21. Third, our comparisons 
between youth-onset and adult-onset T2D risk factors relied on the 
larger AMP-T2D-GENES study that shared control participants with 
our study, requiring extensive simulations and analytical calculations 
to control for sample overlap, winner’s curse in each study, and differ-
ence in sample sizes (Methods). Our conclusions, although consistent 
across numerous sensitivity analyses (Methods), are most robust when 
stated qualitatively.

We conclude that clinically diagnosed youth-onset T2D is influ-
enced by—in order of importance—common variants, rare variants, 
and monogenic variants. Youth-onset T2D is consistent with models 
of an ‘extreme’ presentation of T2D (ref. 22) enriched for risk factors of 
all frequencies: to an extent that study of roughly 3,000 youth-onset 
participants produced stronger associations than that of roughly 
20,000 adult-onset participants6. Rare variant risk factors show the 
strongest relative enrichment, but in absolute terms common variant 
risk factors still explain the most disease heritability. At the population 
level, youth-onset T2D therefore appears to share genetic features of 
both a common and rare disease.

These risk factors overlap with those for both adult-onset T2D and 
monogenic diabetes but notably not all forms of diabetes, including 
lipodystrophies or type 1 diabetes. They lie within multiple biological 
pathways, contributing to (at minimum) β-cell development, insulin 
secretion and obesity-related insulin resistance, indicating that obesity 
and impaired β-cell function both are large pathophysiological factors 
in youth-onset T2D. Within these pathways, we prioritized 11 genes as 
probably involved in youth-onset T2D, including three with no previ-
ous links to adult-onset T2D or monogenic diabetes. One of these 11 
genes, SLC30A8, had a larger protective effect than was observed for 
adult-onset T2D, contrasting with the usual model in which early-onset 
disease cases are due mostly to high-effect risk-increasing variants.

Most intriguingly, the phenotype of youth-onset diabetes (age of 
onset, BMI and C-peptide level) seems to differ depending on whether 
genetic risk is due primarily to monogenic variants, common variants 
or rare variants. These results indicate that clinical heterogeneity may 
be due not only to the pathways in which genetic risk factors lie (that 
is, insulin secretion versus insulin resistance) but also to the frequency 
spectrum of genetic risk factors within an individual: a result potentially 
consistent with models of common disease caused by both ‘core’ and 
‘peripheral’ genes23. There are no clear dividing lines to classify indi-
viduals into different subtypes on the basis of risk variant frequency, 
and the clinical relevance of causal variant frequency is probably far 
less than that of patient clustering on the basis of observed pheno-
types10 or genetic disease mechanism24, but this genetic model for 
youth-onset T2D may help to better understand and categorize not 
only youth-onset but adult-onset and monogenic diabetes as well. 
More broadly, it is likely that other diseases may have ‘intermediate’ 
phenotypes25 whose analysis—by combining the strengths of rare and 
common disease analyses—may help illuminate the probably blurred 
line between phenotypically related disease forms.

Methods
Study participants
ProDiGY is a collaborative effort to understand the genetic pre-
disposition of youth-onset T2D using multi-ethnic diabetes cases 
from SEARCH, TODAY and the TODAY Genetics study as previously 
described4,9. In brief, SEARCH is a longitudinal observation study 
on youth-onset diabetes in the United States (diagnosed at under 
20 years of age) initiated in 2000 (ref. 26). The TODAY study is a rand-
omized clinical trial that enroled participants with T2D age 10–17 years 
between 2004 and 2009 (ref. 27). Participants were diagnosed with 
T2D before 18 years of age; had BMI ≥ 85th percentile for age, sex and 
height; and did not have evidence of type 1 diabetes (negative of pan-
creatic islet autoantibodies and positive for C-peptide level greater 

than 0.6 ng ml−1). The TODAY Genetics study is ancillary to the TODAY 
clinical trial and enroled additional cases with similar criteria to the 
TODAY study.

