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Dynamic lipidome alterations associated 
with human health, disease and ageing

Daniel Hornburg    1,6, Si Wu    1,6, Mahdi Moqri    1, Xin Zhou1, 
Kevin Contrepois    1, Nasim Bararpour    1, Gavin M. Traber    1, Baolong Su2, 
Ahmed A. Metwally    1, Monica Avina1, Wenyu Zhou1, Jessalyn M. Ubellacker1,3, 
Tejaswini Mishra    1, Sophia Miryam Schüssler-Fiorenza Rose    1, 
Paula B. Kavathas    4, Kevin J. Williams2,5 & Michael P. Snyder    1 

Lipids can be of endogenous or exogenous origin and affect diverse 
biological functions, including cell membrane maintenance, energy 
management and cellular signalling. Here, we report >800 lipid species, 
many of which are associated with health-to-disease transitions in diabetes, 
ageing and inflammation, as well as cytokine–lipidome networks. We 
performed comprehensive longitudinal lipidomic profiling and analysed 
>1,500 plasma samples from 112 participants followed for up to 9 years 
(average 3.2 years) to define the distinct physiological roles of complex 
lipid subclasses, including large and small triacylglycerols, ester- and 
ether-linked phosphatidylethanolamines, lysophosphatidylcholines, 
lysophosphatidylethanolamines, cholesterol esters and ceramides. Our 
findings reveal dynamic changes in the plasma lipidome during respiratory 
viral infection, insulin resistance and ageing, suggesting that lipids may have 
roles in immune homoeostasis and inflammation regulation. Individuals 
with insulin resistance exhibit disturbed immune homoeostasis, altered 
associations between lipids and clinical markers, and accelerated changes 
in specific lipid subclasses during ageing. Our dataset based on longitudinal 
deep lipidome profiling offers insights into personalized ageing, metabolic 
health and inflammation, potentially guiding future monitoring and 
intervention strategies.

Lipids are an important and highly diverse class of molecules that 
have critical roles in cell structure, cell signalling and bioenergetics. 
Despite their critical roles in many biological processes, there is much 
to be learned about the diversity of lipids in humans, how their com-
position differs across people, and how they change over time at an 
individual level and during disease. Such information is expected to 
provide insights into biological processes such as ageing as well as the 
possible roles of lipids in health and disease.

High-throughput omics technologies provide new avenues to 
understand the molecular landscape of human physiology and its 
dynamic changes during health and disease. To date, many studies 
have used next-generation sequencing owing to its accessibility and 
cost-effectiveness1. Recently, mass spectrometry (MS) strategies 
have provided quantitative insights into the proteome2,3 at scale and  
depth. Metabolites, which can also be investigated using MS, have been 
studied to a lesser extent given their complex chemical diversity4,5. 
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and with an increased frequency of three to seven collections over  
3 weeks during periods of illness (for example, RVI) or notable stress, 
as previously reported17,18. In addition to lipid profiling, we collected 
50 clinical laboratory measurements at each sampling timepoint along 
with medical records (Supplementary Data 2). Finally, because samples 
were collected during periods of stress and illness, we also profiled 
62 cytokines, chemokines and growth factors in plasma at the same 
timepoints.

The human lipidome was characterized using a high-throughput 
quantitative lipidomics pipeline (Lipidyzer) consisting of a 
triple-quadrupole mass spectrometer (Sciex QTRAP 5500) in con-
junction with a differential mobility separation (DMS) device15,16. This 
setup allows the identification and robust quantification (estimated 
concentrations) of >1,000 lipid species across 16 subclasses (free FA 
(FFA), TAG, DAG, CE, PC, lysophosphatidylcholine (LPC), PE, alkyl ether 
substituent containing PE (PE-O), alkenyl ether (Plasmalogen) substitu-
ent containing PE (PE-P), lysophosphatidylethanolamine (LPE), SM, 
PI, CER, hexosylceramide (HCER), lactosylceramide (LCER) and dihy-
droceramide (DCER); Fig. 1b). In addition, we observed the differential 
behaviour of smaller and larger TAGs, which comprise ≤48 and ≥49 
carbons across all FAs, respectively, and evaluated these separately in 
most analyses. For accurate quantification and to control for variance 
introduced during lipid extraction, we included a mix of 54 deuterated 
spike-in standards for nine lipid subclasses at known concentrations. 
Lipid species that were not present as labelled spike-in standards were 
normalized against the spike-in standards based on structural similarity 
and signal correlation (described in Methods).

