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Molecular control of endurance training 
adaptation in male mouse skeletal muscle

Regula Furrer    1, Barbara Heim    1,3, Svenia Schmid1,3, Sedat Dilbaz    1, 
Volkan Adak    1, Karl J. V. Nordström2,4, Danilo Ritz1, Stefan A. Steurer1, 
Jörn Walter    2 & Christoph Handschin    1 

Skeletal muscle has an enormous plastic potential to adapt to various 
external and internal perturbations. Although morphological changes 
in endurance-trained muscles are well described, the molecular 
underpinnings of training adaptation are poorly understood. We therefore 
aimed to elucidate the molecular signature of muscles of trained male 
mice and unravel the training status-dependent responses to an acute 
bout of exercise. Our results reveal that, even though at baseline an 
unexpectedly low number of genes define the trained muscle, training status 
substantially affects the transcriptional response to an acute challenge, 
both quantitatively and qualitatively, in part associated with epigenetic 
modifications. Finally, transiently activated factors such as the peroxisome 
proliferator-activated receptor-γ coactivator 1α are indispensable for 
normal training adaptation. Together, these results provide a molecular 
framework of the temporal and training status-dependent exercise response 
that underpins muscle plasticity in training.

Skeletal muscle exerts pleiotropic functions, from thermoregula-
tion to endocrine signalling by myokines and myometabolites, and 
detoxification of endogenous compounds, for example, kynurenines 
or aberrantly high levels of ketone bodies1–5. However, the main task 
of skeletal muscle is the generation of force for different types of con-
tractile activities, including strength, endurance, fine motor control, 
posture and breathing. Skeletal muscle thus exhibits not only a broad 
morphological and functional specification, but also a remarkably 
adaptive plasticity to react to perturbations4. Remodelling of skeletal 
muscle requires interventions that disrupt homeostasis, to which 
muscle will progressively adapt only if repeated over time3,4. Mor-
phologically, endurance training adaptations include mitochondrial 
expansion, vascularization and energy substrate storage4. In light of 
the powerful health benefits of exercise6,7, it is, however, surprising 
that the molecular underpinnings of muscle plasticity in exercise are 
still only rudimentarily understood4. In particular, the mechanistic 
framework that links the perturbations evoked by individual exercise 
bouts to long-term training adaptations are largely unknown3,4. In 
addition, it is unclear how the training status affects the molecular 

response to an acute bout of exercise and how changes in gene expres-
sion are ultimately linked to persistent modulation of protein levels, 
organelle function and tissue plasticity. The ‘repeated bout effect’ is 
based on the observation of reduced muscle damage and soreness in 
trained compared with untrained muscle8,9. Accordingly, a diminished 
amplitude in the expression of a number of genes in repeated exercise 
bouts has been reported, at least with a constant training load10,11, nev-
ertheless presumably resulting in steady accumulation of transcripts, 
proteins and performance over time12–17. Such an encompassing model 
of transcriptional attenuation in training adaptation is, however, con-
tradicted by different observations, for example, a broad-ranging 
qualitative and quantitative specification is implied by the vastly 
different epigenetic modifications in acute and chronic exercise set-
tings17–19. Accordingly, the expression of many genes does not follow 
an attenuating pattern, but rather shows an exacerbated response in 
trained muscle, as described for the peroxisome proliferator-activated 
receptor-γ coactivator 1α (PGC-1α; gene symbol Ppargc1a)20. Collec-
tively, little knowledge about the chronic, persistent mechanistic 
network in training adaptation exists.
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(Extended Data Fig. 1f and Supplementary Table 5). These genes are 
increased at the 8-h timepoint, suggesting that the induction of mito-
chondrial genes occurs several hours post-exercise and might even 
further increase at later timepoints. Intriguingly, the acutely regulated 
genes only poorly overlapped with persistent transcriptomic changes 
in trained muscle, because only 21% (57 of the 276 in total, with 44 of 107 
up- and 13 of 169 downregulated) of the genes modulated in an unper-
turbed trained muscle are also regulated acutely in untrained muscle 
(Fig. 1g,h and Extended Data Fig. 1g). In fact, some of the genes exhib-
ited the opposite regulation (Fig. 1h and Extended Data Fig. 1g), for 
example, reflected in transcripts related to inflammation (up acutely 
post-exercise, down in trained muscle).

Acute response to exercise is training status dependent
As the acute maximal exercise response in untrained muscle was not 
predictive of training adaptation, we next investigated the response 
of a trained muscle to an acute bout of maximal endurance exercise 
at the same four timepoints (Fig. 2a). Accordingly, mice that were 
trained for 4 weeks performed an exhaustive bout of treadmill run-
ning (Fig. 2a). Strikingly, the transcriptomic responses of untrained 
and trained muscle to an acute maximal endurance exercise bout 
were decisively different, qualitatively and quantitatively, the latter 
in terms of both amplitude (extent of change, that is, attenuated or 
exacerbated) and phase (temporal regulation, that is, induction of 
gene expression at different timepoints) (Fig. 2b,c). First, less than half 
of the upregulated genes overlapped between these two conditions 
and an even smaller proportion of the downregulated transcripts, 
of which a greater number were altered in the trained condition  
(Fig. 2c). Functionally, many of the acutely regulated genes in 
untrained muscle cluster with regulation of transcription and vari-
ous aspects of stress response, damage, axon guidance and extra-
cellular matrix (ECM) organization (Fig. 2d, Extended Data Fig. 2a 
and Supplementary Table 3). Strikingly, in regard to ECM remod-
elling and axon guidance, the functional prediction of the acute 
response of trained muscle was diametrically opposite to that of 
the untrained muscle (Fig. 2d,e, Extended Data Fig. 2a–d and Sup-
plementary Table 3). ISMARA confirmed the substantial regula-
tory diversification (Extended Data Fig. 3a–e and Supplementary  
Table 4). Although approximately 35–43% of the motifs are specific 
to the training status (Extended Data Fig. 3b), many of the common 
motifs (n = 77) show altered trajectories and/or amplitudes (Extended 
Data Fig. 3c–e). In fact, 18 of the 77 motifs in the overlap significantly 
differed in amplitude. Moreover, in an additional 22 of the 77 motifs, 
the activity profiles point in the opposite direction. For example, the 
Wrnip1_Mta3_Rcor1 motif activity is higher in untrained and lower in 
trained muscle and, based on the association with collagen formation, 
could contribute to the distinct patterns of ECM remodeling (Fig. 2f). 
Thus, of the 178 predicted transcription factor motif activities after 
an acute bout of maximal exercise (in untrained and trained), only 21%  
(37 out of 178 motifs) exhibited a shared direction and amplitude, implying  
a strong regulatory diversification between these two conditions.

Many of the predicted functions, including a modulation of 
ECM remodeling, axon guidance and inflammation, could originate 
from non-myocytes in muscle tissue. Therefore, we performed cel-
lular deconvolution of the bulk results with published single-cell 
RNA-sequencing (scRNA-seq) and single-nucleus RNA-sequencing 
(snRNA-seq) data of untrained muscle (Extended Data Fig. 4a)22,23. 
These analyses imply a surprisingly detailed specification of gene 
expression across different cell types (Extended Data Fig. 4b,c). For 
example, the cellular origin of ECM remodelling genes could mainly 
be fibroadipogenic progenitors in untrained muscle, complemented 
by tenocytes in trained muscle. This type of analysis is only predictive 
and cannot differentiate between changes in cell composition (that 
is, reduction in the number of tenocytes that could result in a relative 
downregulation of tenocyte-specific genes) or selective repression of 

To understand these fundamental aspects of muscle biology 
and plasticity, we therefore studied the acute maximal endurance 
exercise and chronic training response of mouse muscle in a system-
atic and comprehensive manner. Based on the interrogation of the 
molecular underpinnings of epigenetic, transcriptional, proteomic 
and phosphoproteomic changes, we provide a unique mechanistic 
framework of endurance training adaptations. The transcriptomic 
data of acute maximal exercise and chronic training are provided in the 
Myo-Transcriptome of Exercise database (Myo-TrEx: https://myo-trex.
scicore.unibas.ch).

Results
A surprisingly low number of genes define the trained muscle
To study differences between untrained and endurance-trained muscles 
(in the present study, muscle always refers to quadriceps), mice were 
exercised by treadmill running on 5 d per week for 1 h. After 4 weeks, 
a significant improvement in running performance was observed 
(Extended Data Fig. 1a). A proteomic analysis also indicated a sub-
stantial remodelling of skeletal muscle (Fig. 1a and Supplementary 
Table 1). For example, proteins involved in mitochondrial respira-
tion, lipid metabolism, oxygen transport or stress resilience are more 
abundant in trained than in untrained muscle (Fig. 1a,b, Extended Data 
Fig. 1b and Supplementary Table 2). In contrast, the levels of proteins 
linked to catabolic processes related to proteasomal degradation are 
mitigated by endurance training (Fig. 1a and Extended Data Fig. 1c), 
which, together with the induction of molecular chaperones, alludes 
to altered proteostasis. In contrast to the training-induced changes in 
protein abundance, training has very few effects on the steady-state 
phosphoproteome (differences in phosphorylation were observed in 
only 54 proteins). The corresponding proteins are mainly involved in 
cytoskeletal structure, sarcomere organization and muscle contrac-
tion, and are thus most probably linked to long-lasting alterations of 
contractility (Extended Data Fig. 1d and Supplementary Tables 1 and 
2). According to prevailing models, the proteomic changes are brought 
about by a persistent modulation of gene expression with repeated 
exercise bouts13. To test this, we assessed the transcriptomic landscape 
of the trained muscle. Intriguingly, <2% of the detected genes were 
significantly changed in a trained muscle, with most transcripts being 
downregulated (Fig. 1c). Collectively, these genes define long-term cel-
lular changes, for example, related to fibre-type switch, lipid metabolic 
processes or decreased inflammation (Fig. 1d and Supplementary Table 
3). In line with these observations, Integrated System for Motif Activity 
Response Analysis (ISMARA)21 revealed a modulation of the predicted 
activity of only 22 transcription factors, for example, higher activ-
ity of the Esrrb_Esrra and lower activity of the Rela_Rel_Nfkb1 motifs  
(Fig. 1e and Supplementary Table 4). The genes that are altered in a 
trained muscle show only a small overlap with proteomic changes, 
suggesting that the proteome of a trained muscle is only to a small 
extent maintained transcriptionally. It is interesting that the subset 
of proteins with corresponding gene expression changes are predomi-
nantly involved in the lipid metabolic process (Extended Data Fig. 1e 
and Supplementary Table 5). Thus, most of the proteins that define 
the long-term plasticity of a trained muscle are not directly linked to 
a corresponding persistent transcriptional response.