In the current study, we investigated a total of 3,650 individu-
als with youth-onset T2D (553 participants from SEARCH, 526 from 
TODAY and 2,571 from the TODAY Genetics study). Participants with 
confirmed MODY and those suspected to have MODY on the basis of 
clinical judgement (that is, autoantibody negative and not overweight 
or obese) at study enrolment were excluded. Non-diabetic adult control 
samples were derived from the previously published6 AMP-T2D-GENES 
whole-exome sequence analysis, which involved 29,791 T2D cases and 
24,440 control participants from five major ancestries. Criteria for 
inclusion as non-diabetic control participants were study-specific 
and were described previously6. After matching cases and control 
participants on the basis of their genetic background as described 
below, there were 3,005 participants in total with youth-onset T2D and 
9,777 control participants available for genetic association testing. 
The effective sample size of this study, defined as 4 × ncases × ncontrols/
(ncases + ncontrols), was 9,194. In the case group, BMI was available in 881 
participants whereas fasting C-peptide and age at diagnosis was avail-
able for 2,960 and 3,005 participants, respectively.

Whole-exome sequence data generation
ProDiGY whole-exome sequencing data were generated as part of a 
previously published study and therefore used identical variant call-
ing, quality control procedures and variant annotation procedures 
as described previously6. In brief, genomic DNA was extracted form 
peripheral leucocytes and was sheared, ligated with Illumina barcoded 
sequence adaptors and amplified. Whole-exome in-solution hybrid 
capture was done with the Illumina Rapid Capture Exome enrichment 
kit (target region size 38 Mb). The enriched libraries were quantified, 
normalized and subjected to massive parallel sequencing using the 
HiSeq 4000 Sequencing system. Sequencing reads were aligned to the 
human genome build hg19 using the Picard (https://broadinstitute.
github.io/picard/), Burrows–Wheeler Alignment28 and Genome Analy-
sis Toolkit29 software. We excluded duplicate or sex-discordant samples 
on the basis of identity-by-descent analysis, as well as lower call rate 
samples in any pair with an identity-by-descent value greater than 0.3.

Matching external control participants
For matching ProDiGY samples to external control participants, we 
first used genetic principal components of 5,496 linkage disequilib-
rium pruned autosomal variants to cluster all case and control sam-
ples into ancestry groups. Clustering was performed using MClust 
Gaussian model fitting as implemented in the SVDFunctions package 
(https://github.com/alexloboda/SVDFunctions). We then applied a 
singular-value decomposition (SVD)-based method11 to find the best 
set of control participant-matching cases within each ancestry group. 
Specifically, left singular vectors of the case genotype matrix were used 
to compute the estimated residual norm for every prospective control 
and generate a ranking of the degree to which they represented cases 
within their ancestry group11. For every control residual vector norm 
threshold, an association test (between cases and controls above the 
threshold) was performed and a genomic inflation factor was esti-
mated11. The largest control set that provided a genomic inflation factor 
less than 2.0 and control sample size of more than 500 were chosen 
for each ancestry cluster using the selectControls() function in the 
SVDFunctions package. There was a total of seven clusters (Extended 
Data Fig. 1) that had genomic inflation factors between 1.03 and 1.75, 
and the final genomic inflation factor after meta-analysis was 1.15.

Variant annotation
We annotated variants using the ENSEMBL VEP (v.87)30. Annotations 
were generated for all ENSEMBL transcripts, using the –flag-pick allele 
option to designate a ‘best guess’ annotation to each variant on the 
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basis of a set of ordered criteria for transcripts31: transcript support 
level (that is, supported by mRNA), biotype (that is, protein_coding), 
APPRIS isoform annotation (that is, principal), the deleteriousness of 
annotation (that is, preference given to transcripts with higher impact 
annotations), consensus coding sequence database status of the tran-
script32 (that is, a high-quality transcript set) and canonical status of 
the transcript and transcript length (that is, longer is preferred). We 
used the VEP LofTee (https://github.com/konradjk/loftee) and dbNSFP 
(v.3.2)33 plugins to yield additional bioinformatic predictions of vari-
ant deleteriousness. From the dbNSFP plugin, we extracted annota-
tions from 15 distinct bioinformatic algorithms along with the mCAP 
algorithm34. Since these annotations were not transcript specific, we 
allocated them to all transcripts for the sake of downstream analysis. 
All single-variant analyses described in the paper use the ‘best guess’ 
annotation for each variant.