We randomized the samples separately for lipid extraction and 
MS data acquisition. After filtering (described in Methods), we quanti-
fied, on average, 778 lipids in each sample and 846 lipid species across 
>1,600 samples (including quality control (QC) samples). We found 
the highest number (373) of lipid species in the large TAG subclass and 
the smallest number (4) in the DCER subclass (Fig. 1c). Lipids comprise 
chemically heterogeneous molecules that exert a broad spectrum of 
biological functions ranging from bioenergetics to cellular signalling. 
This is partially visible in lipid subclass-specific abundance distribu-
tions. Figure 1d shows the abundance distributions across more than 
four orders of magnitude and for each lipid subclass, and depicts two 
distinct properties: (1) the median abundance of that subclass and (2) 
the abundance range across all interrogated plasma samples (includ-
ing healthy and disease timepoints). SMs and FFAs were observed, on 
average, as the most abundant subclasses, but they spanned a relatively 
small dynamic range. Other lipid subclasses, including LPCs, CEs and 
TAGs, had a lower median abundance but a much wider dynamic range.

Our study demonstrated high technical reproducibility. As antici-
pated, the 104 QC samples clustered distinctly (Extended Data Fig. 1); 
the median coefficient of variation (CV) for the QC samples was low, 
with values between 6.5% (small TAGs) and 20.7% (DAGs). In contrast, 
CVs calculated across participants and sampling timepoints ranged 
from 19.9% (SMs) to 91.4% (small TAGs), indicating sufficient assay 
reproducibility to discern biological differences. To ensure the highest 
robustness in our analysis, we focused on 736 lipid species for which (1) 
QC CVs were <20% and (2) CVs in biosamples were larger than CVs in QC 
samples. Except for FFAs, intraparticipant variance was consistently 
lower than interparticipant variance, suggesting that individual lipid 
signatures are distinct and stable over time (Fig. 1e). Interestingly, both 
small and large TAGs and ester- and ether-linked PEs (PE versus PE-O and 
PE-P) exhibited significant differences within their respective subclasses 
in terms of variance (Fig. 1e) and abundance distribution (Fig. 1d). This 
implies the existence of unique physiological and participant-specific 
differences, which may provide new insights into biological processes.

Lipid signatures are highly individualized
We first sought to investigate lipid abundance differences across indi-
viduals by characterizing the lipidome in ‘healthy’ baseline samples, 

Lipids comprise a major, heterogeneous family of biomolecules within 
the metabolome and remain challenging to characterize owing to their 
wide range of physicochemical properties6 and the relatively small 
number of lipidomics studies.

Complex lipids can be divided into several classes and subclasses 
that are distinguished by lipid head groups and linkages to different 
aliphatic chains7. Lipids such as triacylglycerols (TAGs), diacylglycer-
ols (DAGs), phosphatidylcholines (PCs), phosphatidylethanolamines 
(PEs), ceramides (CERs), sphingomyelins (SMs) and cholesterol esters 
(CEs) each consist of a specific backbone architecture conjugated to 
various fatty acids (FAs). The attached FAs can vary in the number of 
unsaturated bonds and their positions within acyl chains; together 
with the backbone, FAs confer distinct physicochemical properties 
and physiological roles. Lipids carry out and regulate many key func-
tions, including redox homoeostasis, energy storage, intracellular and 
extracellular signalling, induction and resolution of acute and chronic 
inflammation8–10, and maintenance of electrochemical gradients across 
subcellular compartments. Abnormal lipid profiles (dyslipidaemia) 
have been associated with a range of diseases, including metabolic syn-
drome, type 2 diabetes (T2D), cancer, nephropathy and cardiovascular 
and neurodegenerative diseases, and may result from a combination of 
factors such as genetic heterogeneity, lifestyle and, as recently shown, 
inflammation related to coronavirus disease 2019 infection11–13.

