Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Big data and personalized nutrition: the key evidence gaps

The field of personalized nutrition hypothesizes that ‘big data’ — biological, behavioural, social and environmental — can be leveraged to make more precise and effective dietary recommendations to individuals for improving health outcomes, compared to generic dietary advice. This article describes the research questions that need to be answered to understand whether personalized nutrition brings additional clinical utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout


  1. Ordovas, J. M. et al. Br. Med. J. 361, bmj.k2173 (2018).

    Article  Google Scholar 

  2. King’s College London News Centre. Landmark Study Reveals Link Between Gut Microbes, Diet and Illnesses (2021).

  3. Berry, S. E. et al. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeevi, D. et al. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Popp, C. J. et al. JAMA Netw. Open 5, e2233760 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aldubayan, M. A. et al. Clin. Nutr. 41, 1834–1844 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Höchsmann, C. et al. Nat. Commun. 14, 6321 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ben-Yacov, O. et al. Diabetes Care 44, 1980–1991 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Kharmats, A. Y. et al. Am. J. Clin. Nutr. 118, 443–451 (2023).

    Article  PubMed  Google Scholar 

  10. ZOE METHOD study: comparing personalized vs. generalized nutrition guidelines. (2022).

  11. de Hoogh, I. M. et al. Nutrients 13, 1763 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shamanna, P. et al. Sci. Rep. 11, 14892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anwar, M. A. et al. Healthc. Manag. Forum 33, 126–134 (2020).

    Article  Google Scholar 

  14. Celis-Morales, C. et al. Int. J. Epidemiol. 46, 578–588 (2017).

    PubMed  Google Scholar 

  15. Hillesheim, E. et al. Mol. Nutr. Food Res. 67, 2200620 (2023).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nicola Guess.

Ethics declarations

Competing interests

N.G. has received payment for consultancy services for digital dietary interventions and products for Diet Doctor, Fixing Dad (a low-carbohydrate app), Weight Watchers, Oviva and Babylon Health.

Peer review

Peer review information

Nature Metabolism thanks Anders Rosengren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guess, N. Big data and personalized nutrition: the key evidence gaps. Nat Metab (2024).

Download citation

  • Published:

  • DOI:


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research