Statistical analysis and reproducibility
To investigate genetic risk factors for youth-onset T2D, we conducted 
a series of analyses. These included single-variant and gene-level rare 
variant association studies, as detailed below. Additionally, we carried 
out gene-set enrichment analysis, examined LVE by these variants and 
analysed the individual-level genetic risk on the basis of common and 
rare variants also as described below.

Single-variant association analysis
We performed single-variant association tests using Firth’s penalized 
logistic regression as implemented in Hail v.0.2.43 (https://github.
com/hail-is/hail/releases/tag/0.2.43). Association testing was done 
for cases and matched control participants in each of the seven ances-
try clusters, adjusting for genetic principal components (PC1–PC10) 
significantly associated with youth-onset T2D after Bonferroni cor-
rection (P < 0.005). For each cluster, we performed additional variant 
quality control by including only biallelic autosomal variants with (1) 
P ≥ 0.0001 for variant differential missingness between cases and con-
trol participants, (2) P ≥ 0.0001 for Hardy–Weinberg equilibrium, (3) 
(alternate allele genotype quality score (GQ) ≥ 95, call rate (CR) ≥ 0.95) 
or (alternate allele GQ < 95, CR ≥ 0.99, P ≥ 0.001 for variant differential 
missingness between cases and control participants, P ≥ 0.001 for 
Hardy–Weinberg equilibrium), (4) variant read depth greater than 
or equal to 50, or (variant read depth less than 50, P ≥ 0.001 for vari-
ant differential missingness between cases and control participants, 
P ≥ 0.001 for Hardy–Weinberg equilibrium, P ≥ 0.001 for Hardy–Wein-
berg equilibrium in cases, P ≥ 0.001 for Hardy–Weinberg equilibrium 
in controls), (5) Firth P ≥ 0.05 × P value for Fisher’s exact test and (6) 
a passing random forest filter of gnomAD exomes and genomes. We 
confirmed that these filters resulted in a well-calibrated test statis-
tic for each cluster without significant inflation through inspection 
of quantile–quantile plots (Extended Data Fig. 2). Among the vari-
ants remaining within each cluster, we then conducted a seven-way 
inverse-variance weighted meta-analysis using METAL35 (some vari-
ants were present in fewer than seven clusters due to quality control 
exclusions). Exome-wide significance for coding variants13 was set as 
P < 4.3 × 10−7 and genome-wide significance for non-coding variants 
was set as P < 5.0 × 10−8. For downstream tests of concordance between 
youth-onset T2D effect sizes in ProDiGY and adult-onset T2D effect 
sizes in AMP-T2D-GENES, a binomial test was performed.

Gene-level association analysis
Gene-level association analysis was conducted as previously descri-
bed with minor modifications6. For each gene, we grouped variants 
into seven nested ‘masks’6,36 on the basis of 16 different bioinformatic 
predictions of variant deleteriousness33. These seven masks were 
(from most stringent to least stringent): (1) LOFTEE (LOFTEE high 
confidence), (2) 16 out of 16 (pass 11 out of 11 criteria, VEST3 > 90%, 
CADD > 90%, DANN > 90%, Eigen-raw > 90% and Eigen-principal 