One of the key roles of lipids in maintaining metabolic homoeo-
stasis is to mediate the induction and attenuation of inflammatory 
processes (for example, leukotriene, prostanoid and endocannabinoid 
signalling)8,9,14. Because of the various roles lipids have in maintaining 
homoeostasis in humans, different lipid species or classes may influ-
ence perturbations that induce acute inflammation (for example, 
respiratory viral infections (RVIs)), as well as the resolution of inflam-
mation, metabolic diseases (for example, T2D) and physiological pro-
cesses (for example, ageing) that have been associated with changes 
in the regulation of chronic inflammation. In light of the diverse roles 
of lipids, it is important to understand their quantitative differences 
among individuals and their dynamics across phenotypes to character-
ize their potential roles in health and disease.

Here, we characterize the lipidome dynamics in >100 human par-
ticipants followed for up to 9 years, covering periods of health and 
disease, using an MS-based approach that allows a broad array of lipid 
types to be measured rapidly, quantitatively and rigorously15,16. We 
identified distinct longitudinal lipid signatures that link lipid profiles 
to the microbiome, ageing and different clinical pathophysiologies, 
including insulin resistance (IR) and chronic and acute inflammation. 
Our results provide valuable insights into the associations of key lipids 
and lipid subclasses with distinct metabolic health states in humans, 
and serve as a unique resource to the scientific community.

Results
Comprehensive lipid profiling of a longitudinal cohort
From a cohort of >100 participants with IR or insulin sensitivity (IS), we 
previously collected longitudinal molecular data comprising genome, 
transcriptome, proteome, metabolome and 16S microbiome data 
across different timepoints (~1,000 in total17). Within this cohort, we 
explored various molecular signatures in health and disease and identi-
fied hundreds of molecular pathways associated with metabolic, cardio
vascular and oncologic pathophysiologies17,18. Here, we investigate 
the dynamics of a largely unexplored molecular layer—the ‘plasma 
lipidome’—and extend the longitudinal duration by 2 years to obtain 
a total of 1,539 samples.

To investigate lipidome alterations associated with health, dis-
ease and lifestyle changes, plasma samples from 112 participants were 
profiled at a median of ten timepoints across 2–9 years (average 3.2 
years; one participant was sampled 163 times across 9 years; Fig. 1a, 
Supplementary Data 1 and 2 and Supplementary Figs. 1 and 2). Samples 
were collected every 3 months when the participants were healthy 
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defined as samples from participants in the absence of any self-reported 
acute disease. This does not preclude latent, asymptomatic chronic 
conditions such as prediabetes or potential undiagnosed conditions. 
Overall, we analysed 802 healthy baseline samples derived from 96 
participants from whom we collected samples at two or more time-
points. The number of baseline samples per participant is shown in 
Supplementary Fig. 3; most participants had approximately ten healthy 
visits, except one outlier with 52 healthy baseline samples.