These unexpected results raised the question of whether perturba-
tions evoked by an acute maximal exercise bout activate transcriptional 
networks that encode the biological programmes observed in trained 
muscle. To test this hypothesis, untrained mice were exercised to 
exhaustion by treadmill running and the muscle transcriptome was 
assessed 0, 4, 6 and 8 h post-exhaustion. Similar to other studies, we 
found a large number of gene-regulatory events in this context of acute 
maximal exercise in untrained muscle, peaking 6 h post-exhaustion 
(Fig. 1f). A subset of these acute changes correlated with the accu-
mulation of proteins in a trained muscle. These proteins were mostly 
upregulated and predominantly involved in mitochondrial respiration 
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Fig. 1 | A low number of differentially expressed genes (DEGs) define a 
trained WT muscle. a, All functional annotation clusters of up- (orange) and 
downregulated (blue) proteins in trained muscle with an enrichment score >2. 
ROS, reactive oxygen species. b, Examples of proteins involved in the response 
to stress in sedentary untrained (light grey) and unperturbed trained (dark 
grey) muscle (box plots display the median and the 25th to 75th percentiles 
and whiskers indicate the minimal and maximal values). c, Number of genes 
differentially expressed in unperturbed trained muscle (cut-off: FDR < 0.05; 
log2(FC) ± 0.6). d, All functional annotation clusters of up- (orange) and 
downregulated (blue) genes in trained muscle with an enrichment score >2. 
e, Motifs of transcription factors from ISMARA that are among those with the 
highest and lowest activity. AU, arbitrary units. f, Number of genes after an acute 
bout of exhaustion exercise that are up- (orange) and downregulated (blue). 

g, Venn diagram of all genes that are changed in unperturbed trained muscle 
(orange is upregulated and blue downregulated) and those that are regulated 
after an acute bout of maximal exercise (light colour, dashed line). h, Heatmap 
of all genes differentially expressed in unperturbed trained muscle to visualize 
the overlap with acutely regulated genes using Euclidean distance hierarchical 
clustering for rows. The data are from five biological replicates and represent 
mean ± s.e.m. (if not otherwise indicated). Statistics of proteomics data were 
performed using empirical Bayes-moderated t-statistics as implemented in the 
R/Bioconductor limma package and for RNA-seq data with the CLC Genomics 
Workbench Software. Exact P values of proteomics data and z-scores of ISMARA 
data are displayed in Source data. The asterisk indicates difference to control 
(Ctrl; pre-exercise condition) if not otherwise indicated: in b, *P < 0.05, in e,  
*z-score > 1.96 (Extended Data Fig. 1 and Supplementary Tables 1–4).
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the specific genes in stable populations (that is, lower number of tran-
scripts per cell). However, regardless of the precise mechanism, such 
cell type-specific responses presumably result in the correspondingly 

distinct outcomes for ECM remodeling, axon guidance and potentially 
other functions after an acute endurance exercise bout in untrained 
compared with trained muscle. Future studies should therefore dissect 
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Fig. 2 | Qualitative transcriptional response to exercise depends on training 
status. a, Schematic representation of the experimental setup (illustration was 
created using BioRender.com with permission). b, Number of genes differentially 
expressed immediately (0 h), 4, 6 and 8 h after an acute bout of exhaustion 
exercise (cut-off: FDR < 0.05; log2(FC) ± 0.6) in untrained and trained muscle.  
c, Venn diagram of all significantly up- (orange) and downregulated (blue) genes 
(all timepoints merged) in untrained (light colour, dashed line) and trained  
(dark colour, solid line) muscle. d, Dot plot of all functional annotation clusters 
of up- (orange) and downregulated (blue) genes in untrained and trained muscle 
post-exercise, as well as unperturbed trained muscle with an enrichment score 

>2. e, Examples of gene trajectories in untrained (light grey) and trained (dark 
grey) muscle involved in axon guidance. f, Motif activities from ISMARA and 
expression changes of a predicted target gene that show an opposite regulation 
in untrained and trained muscle. The data are from five biological replicates and 
present mean ± s.e.m. Statistics of RNA-seq data were performed using the CLC 
Genomics Workbench Software. Exact FDR values of RNA-seq data and z-scores 
of ISMARA data are displayed in Source data. The asterisk indicates difference to 
Ctrl (pre-exercise condition): *P < 0.05 (for motif activity: *z-score > 1.96); **P < 0.01; 
***P < 0.001 (Extended Data Figs. 2–4 and Supplementary Tables 3 and 4).
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the acute exercise and chronic training response of muscle tissue at the 
single-cell and single-nucleus levels.

Besides qualitative differences in functional gene clusters between 
untrained and trained muscle, quantitative specification was observed 
for some common processes induced on an acute perturbation, for 
example, the regulation of transcription or the response to heat stress 
in a training status-dependent manner (Fig. 2d). For example, the 
modulation of the regulatory axis serum response factor–early growth 
response 1 indicates mitigation of the immediate early stress response 
in trained muscle (Fig. 3a and Extended Data Fig. 3e). Inversely, the 
expression of other transcriptional regulators such as PGC-1α is exac-
erbated, highlighting the specificity of gene-regulatory events in 
untrained and trained muscle (Fig. 3b). Intriguingly, contradicting 
the suggested attenuated response of a trained muscle3,10,11,13–15, the 
maximal amplitude of peak expression of most commonly regulated 
genes is very similar in untrained and trained muscle, specifically 73% 
of the shared upregulated and almost 90% of the shared downregulated 
genes (Fig. 3c and Extended Data Fig. 5a). However, a marked shift in 
the temporal trajectories was observed. For example, a substantially 
higher number of commonly regulated genes are already elevated at 
0 h in trained muscle (Fig. 3d and Extended Data Fig. 5a). Furthermore, 
peak expression is also shifted towards the 0 h timepoint in all, as well 
as just the subset of the commonly regulated genes (Extended Data 
Fig. 5a,b). In fact, almost half of all upregulated genes in trained muscle 
peak at 0 h, whereas this applies to only ~20% of the upregulated genes 
in untrained muscle, where most peak after 6 h (Extended Data Fig. 5b). 
Overall, as opposed to the model of general attenuation of gene expres-
sion with training habituation3,10,11,13–15, our results suggest a much more 
complex picture, with noteworthy occurrence of all scenarios: attenu-
ation, exacerbation and selective expression changes in untrained or 
trained muscle after an acute maximal exercise bout and, probably as 
important, a temporal shift in gene expression (Fig. 3e).

Priming of regulatory genes by DNA methylation changes
The divergent specification and more rapid induction of gene expres-
sion in trained muscle suggest a priming to react to recurrent perturba-
tions. Epigenetic changes, which can induce such a poised state, have 
been reported in training adaptation17,19. To test this, we performed 
reduced representation bisulphite sequencing (RRBS) to catalogue 
DNA methylation events in trained muscle (Fig. 3f and Supplementary 
Table 6). A very low number of differentially methylated regions (DMRs) 
are associated with gene expression changes in unperturbed trained 
muscle (n = 9). Intriguingly, a subset of these DMRs are in the immediate 
genomic vicinity of a group of genes (120 out of 2,387) that are regu-
lated after an acute maximal exercise bout in trained muscle (Fig. 3g). 
These epigenetic modulations thus might not be associated with the 
persistent gene expression pattern in unperturbed trained muscle, but 
are more likely to contribute to a priming of transcriptional regulation 
to an acute bout of exercise. It is interesting that these genes enrich in 
functions related to the regulation of transcription, Wnt signalling and 

axon guidance signalling effectors (Fig. 3g,h, Extended Data Fig. 5c–e 
and Supplementary Table 7). For example, the induction of nuclear 
receptor 4A3 (Nr4a3), which is associated with DMRs in trained muscle, 
is not only greatly exacerbated in trained compared with untrained 
muscle, but also displays a phase shift towards a peak immediately 
post-exercise (Fig. 3h). Thus, epigenetic modifications could contrib-
ute to the different gene expression of a trained muscle to an acute 
perturbation, primarily affecting regulatory genes, with subsequent 
downstream consequences independent of DNA methylation changes.

Overall, very distinct transcriptomes were found in unperturbed 
trained, acutely exercised untrained and acutely exercise trained mus-
cle. Although the correlation between the persistent proteomic and 
transcriptome changes in trained muscle is low, better results are 
achieved when integrating all gene expression changes, including those 
observed in acutely exercised untrained and trained animals. Collec-
tively, these transcriptomic events correlate with the trained proteome 
up to 53% for upregulated and 30% for downregulated proteins for 
which transcript data are available (Extended Data Fig. 5f), highlight-
ing the importance of broad comparisons between transcriptomes 
and proteomes24. So far, it is unclear whether the rest of the trained 
proteome (47% of upregulated proteins, which, for example, cluster in 
the tricarboxylic acid (TCA) cycle (Supplementary Table 5), and 70% of 
downregulated proteins) is evoked by post-translational processes, or 
linked to transcriptional events at other timepoints post-exhaustion 
and/or intermediate exercise bouts not included in the present study. 
Overall, these findings allude to a complex regulatory network, includ-
ing transient and persistent transcriptional as well as post-translational 
events, mediating long-term proteomic adaptations.