component-raw > 90%), (3) 11 out of 11 (pass 5 out of 5 but fail 16 out 
of 16 criteria, FATHMM pred = D, FATHMM-MKL pre = D, PROVEAN 
pred = D, metaSVM pred = D, MetaLR = D and MCAP > 0.025), (4) 5 out 
of 5 (fail 11 out of 11 criteria, PolyPhen HDIV pred = D, PolyPhen HVAR 
pred = D, SIFT pred = del, LFT pred = D and MutTaster pred = D/A), (5) 
5 out of 5 + LOFTEE LC 1% (pass 5 out of 5 criteria or VEP Impact = HIGH, 
LOFTEE low confidence and Max MAF < 1%), (6) 1 out of 5 1% (fail 5 out 
of 5 criteria, VEP Impact = MOD and Max MAF < 1%) and (7) 0 out of 5 1% 
(fail 1 out of 5 criteria, VEP Impact = MOD and Max MAF < 1%). For each 
gene and mask, up to three groupings of alleles were generated on the 
basis of different transcript sets of the gene. The variants included in 
each unique mask for the top 20 gene-level associations’ best guess 
transcript are displayed in Supplementary Table 4.

Before running gene-level association tests, we applied the same 
variant quality control filters as for single-variant association analysis. 
For each mask, we then conducted burden analyses (in which an indi-
vidual’s phenotype is regressed on the number of variants in the mask 
carried by the individual) using Firth’s penalized logistic regression, as 
implemented in EPACTS v.3.2.4 (https://genome.sph.umich.edu/wiki/
EPACTS). Regressions were adjusted for ten principal components and 
seven ancestry clusters. The seven P values for each gene mask and up 
to three P values for transcript sets were consolidated by a minimum  
P value test, in which a gene was assigned its smallest P value across masks 
after correction for the effective number of independent masks (as esti-
mated by the gene-specific correlation of variants across masks6,12). As 
this procedure produced one P value per gene, the gene-level signifi-
cance threshold was set to P < 2.6 × 10−6 (P = 0.05/19,020 genes).

Accounting for sample size differences, control sample 
overlap and winner’s curse in effect size comparisons
Many of our analyses compared properties of associations across differ-
ent datasets (ProDiGY versus AMP-T2D-GENES) and across frequency 
ranges (rare versus common). These properties included the propor-
tion of associations in one study observed in the other, the consistency 
of effect size directions, the relative effect size magnitudes and the LVE. 
We applied a series of analytical and simulation-based adjustments for 
the potential confounders as below.

For comparisons of variant effect sizes between ProDiGY and 
AMP-T2D-GENES, we adjusted for control sample overlap and winner’s 
curse. We first simulated 1,000 replicates of two association studies 
(under the null model): one with the same number of cases and control 
participants as ProDiGY, one with the same number of cases and control 
participants as AMP-T2D-GENES and with the studies sharing the same 
number of control participants as the empirical studies. The number of 
variants and their frequencies were matched to the number empirically 
observed for ProDiGY. Genotypes were simulated as binomial random 
variables, cases had phenotypes set to 0 and controls had phenotypes 
set to one, and effect sizes and P values were generated via linear regres-
sion. We used the results of these studies to calculate expected values 
(and standard errors) for two quantities of interest in our analyses: 
effect size concordances between the studies, and fraction of variants 
that had larger effect sizes in one study as opposed to the other.

For analyses in which variants were ascertained on the basis of 
P values in either AMP-T2D-GENES or ProDiGY, we corrected for win-
ner’s curse in these calculations by re-conducting these simulations 
for sets of variants chosen on the basis of either (1) their rank in the  
P value distribution for one of the two studies or (2) a P value thresh-
old. This analysis accounted for differences in sample size (and hence 
winner’s curse) between the studies, depending on whether we drew 
simulated variants on the basis of their P values in the larger or smaller 
simulated study.

For analyses in which variants were not ascertained on the basis of 
their association results, and therefore not subject to winner’s curse, 
we simply drew a set at random from the simulations. For example, the 
‘known diabetes gene set‘ was curated on the basis of various sources 
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including genes causing monogenic diabetes, genes for T2D drug 
targets, genes identified in GWAS to harbour causal coding variants, 
genes of monogenic obesity and mouse diabetes genes as described 
in Supplementary Table 8.