In comparison with the transcriptome, proteome and general 
metabolome, lipid signatures can be highly personalized when assessed 
longitudinally19. To investigate the participant specificity of lipid pro-
files for healthy sampling timepoints at timescales of months to years, 

we examined which lipid subclasses show the largest interindividual 
differences and quantified how much of the variance observed for each 
lipid species can be attributed to interparticipant differences (Fig. 2a). 
Many lipids, in particular among TAGs, SMs, HCERs and CEs, showed 
a high degree of participant-specific variance, in some cases >50%. In 
contrast, FFAs were found to have relatively low participant-specific 
variation. To further illustrate participant specificity, we performed 
t-distributed stochastic neighbour embedding (t-SNE) on data from 
participants with >12 healthy visits, based on 100 lipids that we deter-
mined to be the most personalized (Fig. 2b). Most, but not all, samples 
clustered by individual participants (Fig. 2b,c), showing that some 
lipids can comprise personalized signatures even across years.
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Key lipids are associated with important clinical measures
Given the high variation in specific lipid classes among individuals, we 
next investigated the degree to which global lipidome profiles from 
healthy baseline samples are associated with clinical measures. We first 
grouped lipids into seven modules by applying weighted gene correla-
tion network analysis (WGCNA) based on the similarity of lipid profiles 
and then associated these seven modules with 50 clinical measures 
while controlling for the covariates sex, age, ethnicity and body mass 
index (BMI; Fig. 2d–f and Supplementary Fig. 4). Controlling for these 
covariates allows investigation of the direct associations between the 
lipid modules and clinical measures by ruling out potentially confound-
ing effects from sex, age and BMI. Modules M1 and M5, which were 
enriched for CER and PE, as well as small TAG (mainly M1) and large 
TAG (mainly M5), showed the strongest positive association with T2D 
measures, including glycated haemoglobin (A1C), fasting blood glucose 
and fasting insulin. Moreover, they showed a positive association with 
inflammatory markers, including high-sensitivity C-reactive protein 
(CRP) level and white blood cell count, and a negative association with 
high-density lipoprotein (HDL; ‘good cholesterol’) levels. Hence, lipids 

in M1 and M2 have negative health associations based on conventional 
clinical measures. In contrast, M7, which contained some FFAs and 
LPCs, correlated with lower CRP and A1C levels. M3, which was enriched 
for PE-P and PE-O, showed an association with higher levels of HDL 
and lower levels of fasting insulin, and, compared with the dominant 
T2D patterns in M1 and M5, demonstrated a signature that is generally 
considered healthier.

In addition, we investigated lipid–microbiome associations and 
observed mostly negatively correlated lipids, including several TAG 
species for the bacterial family Oscillospiraceae and (L)PE, PC and CE 
for Clostridiaceae (Supplementary Fig. 5 and Supplementary Note 1). 
These microorganisms are known to be abundant in the gut of par-
ticipants with IS in this cohort20, suggesting a potentially beneficial 
role of Clostridia in host lipid metabolism. Finally, an outlier analysis 
identified participants with abnormally high or low lipid signatures, 
some of which we could correlate with underlying medical conditions 
such as hepatic steatosis (Supplementary Fig. 6 and Supplementary 
Note 2). Overall, this global analysis suggests that many lipid sub-
classes are associated with and potentially have a role (for example, 
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proinflammatory, anti-inflammatory or metabolic role) in clinical 
conditions, or may serve as biomarkers to stratify health states.

Global lipidome disruption in IR
As many clinical measures were associated with specific lipid subclasses, 
we next determined how the lipidome is influenced by the chronic 
metabolic disorder IR. IR commonly occurs in T2D and is a condition 
in which cells, mainly muscle cells and adipocytes, are unresponsive 
to insulin, leading to high glucose levels in the blood. IR is often associ-
ated with chronic inflammation as well as metabolic syndrome, includ-
ing dyslipidaemia, and can lead to non-alcoholic fatty liver disease.  
Elucidating how the lipid network is perturbed in individuals with  
IR is important to better understand the molecular mechanisms and 
prognosis of metabolic disorders.