PGC-1α is indispensable for normal training adaptation
Notably, many transcriptional regulators that are engaged strongly and 
early after acute maximal exercise exhibit a diversification between 
the first bout (in an untrained muscle) and after a period of training, 
including PGC-1α (Fig. 3b). This coregulator protein has been impli-
cated in the acute response by integrating various signalling pathways 
and subsequently affecting the activity of numerous transcription 
factors, thereby controlling a complex transcriptional network25. Our 
observation, recapitulating previous results in human muscle20, of a 
quantitative difference of PGC-1α on exercise in trained compared with 
untrained muscle, would indicate that PGC-1α not only controls an acute 
stress response, but also might affect the transcriptome of exercised 
muscle in the trained state. Nevertheless, gene expression changes of 
this regulatory nexus are only transient and not preserved in unper-
turbed trained muscle. Thus, the relevance of adequate regulation and 
function of PGC-1α in long-term training adaptations has been ques-
tioned and, at least in part, conflicting findings have been reported26–29. 
To obtain comprehensive information on muscle PGC-1α in training, 
we therefore repeated the exercise study with muscle-specific PGC-1α 
knockout (mKO) mice (Fig. 4a). In agreement with previous work30, mKO 
mice exhibit a reduced endurance capacity, running approximately 40% 

Fig. 3 | Faster transcriptional response in trained WT muscle after one bout of 
exhaustion exercise. a, Example of a possible transcriptional cascade including 
a top predicted transcription factor by ISMARA and one of the downstream 
targets (gene expression and motif activities). b, Example of a transcriptional 
regulator with distinct trajectories in untrained (light grey) and trained (dark 
grey) muscle. c, Proportion of commonly regulated genes with the same maximal 
amplitude (grey), higher amplitude in untrained muscle (light colour) or higher 
amplitude in trained muscle (dark colour). d, Visualization of the temporal 
trajectories of the commonly regulated genes (overlap from Fig. 2c) in untrained 
(light colour) and trained (dark colour) muscle (orange is upregulated and 
blue downregulated). e, Examples of different gene trajectories in untrained 
and trained muscle after an acute maximal exercise bout representing the 
different training status-specific transcriptional scenarios. f, Number of DMRs 
in an unperturbed trained muscle (hypermethylated is shown as a solid bar and 

hypomethylated as an open bar) compared with untrained sedentary WT muscle. 
g, Bar Venn diagram of DMRs of an unperturbed trained muscle (white) and DEGs 
after acute maximal exercise in trained muscle (dark grey) and the functional 
annotation clusters of the overlap (light grey, n = 120) with an enrichment score 
>2. h, Example of a transcription factor that is differentially methylated in trained 
muscle and more highly expressed after exercise in trained compared with 
untrained muscle. The data are from five biological replicates and represent 
mean ± s.e.m. Statistics of RNA-seq data were performed using the CLC Genomics 
Workbench Software. Exact FDR values of RNA-seq data and z-scores of ISMARA 
data are displayed in Source data. Differences in relative expression changes 
presented in d were calculated using a two-tailed Student’s t-test. The asterisk 
indicates difference to Ctrl (pre-exercise condition): *P < 0.05 (for motif activity: 
*z-score > 1.96); **P < 0.01; ***P < 0.001 (Extended Data Fig. 5 and Supplementary 
Tables 4, 6 and 7).
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less than wild-type (WT) controls (Fig. 4b). Despite these limitations, 
the PGC-1α loss-of-function animals substantially improved maximal 
performance after 4 weeks of training, in relative and absolute terms, 
reaching the levels of untrained WT mice, thus still significantly less 
than the trained WT counterparts (Fig. 4b). Importantly, blood lactate 
levels post-exercise were higher in mKO compared with WT animals, 
which implies a higher reliance on anaerobic processes to generate 
ATP (Extended Data Fig. 6a). Moreover, maximal oxygen consumption 
(VO2max) failed to improve in mKOs (Fig. 4c), alluding to an alternative 
adaptation of endurance capacity in these mice. Such an abnormal 

endurance training adaptation was substantiated by the proteomic 
analysis of trained muscle of WT and mKO mice (Extended Data  
Fig. 6b and Supplementary Table 1). First, many of the training-regulated 
proteins involved in mitochondrial respiration, the lipid metabolic pro-
cess and the TCA cycle are already found at lower levels in sedentary 
mKO compared with sedentary WT animals (Fig. 4d–f, Extended Data 
Fig. 6c,d and Supplementary Tables 1 and 2). Although many of these 
proteins can be modulated in mKO mice by training, most do not even 
reach levels normally seen in sedentary WT muscle. Similar to trained 
WT muscle, relatively few proteins show altered phosphorylation levels 
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(103 proteins; Supplementary Table 1). These proteins are predomi-
nantly involved in sarcomere organization and muscle contraction 
(Extended Data Fig. 6e and Supplementary Table 2).

Next, we investigated how the altered phenotypic and prot-
eomic adaptations of trained muscles lacking PGC-1α are reflected 
in the transcriptome. In sedentary mice, the lack of PGC-1α causes 
a pronounced transcriptional suppression of genes involved in the 
lipid metabolic process (Extended Data Fig. 6f and Supplementary 
Table 8). Then, even when compared with the already constrained 

transcriptional changes in unperturbed trained WT muscle, far fewer 
genes were regulated by training in the absence of PGC-1α (Fig. 5a). Of 
note, 90% of all upregulated and 87% of all downregulated, transcrip-
tional events were dependent on the presence of PGC-1α in WT muscle 
(Fig. 5a). Many of these genes encode proteins of lipid metabolism and 
the fast-to-slow muscle fibre transition (Fig. 5b and Supplementary  
Table 8). Even more impressive, in the unperturbed trained muscle, 
almost all (91%) transcription factor motif activities were affected by the 
loss of function of PGC-1α (Extended Data Fig. 6g and Supplementary 
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Fig. 4 | PGC-1α is indispensable for normal physiological responses to 
long-term training. a, Schematic representation of the experimental setup 
(illustration was created using BioRender.com with permission). b, Performance 
of untrained (light colour) and trained (dark colour) WT (grey) and mKO (blue) 
animals (WT-trained versus WT-untrained: mean difference (MD) = 1,242, 95% 
confidence interval (CI) = 946.1–1,539, P < 0.0001; mKO-trained versus mKO-
untrained: MD = 500.9, 95% CI = 204.5–797.3, P = 0.0002; mKO-untrained versus 
WT-untrained: MD = −478.9, 95% CI = −775.3 to −182.5, P = 0.0003; and mKO-
trained versus WT-trained: MD = −1,220, 95% CI = −1,517 to −924.1, P < 0.0001) 
and relative improvement of WT and mKO animals after 4 weeks of progressive 
treadmill training (MD = −0.3368, 95% CI = −0.6574 to −0.01625, P = 0.0399) 
(n = 25 biological replicates per group). c, Changes in VO2max before (light colour) 
and after (dark colour) training (WT post-training versus WT pre-training: 
MD = 6.833, 95% CI = 0.5067–13.16, P = 0.350; mKO post-training versus mKO 
pre-training: MD = 3.667, 95% CI = −2.66 to 9.993, P = 0.2926; mKO-untrained 
versus WT-untrained: MD = −11.00, 95% CI = −17.87 to −4.132, P = 0.0051; 

and mKO-trained versus WT-trained: MD = −14.17, 95% CI = −25.67 to −2.659, 
P = 0.0207) (n = 6 biological replicates per group). d, Dot plot of all functional 
annotation clusters of significantly altered proteins with an enrichment score 
>2. e,f, Examples of proteins involved in mitochondrial respiration (e) and TCA 
cycle (f) in WT-trained (grey; n = 5), mTG-untrained (pink; n = 5), mKO-untrained 
(dark blue; n = 6) and mKO-trained (blue; n = 5). Values are expressed relative 
to untrained WT sedentary controls (n = 5). Statistics of proteomics data were 
performed using empirical Bayes-moderated t-statistics as implemented in the 
R/Bioconductor limma package. Exact P values are displayed in Source data. 
To assess differences between untrained and trained animals and between 
genotypes, two-way ANOVA followed by Šídák’s multiple-comparison test  
(b and c) or two-tailed Student’s t-test was performed (relative improvement in 
b and c). The asterisk indicates difference to Ctrl (pre-exercise condition) if not 
otherwise indicated; hashtag indicates differences to the same condition in WTs: 
*/#P < 0.05; **/##P < 0.01; ***/###P < 0.001 (Extended Data Fig. 6 and Supplementary 
Tables 1 and 2).
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clusters of up- (orange) and downregulated (blue) genes that are regulated 
only in untrained WT mice (745 genes up- and 314 genes downregulated) with 
an enrichment score >2. i, Examples of genes involved in ECM organization, 
microglial cell proliferation and Wnt signalling that are regulated only in WT 
muscle. j, Prediction of the activity of a motif using ISMARA that is changed only 
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The data are from five biological replicates and represent mean ± s.e.m (if not 
otherwise stated). Statistics of RNA-seq data were performed using the CLC 
Genomics Workbench Software. Exact FDR values of RNA-seq data and z-scores 
of ISMARA data are displayed in Source data. The asterisk indicates difference 
to Ctrl (pre-exercise condition): *P < 0.05 (for motif activity: *z-score > 1.96); 
**P < 0.01; ***P < 0.001 (Extended Data Fig. 7 and Supplementary Tables 4 and 8).
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Table 4). Most notably, ISMARA analysis revealed that the significant 
training-linked increase in Esrrb_Esrra motif activity, a binding site for 
the oestrogen-related receptor-α, was completely blunted in mKO mice 
(Fig. 5c). In line with this, the activity of this motif was highly increased 
in muscle-specific PGC-1α gain-of-function transgenic mice (mTG)  
(Fig. 5c). The phenotypic, proteomic and transcriptomic data thus 
strongly indicate that PGC-1α is indispensable for a normal, physi-
ological training response, even though this factor is only transiently 
engaged in acute exercise bouts.