Accounting for winner’s curse for other analyses
For all other analyses in which we analysed variants selected on the basis 
of their observed P values in ProDiGY or AMP-T2D-GENES, we applied 
a previously developed winner’s curse correction to reduce the bias in 
effect size estimates37. Specifically, the likelihood of the observed effect 
size, conditional on achieving a given association threshold, is given by:

P (βobs|βtrue) =
1
s
ϕ ( βobs−βtrue

s
)

Φ ( βtrue

s
− c) +Φ ( −βtrue

s
− c)

1 (|||
βobs
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||| ≥ c)

where βobs is the observed effect size, βtrue is the winner’s curse cor-
rected effect size (which we used in our downstream analyses), c is the 
z score threshold (corresponding to the P value threshold) used to 
ascertain variants for the analysis, s is the standard error of βobs, ϕ is 
the normal density distribution and Φ is the normal cumulative distri-
bution. We obtained βtrue estimates using maximum likelihood 
(as implemented by numerical optimization). We obtained confidence 
interval estimates, under the asymptotic chi-squared approximation 
for the log-likelihood, by solving for the log-likelihood values that 
yielded the appropriate chi-squared distribution quantiles.

When calculating properties of a set of variants subject to winner’s 
curse (for example, total LVE explained), we obtained confidence 
intervals by sampling from the distributions of βobs. Specifically, for 
each sample, we drew a value of β̃obs for each variant by sampling from 
a chi-square distribution and then numerically finding the value of β̃obs 
with likelihood equal to the sampled value. We then calculated the 
property of interest (for example, LVE) using the sampled β̃obs values. 
We repeated this process 1,000 times and used the results to obtain 
desired confidence intervals.

Gene-set enrichment analysis and gene-set classification
We conducted two types of enrichment analysis: one that evaluated 
the overlap of the set with the strongest gene-level associations, and 
the other that evaluated the entire set of gene-level P values in the set. 
For the first analysis, we analysed 5,071 Human Phenotype Ontology14 
database gene sets as specified in MSigDB16. We used a hypergeometric 
test, as implemented in gene-set enrichment analysis (https://www. 
gsea-msigdb.org/gsea/index.jsp)38, to evaluate the overlap of each 
gene set with the top 50 genes from our ProDiGY analysis (that is, 
the 50 genes with the lowest P values according to the minimum  
P value test). We considered a gene set as significant if it achieved false 
discovery rate q value less than 0.01 on the basis of the Benjamini and 
Hochberg method.

Out of the 38 gene sets that showed significant over-representation 
of the top 50 gene-level association signals, 25 gene sets were defined by 
Human Phenotype Ontology terms including ‘diabetes’, ‘hyperglycae-
mia’, ‘glucose’, ‘HbA1c’, ‘insulin’, ‘pancreas’, ‘c peptide’, ‘overweight’ and 
‘waist’. We considered these to be involved in metabolic phenotypes 
of T2D and further subdivided them into clusters of ‘β-cell function’, 
‘obesity’ and ‘other T2D’ by independent analysis of two investigators. 
In cases of any conflicts, consensus was reached through discussion 
and agreement.

We subjected these 25 gene sets, as well as six others (‘Monogenic 
OMIM + neonatal diabetes’, ‘Monogenic primary’, ‘Monogenic sec-
ondary’, ‘Monogenic obesity’, ‘Lipodystrophy’ and ‘Type 1 diabetes’) 
described in Supplementary Table 10, to a second gene-set analysis. 
For each set we selected 50-fold matched control genes with similar 
numbers and frequencies of variants within them (following a previ-
ously described procedure6). We then performed a one-sided Wilcoxon 

rank-sum test to assess whether genes in the curated gene set had 
significantly lower P values (as calculated by the minimum P value 
test) than the matched control genes. When gene sets were combined 
into ‘obesity’, ‘β-cell function’, ‘other’ and ‘overall’, we selected fivefold 
matched control genes. Fold enrichment represents the fraction of 
genes in the gene set that are within the top 10% of associations with 
youth-onset T2D when compared to background genes.