IR can be diagnosed by measuring the steady-state plasma glu-
cose (SSPG) level after endogenous insulin secretion is suppressed 
and insulin and glucose are infused at fixed concentrations21. IR or IS 
(IR/IS) status was measured using SSPG assays in 69 participants, of 
whom 36 and 33 were classified as having IR (SSPG >150 mg dl−1) and 
IS (SSPG ≤150 mg dl−1), respectively. At the global level, we observed 
some capacity of lipid signatures to distinguish IR and IS (Fig. 3a). 
Using regression analyses that controlled for age, sex, ethnicity and 
baseline BMI, we resolved comprehensive differences between IR and 
IS across most lipid subclasses (Fig. 3b–d), such that more than half of 
the lipids (424) were significantly associated with SSPG levels. Lipids 
and lipid subclasses that had a significant positive correlation with 
SSPG included TAGs and DAGs, which is consistent with our observa-
tions (Fig. 2d) and previous reports of higher levels of these lipids in 
individuals with dyslipidaemia and metabolic syndrome22,23. We also 
observed subsets of CERs to have increased abundance, contribut-
ing to the development of obesity-induced IR in mice and humans24  
(Fig. 3b,c), and making possible the lipid-based differentiation of IR 
and IS (Fig. 3a and Supplementary Fig. 7).

To investigate over- and under-representations of specific sub-
groups of lipids, we performed an enrichment analysis on positive and 
negative model coefficients. As TAGs comprise the largest subclass 
of lipids in our data and could dominate the results, we performed 
enrichment analyses separately for each lipid subclass and across all 
lipids (Fig. 3e). Enrichments were evaluated at the subclass level (Fig. 1b)  
and for FA composition (global saturation level and specific FAs). 
Importantly, to our knowledge, new associations were found, including 
an association of ether-linked PE (PE-P)—in contrast to PE in general—
with lower SSPG levels. Ether-linked PEs are involved in cell signalling 
and can act as antioxidants25. Together with increased levels of TAGs 
with higher SSPG levels, reduced PE-P levels suggest IR-associated 
inflammation and may indicate a PE-mediated link between oxidative 
stress, inflammation and IR.

In Fig. 2d, we demonstrated lipid modules that correlate with a 
variety of clinical measures. As it is well documented that IR affects 
both lipid regulation (dyslipidaemia) and clinical phenotypes, we 
investigated whether associations between lipids and clinical measures 
are affected by the IR/IS status, which would have important health 
implications for these participants (Fig. 3f and Supplementary Fig. 8).  
Intriguingly, we found many significant differences in both the effect 
sizes and the direction of the correlation of lipid signatures and clinical 
measures between participants with IR and those with IS. For instance, 
in IR unlike in IS, the low-density lipoprotein (LDL) to HDL ratio was 
positively associated with the ether-linked PE-P and PE-O, and nega-
tively associated with LPE (Fig. 3f). Moreover, in participants with IR 
and IS, we observed opposite correlations of immune and blood cell 
measurements with lipid subclasses, including A1C–SM, SSPG–CER 
and SSPG–PI, as well as immunoglobulin M–PE-P/PE-O, monocyte–
PE-P/PE-O, eosinophil–TAG and white blood cell–PI (Fig. 3f). Overall, 
these data indicate that, depending on the IR/IS status, lipid–clinical 
measure associations can vary significantly and the key lipids involved 

in energy regulation, cell signalling and immune homoeostasis exhibit 
broad dysregulation in IR.

Dynamic lipidome alterations during viral infections
In addition to their role in chronic inflammatory and metabolic condi-
tions such as IR, complex lipids are key mediators of acute inflamma-
tory responses, for example, by releasing arachidonic acid (FA(20:4)). 
Hence, complex lipids may be modified, released and activated during  
RVIs and possibly vaccinations while also having important roles  
in these processes in an IR-dependent manner.