Normal transcriptional exercise response depends on PGC-1α
Next, we assessed whether the marked differences in the long-term 
adaptation to training in muscles lacking PGC-1α are reflected in 
the response to acute maximal exercise (Fig. 4a). First, immediately 
post-exercise (0 h), the response of WT and mKO animals is relatively 
similar in terms of the number of DEGs as well as the amplitude of the 
gene expression (Fig. 5d,e). However, in untrained mKO muscle, a 
massive blunting of transcriptional induction at the later timepoints 
(4–8 h post-exercise) was found, so subsequent to the physiological 
PGC-1α elevation in WT muscle (Fig. 5d,f). Taken together, substan-
tial qualitative differences in gene expression emerged, with 56% 
(745 out of 1,325) of all upregulated, and 65% (314 out of 482) of all 
downregulated genes being dependent on the presence of PGC-1α 
(Fig. 5g). Functional annotation revealed that many of these genes 
encode proteins involved in ECM organization, signal transduction, 
cell cycle/proliferation and other processes (Fig. 5h,i). In untrained 
mKO muscle, the transcriptomic response to acute maximal exercise 
was characterized by a modulation of genes related to inflammation 
and an inverse regulation of genes involved in axon guidance (up in 
WT, down in mKO) (Extended Data Fig. 7a). Finally, the divergent tran-
scriptomic response was linked to a substantial regulatory rewiring: 
52% (62 out of 120) predicted motif activities associated with the acute 
maximal exercise response of untrained WT muscle were lost in mKOs 
(for example, Wrnip1_Mta3_Rco1, linked to ECM remodelling) (Fig. 5j, 
Extended Data Fig. 7b and Supplementary Table 4).

Next, we compared the acute exercise response of trained mKO 
muscle with trained WT muscle. First, the temporal shift of gene expres-
sion towards 0 h was observed in both WT and mKO muscles (Fig. 5d). 
Second, even though only 39% (487 out of 1,254) of the upregulated 
genes were PGC-1α dependent in trained muscle, the proportion of 
commonly PGC-1α-dependent, downregulated genes (62%, 755 out 
of 1,219) remained similar to that found in untrained muscle (Fig. 6a). 
Functionally, these genes encode proteins involved in transcription, 
and metabolism of lipids and carbohydrates, as well as ECM remodel-
ling (Fig. 6b and Supplementary Table 8). Intriguingly, the increase and 
decrease in ECM remodelling in acute maximal exercise of untrained 
and trained WT muscles, respectively, both seem to be dependent 
on the presence of this coregulator (Figs. 5h and 6b–d and Extended 
Data Fig. 7a,c). Of note, there is a prominent difference in the number 
of downregulated genes immediately post-exercise (0 h) between WT 
and mKO muscles (Fig. 5d). The genes that are reduced only in acutely 
exercised, trained WT muscle, and not in the corresponding mKO 
counterpart, were associated with inflammation (Extended Data Fig. 7d 
and Supplementary Table 8), in line with the higher activity-dependent 
muscle damage and inflammation that have previously been reported 
in mKO muscles30. In the trained muscle, acute exercise exhibited 39% 
(52 out of 135) of predicted transcription factor activities to be absent 
in the mKO muscles, for example, that of Irf3 and Irf2_Irf1_Irf8_Irf9_Irf7, 
regulating inflammation-related genes (Fig. 6e, Extended Data Fig. 7e 
and Supplementary Table 4).

PGC-1α controls exercise-linked DNA methylation events
In WT muscle, we have associated the transcriptomic acute exercise 
response of a trained muscle with epigenetic modulations of the unper-
turbed trained muscle (Fig. 3f–h). Therefore, we next investigated 

whether DNA (de-)methylation events are linked to the massive tran-
scriptional differences in the acutely exercised, trained mKO animals. 
In unperturbed trained muscle, a markedly higher proportion of hyper-
methylated regions was found, with little overlap with DMRs in WT 
quadriceps that are characterized by more hypomethylation (Fig. 6f, 
Extended Data Fig. 8a and Supplementary Table 6). Similarly, the DEGs 
after acute maximal exercise associated with DMRs of trained muscle 
exhibited only a small overlap between the genotypes (Extended Data 
Fig. 8b,c). Nevertheless, many of these genes in the mKO animals parti-
tioned to regulation of transcription, functionally similar to the results 
in WT animals (Extended Data Fig. 8d,e and Supplementary Table 7). 
Based on the largely different transcriptome of trained muscle, a diver-
gence in DMRs might not be unexpected. However, it was surprising 
that absence of muscle PGC-1α also substantially altered transient 
epigenetic modulations in untrained muscle after an acute maximal 
exercise bout. In both phenotypes, little overlap exists between these 
transient DNA (de-)methylation events in an acute maximal exercise 
bout and the persistent epigenetic adaptations in unperturbed trained 
muscle (Extended Data Fig. 8f and Supplementary Table 6). However, 
although the absolute number of events after an acute maximal exercise 
bout at 0 h between untrained WT and mKO muscle is comparable (483 
in WT, 475 in mKO), most of these DMR–gene associations are distinct 
(only 109 are the same). Moreover, the absolute number of DMRs in 
mKO muscles 4 h post-exercise is dramatically smaller than that in 
WT muscles (646 in WT, 80 in mKO), again with little commonality  
(Fig. 6g,h, Extended Data Fig. 8g,h and Supplementary Table 6). Despite 
all these differences between WT and mKO muscles, whenever differen-
tially affected DMRs could be associated with corresponding genes, a 
strong functional cluster ‘transcription’ emerged in either phenotype, 
indicating that these transient DNA methylation events are closely 
linked to acute transcriptional regulation (Fig. 6i and Supplementary  
Table 7). Collectively, these results imply that PGC-1α is directly 
involved in the regulation of DNA methylation associated with gene 
expression. To further test this hypothesis, we analysed the epigenetic, 
transcriptomic and proteomic changes elicited in a muscle-specific 
PGC-1α gain-of-function model. Indeed, a substantial number of DMRs 
were detected in mTGs. Similar to trained WT muscle, and mirroring the 
outcome in mKO animals, DMRs in mTGs skewed towards hypomethyla-
tion (Extended Data Fig. 8i and Supplementary Table 6). However, the 
overlap between DMRs of trained WT and sedentary mTG mice was very 
small and only 2.8% of the transcriptionally regulated genes could be 
associated with DMRs (Extended Data Fig. 8j,k). In line with previous 
observations31, the transcriptome of mTGs differs substantially from 
the chronically and acutely training- and exercise-regulated genes in 
WT muscle (Extended Data Fig. 8l). A better functional representation 
of training adaptation is, however, provided by the mTG proteome, 
in which a strong accumulation of mitochondrial proteins, including 
members of the TCA cycle and respiratory chain, lipid metabolism and 
a depletion of inflammation and proteasomal catabolic processes, 
recapitulates many of the changes observed in trained WT muscle 
(Extended Data Fig. 8m and Supplementary Tables 1 and 2).

Discussion
The plasticity evoked by exercise training leads to a pleiotropic remod-
elling of the function of many organs beyond muscle, with potent health 
benefits1,6,7,32,33. In light of the enormous fundamental and clinical sig-
nificance of exercise, it is surprising that our understanding of the 
underlying processes remains incomplete. Our findings now provide 
evidence for a much more complex process than proposed in prevail-
ing models, describing muscle plasticity and the corresponding basic 
mechanistic and regulatory principles of training adaptation.

First, even though massive morphological and functional remodel-
ling is necessary for training adaptation, only a small number of genes 
define the trained muscle transcriptionally, and steady-state gene 
expression changes explain only a minor subset of the corresponding 
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Fig. 6 | PGC-1α controls exercise-linked DNA methylation events. a, Venn 
diagrams of all up- and downregulated genes after an acute bout of maximal 
exercise in trained WT (dark grey) and mKO (dark blue) mice. b, All functional 
annotation clusters of up- (orange) and downregulated (blue) genes that are 
regulated only in trained WT mice (487 genes up- and 755 genes downregulated) 
with an enrichment score >2. c, Dot plot of all functional annotations clusters 
of up- (orange) and downregulated (blue) genes after an acute bout of maximal 
exercise in untrained and trained WT and mKO animals. d, Examples of genes 
involved in ECM organization in trained WT (grey) and mKO (blue) mice.  
e, Prediction of the activity of motifs using ISMARA that are changed only in 
WT muscle and linked to inflammation. f, Number of DMRs in trained mKO 
compared with untrained mKO muscle (hypermethylated is shown as a solid 

bar and hypomethylated as an open bar). g,h, Number of hyper- (solid bars) and 
hypomethylated (open bars) regions 0 and 4 h after exhaustion in untrained 
WT (g) and untrained mKO (h) animals compared with untrained sedentary 
animals of the respective genotype. i, All functional annotation clusters of 
genes that are differentially methylated and transcriptionally regulated after  
an acute bout of exercise in untrained WT (grey) and mKO (blue) mice. The data 
are from five biological replicates. Statistics of RNA-seq data were performed 
using the CLC Genomics Workbench Software. Exact FDR values of RNA-seq 
data and z-scores of ISMARA data are displayed in Source data. The asterisk 
indicates difference to control animals of the respective genotype: *P < 0.05  
(for motif activity: *z-score > 1.96). (Extended Data Figs. 7 and 8 and 
Supplementary Tables 3, 4 and 6–8).
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modulation of the proteome. This was unexpected based on the con-
temporary view that repeated exercise bouts result in a persistent mod-
ulation of the basal expression of transcripts involved in mitochondrial 
function, substrate utilization and other functional aspects that define 
a trained muscle13. Second, the massive, yet transient remodelling of 
the muscle transcriptome after acute maximal exercise is quantitatively 
and qualitatively different when comparing an untrained with a trained 
muscle. Our findings vastly expand the prevailing models predicting 
an attenuation of the acute regulation of genes with repeated exercise 
bouts, in as much as we also report exacerbation, a shift in peak expres-
sion and complete disappearance and de novo emergence of numerous 
transcripts (Fig. 7). Finally, some transcripts exhibit a diametrically 
opposite expression after acute maximal exercise in untrained and 
trained muscles, for example, genes encoding proteins involved in 
ECM remodelling, inflammation or axon guidance. This suggests a 
training status-specific homeostatic perturbation and concomitant 
transcriptional response, for example, expressed in the shift from a 
strong stress response and damage mitigation in untrained to improved 
resilience in trained muscle besides metabolic, contractile and other 

adaptations. These highly divergent modes of adaptation imply a com-
plex regulatory framework of training adaptation. The deconvolution 
analysis indicates, however, that many of these changes are mediated 
by events in non-muscle cells, in presumably complex multicellular 
crosstalk and interactions. Future studies therefore have to consider 
this aspect and aim for an analysis at the level of individual cell types 
instead of bulk muscle tissue.