LVE analysis
For all calculations of genetic LVE (for a variant or for a gene), we used 
a previously reported formula that incorporates three genotypes (AA, 
Aa, aa), their population frequencies and their relative risks (1, RR1 and 
RR2)39. We calculated values for this formula on the basis of observed 
allele frequency (MAF for single-variant association and cumulative 
allele frequency for gene-level association) and observed variant or 
gene effect size (which we converted to relative risk assuming a diabetes 
prevalence of 8% under an additive genetic model); the extension from 
variants to genes requires some approximations and assumptions 
(similar to those of a burden test) and has been previously applied and 
described in detail6.

To compare rare and common variant genetic architectures within 
ProDiGY, we performed several LVE calculations for both rare variant 
gene-level associations and common variants. Our primary analysis 
was to compare LVE explained by ten gene-level associations of tier 3 
genes (MC4R, HNF1A, GCK, SLC30A8, ABCC8, PAM, RFX6, GHRL, HESX1, 
SIX3, excluding ATXN2L as its association was driven by a common 
variant) to the ten strongest validated common variant associations 
of adult-onset T2D (rs2237897, rs7903146, rs150111048, rs1421085, 
rs4929965, rs11709077, rs10882101, rs1708302, rs738408, rs10937721). 
As a secondary sensitivity analysis, we conducted additional compari-
sons using different sets of associations: (1) three gene-level associa-
tions and six common variant associations that reached exome-wide 
significance, (2) the top 25 gene-level associations in ProDiGY and 
the top 25 common variant associations in ProDiGY and (3) the 38 
gene-level associations of tier 4 genes and the top 38 common variant 
associations in AMP-T2D-GENES.

We also compared the LVE estimates for youth-onset T2D obtained 
using ProDiGY to those for adult-onset T2D using AMP-T2D-GENES, 
focusing on rare and common variants. For tier 3 (n = 10) and tier 4 
(n = 38) genes and common variants, the identical genes and vari-
ants used in ProDiGY were used to calculate LVE for adult-onset T2D 
(AMP-T2D-GENES). For exome-wide significant genes and variants, 
as well as the top 25 genes and variants, the corresponding genes and 
variants that met the criteria (exome-wide significant or top 25) in 
adult-onset T2D were used to compute LVE. These exome-wide or top 
25 genes and variants underwent winner’s curse correction for both 
ProDiGY and AMP-T2D-GENES, as detailed below.

These comparisons were subject to two sources of bias and con-
founding. First, using observed variant or gene effect size estimates 
upwardly biases LVE calculations, due to uncertainty in effect size 
estimation. This is particularly problematic when comparing variants 
of different frequencies (which produce standard errors of different 
magnitudes) and when comparing variants or genes across studies (for 
example, ProDiGY and AMP-T2D-GENES) that have substantially differ-
ent sample sizes. A second source of bias is winner’s curse: many of our 
analysed variant or gene sets were selected on the basis of achieving 
a significant association in either ProDiGY or AMP-T2D-GENES. This 
upwardly biases LVE estimates to a degree that is influenced by both 
the power of the study and the ascertainment criteria for the set.

We therefore first extended our LVE formula to account for uncer-
tainty in the estimate of effect size for a variant or gene (which upwardly 
biases LVE estimates). As has been shown previously40, for quantitative 
traits the observed variance explained is approximately equal to the 
true variance explained plus the square of the standard error in the 
effect size estimate. We therefore calculated LVE by (1) calculating 
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an upwardly biased LVE estimate using the estimated variant or gene 
effect size; (2) calculating an LVE correction term using the square of 
the estimated variant or gene standard error and (3) subtracting the 
correction term from the upwardly biased estimate. We verified using 
simulations that this calculation produced unbiased LVE estimates 
under the null.

For gene-level LVE estimation, we used effect size estimates from 
the mask achieving the lowest P value. We used standard errors cor-
rected for the effective number of masks: we applied our minimum  
P value procedure to convert the original mask P value to a corrected  
P value, we converted this P value to a z score under the normal distri-
bution, and we then computed the standard error that would produce 
this z score given the mask-level effect size.