Participants in this cohort were densely sampled during periods 
of RVI (72 distinct RVI episodes in 36 participants for a total of 390 
samples) and vaccination (44 episodes in 24 participants for a total 
of 275 visits; Supplementary Fig. 9). For both RVI and vaccination, 
we classified longitudinally collected samples as early-phase (days 
1–6), later-phase (days 7–14) and recovery-phase (weeks 3–5) samples  
(Fig. 4a). Using linear models, we identified 210 lipids that were sig-
nificantly changed during RVI (false discovery rate (FDR) < 10%) across 
most subclasses (Fig. 4b), some of which have previously been impli-
cated in acute inflammation. For instance, PEs have been reported 
to have a critical role in apoptotic cell clearance and the aetiology of 
various viruses26. Another example is PIs, which bind to the respira-
tory syncytial virus with high affinity, preventing virus attachment to 
epithelial cells27. LPCs, which we observed in increased abundance 
during inflammation, have been demonstrated to have therapeutic 
effects (after intraperitoneal administration in mice) in severe infec-
tions through immune cell recruitment and modulation28.

To further investigate the lipid-associated processes that are 
involved in acute infection, we examined enriched lipids during infec-
tion (Fig. 4c). We observed significant changes in specific lipid sub-
classes, including ether-linked PEs and TAGs containing saturated 
FAs (SFAs) such as dodecanoic acid (FA(12:0)), following RVI. Dode-
canoic acid and palmitic acid (FA(16:0)) are proinflammatory com-
pounds that upregulate cyclooxygenase 2 (ref. 29) and have key roles in  
the activation of inflammatory responses. Overall, this suggests that 
different key lipid subclasses may be important for various aspects of 
viral biology as well as the immune response, and undergo significant 
changes during RVI.

To explore the choreography of lipid dynamics over time, we 
examined their trajectory during the different phases of RVI. The 210 
significantly changed lipids were mapped to four major clusters, using 
a hierarchical clustering approach based on the Euclidean distance 
between lipid species as the similarity measure (Fig. 4d), and these 
main clusters were linked with clinical measures (Fig. 4e). Except for 
the green cluster, which was significantly enriched for PC, all profiles 
showed decreased levels during infection. The blue cluster was sig-
nificantly enriched for small TAG and showed sharply decreased lipid 
levels in early RVI, with a rapid recovery that correlated with clinical 
measures of total lipids, including cholesterol and LDL. This indicates 
a metabolic shift in early infection, potentially to support increased 
energy metabolism. The orange cluster, enriched for LPC, large TAG 
and ether-linked PE, showed a similar profile to the blue cluster but 
a delayed recovery to baseline levels. Lipids in this cluster were posi-
tively correlated with the clinical lipid panel and blood glucose lev-
els but negatively correlated with CRP level and neutrophils. This 
suggests that early changes in energy metabolism (reduction in lipid 
and blood glucose levels) are coupled with increased inflammation 
(reduction in LPC and ether-linked PE levels, as well as an increase in 
the CRP level and neutrophils) followed by a slow attenuation of inflam-
mation at later stages of RVI. The purple cluster, which was enriched  
for FFA, represents slowly decreasing lipid levels and reached the  
lowest point during the RVI recovery phase before reverting to the  
baseline levels. In particular, the late-stage correlation with immune- 
related parameters (CRP level, lymphocyte count) suggests that  
reduction in the levels of some lipids in this cluster may relate to a 
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temporary strong immunosuppression to attenuate early- to mid-phase 
inflammation and promote a return to homoeostasis. Overall, our  
data suggest links between differential responses of lipids and  
specific biological roles, with rapid shifts in energy metabolism to 
support inflammation early in infection and possible attenuation 
in later stages. Reflecting important global shifts in cell signalling, 
metabolism and inflammation during RVI, these lipids may allow the 
assessment of disease severity and prognosis or offer an opportunity 
for therapeutic intervention.