Our data also shed more light on to the mechanistic underpinnings 
of acute maximal exercise and chronic training. We observed a clear 
differentiation between acute epigenetic modifications and those 
persistently observed in chronically trained muscle. The relatively 
small number of DMRs in close vicinity to differentially regulated 
genes in this context might be surprising, and at least in part caused 
by the limitation of RRBS. The association of epigenetic marks with 
the expression of genes modulating transcription, however, implies a 
priming of a limited number of key transcriptional regulators, which 
accordingly exhibit a different response to an acute bout of exercise 
in untrained and trained muscle. This priming might be sufficient 
for signal propagation and amplification to downstream genes, and 
thereby contribute to the quantitative and qualitative differences in 
the transcriptional networks engaged in these two settings.

From the many factors that have been implied in exercise adapta-
tion, we investigated the regulation and function of PGC-1α. We now 
unequivocally demonstrate that muscle PGC-1α is indispensable for 
normal transcriptional muscle plasticity, both after acute maximal 
endurance exercise bouts in untrained and trained muscle, and in 
endurance-trained muscle. Moreover, we show that VO2max, a marker 
for maximal endurance capacity, fails to improve in mKO animals. Fur-
thermore, training-induced shifts in the metabolism of ketone bodies 
and lactate are minimized in these animals34,35, as well as adaptations in 
vascularization and other processes26,27. Collectively, these constraints 
might contribute to the limited performance gains in the absence of 
muscle PGC-1α. Unexpectedly, we also found a strong impact of mus-
cle PGC-1α on epigenetic marks, both chronically and acutely, and in 
both loss- and gain-of-function experiments. Future studies should 
therefore aim at investigating the molecular underpinnings of this link. 
Taken together, these findings demonstrate that regulatory factors 
such as PGC-1α, even though engaged in only an acute and transient 
manner, can have a profound impact on long-term training adaptations. 
However, the regulatory complexity of muscle plasticity might have 
been underestimated because redundant, alternative or contingency 
pathways and factors seem to be able to be recruited in such settings 
to re-establish adaptation. This is not only true for PGC-1α, but also 
for AMP-dependent protein kinase and the mammalian target of rapa-
mycin, which are dispensable for certain aspects of training-induced 
muscle plasticity36–39. Such a complex regulatory framework would 
make sense in light of the evolutionary importance of the regulation of 
muscle plasticity, which has to function at least suboptimally to ensure 
survival even if individual factors fail.

Overall, our findings provide a refined and much more com-
plex model to describe how training adaptations are brought about. 
These results provide insights into an unsuspected and hitherto 
undescribed complexity in transcriptomic, epigenetic, proteomic 
and phosphoproteomic changes in muscle plasticity, and hint at a 
vast, multifaceted mechanistic framework that controls the effects 
of acute exercise perturbations and long-term training alterations 
(Fig. 7). Once validated and expanded in both sexes, other species, age 
groups, muscles, training paradigms and timepoints, and in a more 
fine-grained cell type-specific manner, these insights will help not only 
to better understand such a fundamental process that is a main driver 
of human evolution, but also to leverage results to design strategies 
to benefit human health and well-being. It is encouraging that such 
efforts currently are ongoing, for example, in the framework of the 
Wu Tsai Human Performance Alliance or the Molecular Transducers 
of Physical Activity Consortium40.
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Fig. 7 | Schematic representation of the molecular exercise response. An acute 
bout of exercise disrupts the cellular homeostasis of the muscle and initiates a 
cascade of events including short-term epigenetic and transcriptional changes 
(change from baseline up is upregulated/hypermethylated; change from baseline 
down is downregulated/hypomethylated). These alterations promote the 
restoration of homeostasis and prepare the muscle for recurrent insults. With 
repeated exercise bouts over time, a trained muscle is established, hallmarked by 
morphological and functional adaptations that improve performance. This state 
is characterized by substantial proteomic remodelling, however, in the context 
of a small number of chronically maintained gene expression modulations. 
Persistent modifications of epigenetic marks prime the response of the trained 
muscle to recurring acute exercise bouts. Hence, a trained muscle responds more 
rapidly to an acute maximal exercise bout and shows a prominent repression 
of genes. Approximately 50% of the upregulated and 85% of the downregulated 
transcriptome of a trained muscle are specific to this condition and not altered 
in an untrained muscle post-exercise. Collectively, the molecular response to an 
acute bout of exercise is training status dependent and substantial qualitative 
and quantitative changes in gene expression events were observed in trained 
compared with those that occur in untrained muscle.
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Methods
Animals
For the present study, C57BL/6 male mice lacking PGC-1α specifically 
in muscle (mKO) or transgenically overexpressing PGC-1α in mus-
cle (mTG) were used. PGC-1α mKO mice were generated by breeding 
PGC-1αflox/flox mice with an HSA-cre mouse line ( Jackson Laboratories, 
stock no. 009666) as described previously41,42. For the generation of 
the PGC-1α mTG animals, C57BL/6 mice expressing PGC-1α under the 
control of the creatine kinase promoter were crossed with WT mice 
as described previously43. Their respective littermates served as WT 
control animals. Mice had free access to water and a standard rodent 
chow diet (3432-Maintenance, KLIBA NAFAG) and were housed under 
standard conditions with a 12-h light:12-h dark cycle. The temperature 
and humidity in the animal facility were 22 ± 2 °C and 45–65%, respec-
tively. The experiments were performed with five or six mice per condi-
tion and mice were sacrificed at the age of 18–24 weeks. We used new 
mouse cohorts for each analysis, except that the RRBS was performed 
with the same samples used for RNA-seq and proteomic and phospho-
proteomic analyses were performed with the same experimental mice. 
All experimental protocols followed the Swiss guidelines for animal 
experimentation and care and were approved by the Kantonales Vet-
erinäramt Basel-Stadt.

Exercise protocols
Exercise training was performed on a motorized treadmill (Columbus 
Instruments) on 5 d per week for 1 h. The training protocol was progres-
sive. Although the duration of the training (1 h per session) as well as 
the inclination of the treadmill (5°) were kept constant throughout 
the experiment, the speed progressively increased throughout the 
training period. The first training session was performed at a speed of 
10 m min−1 and was subsequently increased by 0.5 m min−1 each day, 
resulting in a final speed of 19.5 m min−1 after 4 weeks. All mice were 
trained with one standardized training protocol, with the drawback 
that mKO animals trained at a higher relative intensity compared with 
WT mice. However, this higher relative training load of the mKO animals 
did not translate into a boosted adaptation. Trained mice were either 
sacrificed 18 h after the last training session and used as steady-state 
condition of a trained muscle or performed a maximal performance 
test after a 72-h rest period. As a control for the acute maximal exercise 
response of trained mice, a group of trained mice was sacrificed 72 h 
after the last training session, corresponding to the timepoint of the 
final maximal exercise bout.

Maximal oxygen consumption (VO2max) was measured during a 
short maximal exercise test on a closed treadmill (Columbus Instru-
ments) with only a subset of mice. Similar to the maximal performance 
test, mice were first familiarized with treadmill running for 2 d. The test 
was performed at an inclination of 15°. After 5 min of acclimatization to 
the closed treadmill chamber at 0 m min−1, the velocity was increased to 
10 m min−1 and then increased every 2 min by 2 m min−1 until exhaustion. 
After the test, mice were put back into their home cage.

Maximal performance and the acute exercise response to one 
bout of exhaustion exercise were assessed on a motorized treadmill 
as described previously44. Before the test, mice were familiarized with 
treadmill running for 2 d. The maximal exercise test was performed at 
an inclination of 5° and, after a warming up of 5 min at 5 m min−1 fol-
lowed by 5 min at 8 m min−1, the velocity was progressively increased 
2 m min−1 every 15 min until exhaustion. To determine the acute maxi-
mal exercise response, mice were sacrificed and tissue collected either 
immediately (0 h) post-exercise or after 4, 6 or 8 h (Fig. 2a). As maximal 
exercise performance varies throughout the day45, we decided to stand-
ardize the time of exercise and therefore perform the maximal exercise 
test in the morning. Hence, the dissection of the distinct timepoints 
was performed at different times of the day and circadian variations 
could not thereby be ruled out. The control group was circadian hetero-
geneous. After euthanizing the mice with a CO2 overdose, quadriceps 

(all four heads) of both hind limbs was removed and immediately 
snap-frozen in liquid nitrogen. The tissue was stored at −80 °C for 
further analyses. For subsequent processing, the muscle was pulver-
ized, which allowed collection of small amounts of tissue for various 
analyses. The usage of pulverized muscle homogenates precludes 
potential fibre-type differences across specific areas of the muscle, 
and boosts comparability between assays. Due to technical limitations, 
the tissue amount was limiting and we were therefore unable to use 
the muscle from the same experimental mice for all analyses. Hence, 
proteomic and phosphoproteomic analyses were performed with one 
and RNA-seq and RRBS with a second cohort of experimental mice.