We finally ensured that we corrected all LVE estimates for winner’s 
curse by applying our winner’s curse correction (above) to the effect 
size estimates for variants or genes. This only affected variant or gene 
sets ascertained on the basis of their observed P values or ranks within 
ProDiGY (or AMP-T2D-GENES); sets ascertained by other criteria were 
not subjected to winner’s curse correction.

Common and rare variant scores
To investigate individual-level genetic heterogeneity within ProDiGY, 
we sought to compare the phenotypes of cases ‘due predominantly 
to common variants’ to those of cases ‘due predominantly to rare 
variants’. Ideally, we would identify such individuals by constructing 
youth-onset T2D common variant and rare variant polygenic scores in 
an independent cohort, and then applying them to ProDiGY. However, 
no such independent cohort exists. Therefore, we approximated these 
by defining rare and common variant ‘contribution scores’ using asso-
ciation statistics within ProDiGY, correcting for winner’s curse in situa-
tions when variants were ascertained on the basis of ProDiGY P values.

If we were to use these scores to predict risk of youth-onset T2D 
in ProDiGY, we would be subject to circularity and overfitting due to 
overlapping training and test data. However, as we only evaluated 
phenotypes orthogonal to T2D (for example, C-peptide, age of diag-
nosis, BMI), we reasoned that overfitting would be less of a concern 
(if any). Nonetheless, we use the term ‘contribution score’ rather than 
‘polygenic risk score’ to avoid any implication that we are attempting 
to apply these in the traditional risk prediction setting.

For the common variant contribution score, we used the same 
method as previously described for polygenic score4. Briefly, we con-
structed a common variant score for each ancestry using risk alleles 
and their effect sizes from previously reported T2D GWAS41 that did not 
include samples from ProDiGY and standardized the scores to z scores. 
These z scores were converted to β values on the basis of the effect size 
in each ancestry4. The β values for a one standard deviation increase in 
common variant score was 0.89, 0.37 and 0.91 for Europeans, African 
Americans and Latinos, respectively4. As these scores were constructed 
from data independent to ProDiGY, they are unbiased ‘polygenic scores’ 
for ProDiGY samples rather than simply ‘contribution scores’.

For the rare variant contribution score, we used 46 genes that met 
two criteria: (1) they were included in at least one of the 25 significantly 
enriched gene sets and were related to metabolic phenotypes of diabe-
tes, and (2) had at least nominally significant gene-level association with 
youth-onset T2D (P < 0.05). We then applied a previous procedure42 for 
constructing a polygenic score from variants in each mask, applying 
the ‘unique’ fitting procedure; briefly, each variant is assigned a weight 
equal to the estimated effect size of the specific mask that contains 
it, with the effect size computed after removing variants in the mask 
that were present in more stringent masks. As the genes in this score 
were selected on the basis of ProDiGY P values, we applied a winner’s 
curse correction (above) to their effect sizes before constructing the 
score. Combined rare and common variant contribution scores were 
generated by adding the common variant score and rare variant score 
for each sample.

We conducted two analyses using these scores. First, we com-
pared the relative number of samples that had common, rare and 
combined scores above OR ≥ 3. Second, we tested each rare and com-
mon score for association with age at diabetes diagnosis, BMI z score 
and log10(C-peptide) level in ProDiGY cases using linear regression.

Ethics statement
All clinical research was approved by the institutional review board of 
the participating cohort and written informed consent was obtained 
from each study participant (and their parent or guardian if the par-
ticipant was under 18 years of age). All clinical investigations were 
conducted according to the Declaration of Helsinki.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data and phenotypes for this study are available via the data-
base of Genotypes and Phenotypes (dbGAP accession IDs phs001533 
and phs001511) and the corresponding author upon reasonable 
request. Most of the raw data are presented in the corresponding 
Supplementary Tables.