The term ‘acute exercise’ is used to describe the acute perturba-
tion that occurs with one bout of exercise (regardless of whether the 
mice were untrained or trained). In contrast, ‘training’ is the result of 
repeating the exercise for a prolonged period of time, eventually lead-
ing to chronic training adaptations. Steady-state changes in a trained 
muscle are investigated without an acute bout of exercise before the 
dissection (‘unperturbed muscle’).

RNA-seq and data analysis
After homogenizing pulverized quadriceps in 1 ml of TRIzol agent 
(Sigma-Aldrich) using FastPrep tubes (MP Biomedicals), RNA was 
isolated according to the manufacturer’s protocol. RNA concentration 
and quality were measured on the NanoDrop OneC spectrophotometer 
(Thermo Fisher Scientific). Subsequently, 7,500 ng of RNA was further 
purified using the Direct-zol RNA MiniPrep Kit (Zymo Research). After 
the RNA-seq library preparation with 1 µg of purified RNA using the 
TruSeq RNA library Prep Kit (Illumina) according to the manufacturer’s 
instructions, single-read sequencing was performed on the HiSeq 2500 
machine (51 cycles, Illumina).

All RNA-seq analyses were performed using the CLC Genomics 
Workbench Software (v.21.0.5, QIAGEN). Before mapping the reads 
to the mm10 version of the mouse genome, reads were quality and 
adaptor trimmed. For the differential gene expression analyses, the 
TMM (trimmed mean of M-values) method was used for normaliza-
tion. Principal component analysis (PCA) scatter plots were used to 
visualize the sample distribution (Extended Data Fig. 9). All steps 
including quality control and differential gene expression analyses 
were performed using the CLC Genomics Workbench Software. To 
visualize gene expression, the relative expression was calculated from 
the transcripts per million (TPM) provided by the software. For all 
downstream analysis, a log2(fold-change) (log2(FC)) cut-off of ±0.6 
(genes with a log2(FC) >0.599 or <−0.599) and a false discovery rate 
(FDR) value <0.05 were used. The prediction of enriched transcription 
factor-binding motifs was done by ISMARA (https://ismara.unibas.ch/
mara)21. The Database for Annotation, Visualization and Integrated 
Discovery (DAVID; https://david.ncifcrf.gov/tools.jsp) platform was 
used to determine functional annotation clusters of gene ontology 
(GO) biological processes and REACTOME pathways and clusters with 
an enrichment score >2 were considered46,47. The overlap of genes was 
determined using InteractiVenn (http://www.interactivenn.net/index.
html)48 and results were visualized with dot plots or heatmaps using 
Morpheus (https://clue.io/morpheus) or proportional Venn diagrams 
using DeepVenn (https://www.deepvenn.com)49.

Genomic DNA isolation
Approximately 15 mg of pulverized quadriceps was used for genomic 
DNA (gDNA) isolation. Tissue was digested overnight in proteinase K 
(20 mg ml−1) (Promega) and DNA lysis buffer (50 mM Tris-HCl, pH 8.0, 
100 mM NaCl, 10 mM EDTA and 0.5% Nonidet P-40) at 55 °C on a shaker. 
The next day proteinase K was inactivated at 95 °C for 10 min. Subse-
quently, phenol–chloroform–isoamyl alcohol (PCI) (Sigma-Aldrich) 
was added in a 1:1 ratio and the samples were vortexed and centrifuged 
at room temperature (RT) and 16,000g for 4 min. Next, the upper phase 
was collected, and the same volume of PCI as in the first step added, 
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vortexed and centrifuged as described above. Then, the upper phase 
was collected again and 1:10 volume of 3 M Na acetate, pH 5.0 and 
6:10 volume of isopropanol were added. The samples were vortexed, 
incubated at RT for 5 min and centrifuged at RT at maximum speed 
for 15 min. Subsequently, the supernatant was removed and the pellet 
washed with 70% ethanol and centrifuged at RT at maximum speed for 
5 min. After removing the supernatant, the pellet was dried for 10 min 
at RT and resuspended in nuclease-free H2O. The gDNA quality and con-
centration were measured on the NanoDrop OneC spectrophotometer 
(Thermo Fisher Scientific). The isolated gDNA was further purified 
according to the manufacturer’s instructions using the DNeasy Blood 
& Tissue Kit (QIAGEN) and quality and concentration measured on 
the NanoDrop OneC spectrophotometer (Thermo Fisher Scientific).

RRBS and identification of DMRs
The RRBS library was prepared with the Premium RRBS Kit (Diagenode) 
according to the manufacturer’s instructions with 100 ng of gDNA as 
starting material. Quality and fragment size were determined with the 
Bioanalyzer (Agilent). Single-read sequencing was performed with a 
HiSeq2500 machine (51 cycles, Illumina).

The reads were quality and adaptor trimmed with the Trim Galore! 
(v.0.4.5) wrapper of cutadapt50. The trimmed reads were controlled 
with FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). 
Conversion rates were calculated with customized scripts, counting 
the number of Gs and Cs in non-GC context, resulting in values >99% 
for all libraries. The reads were mapped to the mm10 version of the 
mouse genome with BWA51 and methylCtools52 after a slightly extended 
bis-SNP pipeline53. The reads were locally realigned and the quality 
values were recalibrated before calling the methylation levels. The 
mm10 SNPs and indels from dbSNP v.138 were used in this process54. 
An initial quality control and exploratory analysis were done with R 
package RnBeads55. Differential loci were detected with MethylKit56 
testing in 500-bp sliding windows with at least three CpGs, including 
only those with a coverage of at least 10×. DMRs were defined as ±10% 
with a q-value < 0.01.

Proteomics and phosphoproteomics
Sample preparation. Approximately 10 mg of pulverized quadri-
ceps was used for sample preparation. The muscles of mTG mice and 
WT littermates (referred to as group A) were lysed in 8 M urea, 0.1 M 
ammonium bicarbonate and phosphatase inhibitors (Sigma-Aldrich) 
by sonication (Bioruptor, 10 cycles, 30 s on/off, Diagenode) and pro-
teins were digested as described previously45,57. The muscles of mKO 
and WT littermate mice were resuspended in lysis buffer containing 5% 
sodium dodecylsulfate, 10 mM tris(2-carboxyethyl)phosphine (TCEP) 
and 0.1 M tetraethylammonium bromide, and lysed by sonication using 
a PIXUL Multi-Sample Sonicator (Active Motif) with the pulse set to 50, 
pulse repetition frequency to 1, process time to 20 min and burst rate 
to 20 Hz. Lysates were incubated for 10 min at 95 °C, alkylated in 20 mM 
iodoacetamide for 30 min at 25 °C and proteins either digested using 
S-Trap micro-spin columns (Protifi), according to the manufacturer’s 
instructions (referred to as group B), or further processed for phospho-
proteomic analysis (referred to as group C). Samples of group C were 
trichloroacetic acid precipitated according to a protocol originally 
from Luis Sanchez (https://www.its.caltech.edu/~bjorker/TCA_ppt_
protocol.pdf). Pellets were resuspended in 2 M guanidinium-HCl, 
0.1 M ammonium bicarbonate, 5 mM TCEP and phosphatase inhibi-
tors (Sigma-Aldrich, catalogue no. P5726&P0044) and proteins were 
digested as described previously45,57. Enrichment for phosphorylated 
peptides (group C) was performed using Fe[III]-IMAC cartridges on an 
AssayMAP Bravo platform following a recently described method58.

Dried peptides (of group A and B) as well as the phospho-enriched 
peptides (group C) were resuspended in 0.1% aqueous formic acid 
and subjected to liquid chromatography–tandem mass spectrom-
etry (LC/MS–MS) analysis using a Orbitrap Fusion Lumos Mass 

Spectrometer fitted with an EASY-nLC 1200 (both Thermo Fisher 
Scientific) and a customized column heater set to 60 °C as described 
previously45.

For samples of group A and C, the mass spectrometer was oper-
ated in data-dependent acquisition mode with a cycle time of 3 s 
between master scans as described for phosphoproteomic samples 
previously45. For the proteomic samples of group A, changes have 
been made: the master scan was acquired at a resolution of 240,000 
full width at half-maximum (FWHM; at 200 m/z) and was followed 
by MS2 scans of the most intense precursors in the linear ion trap at 
‘rapid’ scan rate. Furthermore, maximum ion injection time for MS2 
was set to 35 ms. Finally, the intensity threshold was set to 5,000 and 
collision energy to 35%.

For samples of group B, the mass spectrometer was operated 
in data-independent acquisition (DIA) mode. The MS1 scans were 
obtained using the Orbitrap in centroid mode with a resolution of 
120,000 FWHM (at 200 m/z). The scan range was from 390 to 1,210 m/z, 
the automatic gain control (AGC) target set to 800% and a maximum ion 
injection time of 100 ms. The MS2 scans was acquired at a resolution 
of 15,000 FWHM (at 200 m/z) in the Orbitrap in centroid mode. The 
precursor mass range was set from 400 to 1,200, and a quadrupole iso-
lation window of 8 m/z with a 1-m/z window overlap was used. The scan 
range for MS2 was from 145 m/z to 1,450 m/z, the AGC target was set to 
standard and the maximum ion injection time was 22 ms. Higher-energy 
collisional dissociation was employed for peptide fragmentation and 
the collision energy was set to 33%. One microscan was acquired for 
each spectrum.

Data analysis. The raw files obtained from samples of group A and 
C were imported into the Progenesis QI software (v.2.0, Nonlinear 
Dynamics Limited). This software was utilized with default parameters 
to extract peptide precursor ion intensities across all samples. The 
generated mgf-files were searched using MASCOT against a murine 
database (consisting of 17,013 Swiss-Prot protein sequences down-
loaded from Uniprot on 20190307 for group A and 34,186 forward 
and reverse protein sequences were downloaded from Uniprot on 
20220222 for group C, https://www.uniprot.org/taxonomy/10090) 
and 392 commonly observed contaminants using the search criteria 
described previously for the phosphoproteomics data45. Two modi-
fications were made for group A: instead of phosphorylation (STY) 
as a variable modification, acetyl (protein amino terminal) was used.  
Furthermore, mass tolerance of 10 p.p.m. (precursor) and 0.6 Da  
(fragments) was considered.

For group B, the acquired raw files were searched using the 
Spectronaut (Biognosys v.15.7) directDIA workflow against a murine 
database (consisting of 17,093 Swiss-Prot protein sequences down-
loaded from Uniprot on 20220222, https://www.uniprot.org/taxon-
omy/10090) and 392 commonly observed contaminants. The default 
factory settings were employed with slight adjustments. Specifically, 
in the Pulsar Search Result Filter tab, the fragment ion m/z range was 
set to 300–1,800 and the relative intensity minimum to 5.

Quantitative analysis results from label-free quantification or 
exported from Spectronaut were processed using the SafeQuant R 
package v.2.3.2 (https://github.com/eahrne/SafeQuant)57 to obtain 
peptide relative abundances. In this analysis, global data normalization 
was conducted by equalizing the total peak/reporter areas across all 
LC/MS–MS runs. Data imputation was performed using the k-nearest 
neighbours algorithm to handle missing values. Subsequently, peak 
areas were summed per protein and LC/MS–MS run and peptide abun-
dance ratios were calculated. Only isoform-specific peptide ion signals 
were considered for quantification. To fulfil additional assumptions 
such as normality and homoscedasticity required for the application of 
linear regression models and Student’s t-tests, the MS-intensity signals 
were transformed from the linear scale to the log(scale). The sum-
marized peptide expression values were then used to statistically test 
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the differential abundance of peptides between the conditions. In this 
context, empirical Bayes-moderated t-statistics tests were applied, as 
implemented in the R/Bioconductor limma package (http://bioconduc-
tor.org/packages/release/bioc/html/limma.html). Three proteomic 
samples failed quality control and had to be excluded from the analysis 
(one WT sedentary, one WT-trained and one mKO-trained). These were 
also excluded from the phosphoproteomic analysis. For all proteomic 
analyses, only proteins with more than one peptide were considered. In 
addition, a log2(FC) cut-off of ±0.2 (proteins with a log2(FC) >0.199 or 
<−0.199) was used for all analyses and a P value <0.05 was considered 
statistically significant.

ScRNA-seq and snRNA-seq data analysis
To create the single-transcriptomic reference dataset including 
both mononucleated cells and myonuclei, we integrated published 
single-cell data (scRNA-seq) from mononucleated muscle cells23 
and single-nucleus data (snRNA-seq) from myonuclei22. In detail, we 
subsetted the provided scRNA-seq data from ref. 23 for all samples 
from skeletal muscle and reanalysed it via R/Seurat 4.0, including 
NormalizeData(), FindVariableFeatures() (with the top 3,000 vari-
able genes), ScaleData() (regressing out mitochondrial genes) and 
PCA23. Then, we integrated the samples using Harmony (github.com/
immunogenomics/harmony) and applied clustering via FindNeigh-
bors(), FindClusters() and RunUMAP(). Finally, we annotated clus-
ters based on published marker gene expression and removed cells 
from high-fat-diet-fed mice. To complement the scRNA-seq data from 
mononucleated muscle cells with missing myonuclei data, we used 
published snRNA-seq from the tibialis anterior muscles22. In short, we 
applied quality measures as described in the original publication and 
clustered nuclei with the common Seurat v.4.0 pipeline. After cluster 
annotation, we subsetted the dataset for myonuclei only. Subsequent 
integration of scRNA-seq and snRNA-seq data was performed by merg-
ing all datasets and recalculating the normalization, variable features, 
scaling and principal components. We corrected for batch effects 
and integrated the individual samples via Harmony and clustered as 
described above. To visualize the expression of a given set of genes, we 
used the Clustered_DotPlot() function of the ‘scCustomize’ package 
(samuel-marsh.github.io/scCustomize) with the minimum colour 
threshold set to zero.

Statistical analysis
The statistical analyses of the RNA-seq, RRBS and proteomic analyses 
were done as described in the respective sections. All other statisti-
cal analyses were performed in GraphPad Prism v.9 using two-tailed 
Student’s t-test or two-way analysis of variance (ANOVA) followed by 
Šídák’s multiple-comparison test. Values are expressed as mean ± s.e.m. 
except for data presented in box plots that display the median and the 
25th to 75th percentiles and whiskers indicating the minimal and maxi-
mal values. Generally, P < 0.05 was considered statistically significant. 
As an exception, FDR < 0.05 for RNA-seq analysis, q-value < 0.01 for 
RRBS analysis and z-score > 1.96 for ISMARA were considered statisti-
cally significant.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Transcriptomic and RRBS data have been deposited at the Gene Expres-
sion Omnibus (accession nos. GSE221210 and GSE221831, respectively). 
The transcriptomic data are furthermore accessible in an analysed form 
at Myo-TrEx (https://myo-trex.scicore.unibas.ch). Proteomic data have 
been deposited at the proteomics identifications database (MassIVE, 
accession no. MSV000092203 and ProteomeXchange, accession no. 
PXD043097). Source data are provided with the present paper.

Code availability
Data have been analysed using either commercial tools (that is, CLC 
Genomics Workbench Software) or existing standard packages and 
scripts described in Methods. No new code has been developed.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Proteomic and phosphoproteomic changes in a trained 
WT muscle. a, Changes in maximal running distance after 4 weeks of progressive 
treadmill training (n = 6 per group; mean difference (MD) = 802.3, 95% 
confidence interval (CI) = 80.62 to 1524, p = 0.0355). b-c, Examples of proteins 
represented in the annotations clusters of b) mitochondrial respiration and lipid 
metabolic process and c) proteasomal catabolic process in a sedentary untrained 
(light gray) and training (dark gray) muscle. d, All significant (FDR < 0.05) GO 
Biological Pathways of proteins with altered phosphorylation status after 4 
weeks of training. e, Correlation plot of the transcriptome and proteome of 
trained muscle. Only depicting genes/proteins that are significantly altered 
in the proteomics analysis of a trained muscle (cutoff: p < 0.05; Log2FC ± 0.2). 
The colored (orange = up; blue = down) genes/proteins are also significantly 
altered on a transcriptional level in a trained muscle (FDR < 0.05; Log2FC ± 0.2). 
f, Representative proteins involved in mitochondrial respiration that are 
significantly increased in a trained muscle (solid orange line = mean ± SEM with 
light color) and acutely regulated on a transcriptional level post-exercise (gray 
line). g, The regulation of genes after one bout of maximal exercise in untrained 

muscle (gray line) as well as the steady-state level of the transcript in unperturbed 
trained muscle (solid line in orange = upregulated, blue = downregulated or gray 
= unchanged ± SEM in lighter color). Genes representing the different scenarios: 
same direction in both trained muscle as well as after an acute bout of maximal 
exercise; only changed in trained muscle; only regulated after an acute maximal 
exercise bout; or upregulated after an acute challenge and downregulated after 
training. Data from 5 biological replicates (if not otherwise indicated). Data 
represent means ± SEM (except for b-c where the box plots display the median 
and the 25th to 75th percentiles and whiskers indicate the minimal and maximal 
values). Statistics of proteomics data were performed using empirical Bayes 
moderated t-statistics as implemented in the R/Bioconductor limma package 
and for RNA-seq data with the CLC genomics workbench software. Exact p-values 
of proteomics data and FDR-values of RNA-seq data are displayed in the Source 
Data file. For the running distance (a) a paired two-tailed Student’s t-test was 
performed. * indicates difference to Ctrl (pre-exercise condition) if not otherwise 
indicated; *<0.05; **<0.01; ***<0.001. See also Fig. 1; Supplementary Tables 1, 2, 5.
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Extended Data Fig. 2 | Distinct gene sets induced upon acute exercise in 
untrained and trained WT muscle. a-b, All functional annotation clusters of up- 
(orange) and downregulated (blue) genes after an acute maximal exercise bout 
in untrained (a) and trained (b) muscle with an enrichment score >2. c, Examples 
of gene trajectories in untrained (light gray) and trained (dark gray) muscle 
involved in ECM organization. Exact FDR-values are displayed in Source Data file. 
d, Schematic representation of genes involved in axon guidance and the possible 

functional consequences. The left square below each gene name represents 
the untrained response and the right square the trained response. Red = 
upregulated; blue = downregulated (illustration was created with BioRender.com 
with permission). Data from 5 biological replicates. Data represent means ± SEM. 
Statistics of RNA-seq data were performed with the CLC genomics workbench 
software. * indicates difference to Ctrl (pre-exercise condition); *<0.05; ***<0.001. 
See also Fig. 2; Supplementary Table 3.