Code availability
Scripts for (1) calculating LVE, (2) correcting β for winner’s curse, Wilcoxon  
rank-sum test for gene sets and simulating sample overlap are available 
on github (https://github.com/Soo-Heon/ProDiGY/).
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Extended Data Fig. 1 | Principle components based matching of ancestry. Applying principal component analysis (PCs) and a singular-value decomposition-based 
method to match external controls with ProDiGY cases yielded seven clusters from three different ancestries. AFR, African; EUR, European; HIS, Hispanic.
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Extended Data Fig. 2 | Quantile-quantile plot of the single variant association 
test. Quantile-quantile plot showing the distribution of the observed P values 
from the single variant association test against the expected distribution under 
the null hypothesis for all single nucleotide variants (A) and for variants with a 

minor allele count of 10 or more (B). The grey zone indicates the 95% confidence 
interval. GC, genomic inflation factor; MAC, minor allele count; SNV, single 
nucleotide variant.
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Extended Data Fig. 3 | Quantile-quantile plot of the gene-level rare coding variant association test. Quantile-quantile plot showing the distribution of the 
observed P values from the gene-level rare coding variant association test against the expected distribution under the null hypothesis. The grey zone indicates  
the 95% confidence interval. GC, genomic inflation factor.
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Extended Data Fig. 4 | Quantile-quantile plot of the gene-level association 
test using synonymous variants. Quantile-quantile plot showing the 
distribution of the observed P values from the gene-level association test 

using synonymous variants against the expected distribution under the null 
hypothesis. The grey zone indicates the 95% confidence interval. GC, genomic 
inflation factor.
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Extended Data Fig. 5 | Gene-level analysis of MC4R. Shown is a dissection of 
the gene-level associations for MC4R. (A) Mask-level Firth’s logistic regression 
analysis results for all variants in the mask are shown in the left column (“Total”) 
and for variants unique to the mask are shown in the right column (“Unique”). The 
details of the mask definition is described in the Methods. (B) A graphical plot of 

variants observed in MC4R within the 1/5 1% mask. Variants are coloured blue  
(if individual OR < 1) or red (OR > 1). Case (red) and control (blue) frequencies  
are shown below for each variant. # Var, number of variants in the association 
test; CAF, combined allele frequency; OR, odds ratio.
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Extended Data Fig. 6 | Gene-level analysis of HNF1A. Shown is a dissection of 
the gene-level associations for HNF1A. (A) Mask-level Firth’s logistic regression 
analysis results for all variants in the mask are shown in the left column (“Total”) 
and for variants unique to the mask are shown in the right column (“Unique”). The 
details of the mask definition is described in the Methods. (B) A graphical plot of 

variants observed in HNF1A within the 1/5 1% mask. Variants are coloured blue  
(if individual OR < 1) or red (OR > 1). Case (red) and control (blue) frequencies are 
shown below for each variant. # Var, number of variants in the association test; 
CAF, combined allele frequency; OR, odds ratio.
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Extended Data Fig. 7 | Gene-level analysis of ATXN2L. Shown is a dissection of 
the gene-level associations for ATXN2L. (A) Mask-level Firth’s logistic regression 
analysis results for all variants in the mask are shown in the left column (“Total”) 
and for variants unique to the mask are shown in the right column (“Unique”). The 
details of the mask definition is described in the Methods. (B) A graphical plot of 

variants observed in ATXN2L within the 1/5 1% mask. Variants are colored blue  
(if individual OR < 1) or red (OR > 1). Case (red) and control (blue) frequencies are 
shown below for each variant. # Var, number of variants in the association test; 
CAF, combined allele frequency; OR, odds ratio.
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Extended Data Fig. 8 | Number of top genes of youth-onset T2D and their 
fraction of nominally significant associations in AMP-T2D-GENES. To 
determine the cutoff for the number of top genes to be included in the gene set 
enrichment analysis, we examined the proportion of genes associated with T2D 

in the AMP-T2D-GENES database that reached nominal significance. The top 50 
genes from our gene-level association study of youth-onset T2D demonstrated 
an enrichment of established T2D association signals.
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