http://www.nature.com/natmetab


Nature Metabolism

Resource https://doi.org/10.1038/s42255-023-00891-y

Extended Data Fig. 3 | Divergent predicted motif activities of transcription 
factors in untrained and trained WT muscle. a, Number of motifs of 
transcription factors from ISMARA that have an increased or decreased activity 
(z-score >1.96) per time point in an untrained (light gray) and trained (dark 
gray) muscle after an acute maximal exercise bout. b, Venn diagram of all the 
predicted motifs that are changes in untrained (light gray) and trained (dark 
gray) muscle after an acute exercise bout. c-d, Trajectories of motif activity of 
transcription factors from ISMARA in untrained (light gray) and trained (dark 
gray) muscle post-exercise that are either specific to training status (c) or show 

an exacerbation after training (d). e, Example of a possible transcriptional 
cascade including a top predicted transcription factor by ISMARA and one of the 
downstream targets (gene expression and motif activities). Exact FDR-values of 
RNA-seq data and z-scores of ISMARA data are displayed in the Source Data file. 
Data from 5 biological replicates. Data represent means ± SEM. Statistics of RNA-
seq data were performed with the CLC genomics workbench software. * indicates 
difference to Ctrl (pre-exercise condition); *<0.05 (for motif activity: * z-score 
>1.96); ***<0.001. See also Fig. 2; Supplementary Table 4.
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Extended Data Fig. 4 | Cellular specification of the transcriptional response 
to exercise depends on training status. a, UMAP plot of public available 
single cell and single nucleus RNA-seq datasets22,23 to demonstrate the cellular 
specification of the exercise response in muscle (FAP = fibro-adipogenic 

progenitors; MuSC = muscle stem cells; MTJ = myotendinous junction; NMJ 
= neuromuscular junction). b-c, Deconvolution of genes involved in ECM 
remodeling (b) and axon guidance (c) that are upregulated in untrained and 
downregulated in trained muscle. See also Fig. 2.
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Extended Data Fig. 5 | Quantitative differences between the exercise 
response of untrained and trained WT muscle. a, Representative examples 
of genes with the same maximal amplitude of gene expression (up- or 
downregulated) that show a phase shift towards an earlier time point in trained 
muscle after acute maximal exercise (dark gray) compared to untrained muscle 
(light gray). b, Representation of the time points when peak expression is 
reached in either the 599 commonly upregulated genes or all upregulated genes 
in untrained and trained muscle post-exercise. c-e, Examples of differentially 
methylated genes involved in transcription (c), Wnt signaling (d) and axon 
guidance (e) in untrained (light gray) and trained (dark gray) muscle post-
exercise. f, Pie chart of the proteome of a trained muscle with the corresponding 
correlation with the transcriptome of an unperturbed trained muscle or an 

untrained or trained muscle after an acute bout of maximal exercise. The gray 
area depicts the proportion of proteins that are not regulated on a transcriptional 
level. The colored parts (orange = upregulated and blue = downregulated) 
represent an overlap with the transcriptome of either unperturbed trained 
muscle or untrained or trained muscle post-exercise. Data from 5 biological 
replicates. Data represent means ± SEM. Statistics of proteomics data were 
performed using empirical Bayes moderated t-statistics as implemented in the 
R/Bioconductor limma package and for RNA-seq data with the CLC genomics 
workbench software. All exact FDR-values are displayed in Source Data file.  
* indicates difference to Ctrl (pre-exercise condition); *<0.05; **<0.01; ***<0.001. 
See also Fig. 3; Supplementary Table 1.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | PGC-1α is essential for normal training adaptation. 
a, Blood lactate level pre- (bar with stripes) and post-exercise (filled bar) in 
untrained and trained WT (gray) and mKO (blue) animals after an acute bout 
of maximal exercise (WT-Untrained post vs WT-Untrained pre: MD = 1.332, 95% 
CI = 0.3739 to 2.289, p = 0.0027; WT-Trained post vs WT-Trained pre: MD = 1.2, 
95% CI = 0.2666 to 2.133, p = 0.0063; mKO-Untrained post vs mKO-Untrained 
pre: MD = 5.145, 95% CI = 4.212 to 6.078, p < 0.0001; mKO-Trained post vs mKO-
Trained pre: MD = 5.660, 95% CI = 4.727 to 6.593, p < 0.0001; mKO-Untrained 
pre vs WT-Untrained pre: MD = 0.2016, 95% CI = −0.3026 to 0.7058, p = 0.4231; 
mKO-Untrained post vs WT-Untrained post: MD = 4.015, 95% CI = 2.977 to 5.053, 
p < 0.0001; mKO-Trained pre vs WT-Trained pre: MD = 0.5450, 95% CI = 0.0586 
to 1.031, p = 0.291; mKO-Trained post vs WT-Trained post: MD = 5.005, 95% 
CI = 4.122 to 5.888, p < 0.0001); n = 20 biological replicates per group. b, Volcano 
plot of the proteome of trained mKO muscle compared to trained WT muscle. 
c-d, Examples of proteins involved in the response to stress (c) and lipid metabolic 
process (d) in trained WT (gray; n = 5), untrained sedentary mTG (pink; n = 5), 
untrained sedentary mKO (dark blue; n = 6) and trained mKO (blue; n = 5). Values 
are expressed relative to the untrained sedentary WT control (n = 5). Exact p-
values are displayed in Supplementary Table 1. e, All significant (FDR < 0.05)  

GO Biological Pathways of proteins with altered phosphorylation status after  
4 weeks of training in mKO (compared to untrained sedentary mKO). f, Volcano 
plot of the transcriptome of untrained sedentary mKO muscle compared to 
that of untrained sedentary WT muscle. g, Venn diagram of all predicted motifs 
that are changes in unperturbed trained WT (gray) and mKO (blue) muscle. 
Data from 5 biological replicates (if not otherwise indicated). Statistics of 
proteomics data were performed using empirical Bayes moderated t-statistics 
as implemented in the R/Bioconductor limma package and for RNA-seq data 
with the CLC genomics workbench software. Exact p-values of proteomics 
data and FDR-values of RNA-seq data are displayed in the Source Data file. To 
assess differences between untrained and trained animals as well as between 
genotypes in panel a, two-way ANOVA followed by Šídák’s multiple comparisons 
test (repeated measures pre-post) or two-tailed Student t-test were performed 
(between genotypes of the same condition) * indicates difference to Ctrl (pre-
exercise condition in a or untrained sedentary WT in c-d); # indicates difference 
between mKO and WT of the same condition in panel a or between mKO-Trained 
and mKO-Untrained in panels c-d; *<0.05; **<0.01; ***<0.001. See also Fig. 4; 
Supplementary Tables 1, 2, 4.
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Extended Data Fig. 7 | Altered transcriptional response to acute exercise in 
muscles lacking PGC-1α. a, All annotation clusters of genes that are significantly 
up- (orange) or downregulated (blue) in untrained mKO animals after a maximal 
exercise bout with an enrichment score >2. b, Venn diagram of all predicted 
motifs that are changes after an acute maximal exercise bout in untrained WT 
(gray) and mKO (blue) animals. All time points are merged. c, All annotation 
clusters of genes that are significantly up- (orange) or downregulated (blue) in 
trained mKO animals after a maximal exercise bout with an enrichment score 
>2. d, Dot plot of all significant (FDR < 0.05) GO Biological Processes of the 
downregulated genes at the 0 h time point in trained WT and mKO animals. 

The two left columns represent all downregulated genes at 0 h in trained WT 
compared to untrained WT and trained mKO compared to untrained mKO. 
The third column represents genes that are downregulated in both the trained 
WT and mKO compared to the respective control. The last column represents 
the genes that are only downregulated at the 0 h time point in the trained 
WT animals, but not the mKOs. e, Venn diagram of all predicted motifs that 
are changes after an acute exercise bout in trained WT (gray) and mKO (blue) 
animals. All time points are merged. Data from 5 biological replicates. Statistics 
of RNA-seq data were performed with the CLC genomics workbench software. 
See also Figs. 5–6; Supplementary Tables 4, 8.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Gain- and loss-of-function of PGC-1α affects DNA 
methylation events. a, Bar Venn diagram of differentially methylated regions 
(DMRs) of an unperturbed trained WT (dark gray) and mKO (dark blue) muscle. 
The common DMR are striped (gray and blue). b, Venn diagram of DMRs of an 
unperturbed trained mKO muscle (open circle) and differentially expressed 
genes (DEG) after acute maximal exercise in trained mKO muscle (blue circle). 
c, Bar Venn diagram of the DMRs that are associated with acute gene expression 
changes (overlap Fig. 3g and panel b of this figure) of WT (dark gray) and mKO 
(dark blue) animals. d, All functional annotation clusters of the overlap of panel 
b (n = 110) with an enrichment score >2. e, Trajectories of transcription factors 
in untrained (light blue) and trained (blue) mKO mice that are differentially 
methylated after training. f, Bar Venn diagram of DMRs of an untrained WT 
or mKO muscle after an acute bout of maximal exercise (light gray or blue, 
respectively; 0 h and 4 h time point merged) and those of an unperturbed 
trained WT or mKO muscle (dark gay or blue, respectively). The common DMRs 
are striped (gray and blue). g-h, Venn diagram of WT (g) and mKO muscle (h) 
depicting all DMRs in untrained muscle after an acute bout of maximal exercise 

(open circles) and DEGs upon an acute bout of maximal exercise (colored circle). 
i, Number of DMRs in untrained sedentary mTG muscle (hypermethylated = solid 
bar; hypomethylated = open bar) compared to untrained sedentary WT muscle. 
j, Bar Venn diagram of DMRs of an unperturbed trained WT (dark gray) and 
untrained mTG (pink) muscle. The common DMRs are striped (gray and pink). 
k, Venn diagram of DMRs (open circle) and DEG (blue circle) of an untrained 
sedentary mTG muscle. l, Venn diagrams of all up- and downregulated genes in 
untrained sedentary mTG muscle (pink) and after an acute bout of exercise in 
untrained (light orange or blue) and trained (darker orange and blue) muscle. 
m, Top 3 functional annotation clusters of the up- (orange) and downregulated 
(blue) proteins in sedentary mTG muscle compared to sedentary WT. Data from 5 
biological replicates. Data represent means ± SEM. Statistics of proteomics data 
were performed using empirical Bayes moderated t-statistics as implemented in 
the R/Bioconductor limma package and for RNA-seq data with the CLC genomics 
workbench software. Exact FDR-values of RNA-seq data are displayed in the 
Source Data file. * indicates difference to Ctrl (pre-exercise condition); *<0.05; 
**<0.01; ***<0.001. See also Fig. 6; Supplementary Tables 1, 2, 6, 7.
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Extended Data Fig. 9 | PCA scatter plot of the different RNA-seq datasets.  
a, b, Principal component analysis (PCA) scatter plots of RNA-seq data of 
untrained (a) and trained (b) WT muscle after an acute bout of maximal exercise. 

c, PCA scatter plot of RNA-seq data of untrained and trained unperturbed WT and 
mKO muscle. d, e, PCA scatter plots of RNA-seq data of untrained (d) and trained 
(e) mKO muscle after an acute bout of maximal exercise.
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