We next investigated whether individuals with IR and IS respond 
differently to infections and vaccination (Fig. 4f and Supplementary 
Fig. 10). Through a longitudinal differential analysis, we found distinct 
longitudinal profiles for IR and IS. We observed a higher abundance of 
several FFAs during the early stage of RVI and greater elevation of PC  
levels in the middle to late stage in participants with IR than in par-
ticipants with IS. In contrast, TAGs and some PEs were differentially 
elevated in IS compared with IR throughout the middle to later stages 
of infection. The IR/IS-specific FFA and TAG responses may reflect the 
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altered energy metabolism in IR, whereas differences in PCs and other 
lipid classes may indicate changes in immune-associated signalling 
pathways. Importantly, we found that the patterns after vaccination 
were distinct from those during infection (Supplementary Fig. 10). 
For example, fewer TAG species showed elevated levels in IS, whereas a 
distinct population of LCERs were upregulated in IR after vaccination. As 
individuals with T2D associated with IR often exert a more compromised 
immune response to RVI17, such changes may be biologically significant.

Altered ageing of participants with IR
Ageing increases the risk of cardiovascular diseases and is accompanied 
by a variety of diseases including T2D30,31 and chronic inflammation32. 
In our study, the participants spanned an age range of 20–79 years 
(healthy timepoints, median 57 years) and were longitudinally sampled  
on average over 3 years (Fig. 5a). Across the cohort, we observed an 
increase in BMI with higher age (Fig. 5b). We previously identified 
age-associated molecular signatures in a subset of this cohort, including 
inflammation (acute-phase proteins), blood glucose and lipid metab-
olism (A1C, apolipoprotein A-IV protein), but had not investigated 
age-associated lipidome changes33. To identify lipids and pathways 
that change with ageing and may be associated with the development 
of age-related pathologies, such as chronic low-grade inflammation, 
we investigated longitudinal changes in the lipidome. In cross-sectional 
studies, lipid content can differ across participants with different ages, 

owing to biological ageing or the period during which the cohort aged, 
or other cohort effects. Periods and cohorts are social contexts affect-
ing individuals and are inherently and mathematically confounded by 
the individuals’ age34. These comprise environmental factors differ-
ently affecting young and old participants, due to them being born in 
different generations, and include generation-dependent exposures 
that may also affect lipidome compositions (for example, diet, lifestyle 
and/or diseases) rather than actual age. However, we note that the 
longitudinal nature of our data better enabled us to eliminate some 
biases and focus on the same individual across time34. Furthermore, 
we previously did not observe major dietary changes in the cohort18. 
To identify lipid changes that occur with ageing in our longitudinal 
cohort, we used a linear model that estimates relative lipid changes 
as a function of the change in age (Δage model) while also controlling 
for sample storage length and BMI. With this model, we determined 
the ‘ageing’ effect (β coefficient) for each lipid subclass (Fig. 5c) and 
across lipid species (Fig. 5d).

We found that the levels of most lipid subclasses increased with 
ageing, most prominently CERs (LCER, HCER, DCER), SMs, LPCs and 
CEs, with some of the observed variance suggesting more complex 
lipid–ageing dependencies (Fig. 5c). A general increase in the levels 
of multiple lipid species and subclasses is consistent with previous 
observations35,36. Intriguingly, the levels of TAGs generally increased 
over time (Supplementary Fig. 11), but this trend disappeared when 
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controlling for BMI. We performed an enrichment analysis on the 
Δage model coefficients at the species level and observed a shift in the 
physicochemical properties of lipids associated with ageing, including 
increased levels of SFAs and monounsaturated FAs, whereas the levels 
of polyunsaturated FAs (PUFAs) were reduced (Fig. 5d). This pattern 
has been previously associated with dyslipidaemia and inflammation37, 
underlining progressive deterioration of metabolic health during 
ageing. We also observed depleted levels of (beneficial) omega-3 FAs. 
In particular, the levels of docosahexaenoic acid (FA(22:6), TAG) and 
eicosapentaenoic acid (FA(20:5), PE) decreased with ageing. These 
omega-3 FAs have been indicated to have beneficial health effects 
by lowering plasma cholesterol levels and serving as precursors for 
mediators that resolve inflammation, such as resolvins, protectins and 
maresins38,39. In addition, decreased levels of linoleic acid (FA(18:2)) 
have been reported in aged skin40; our data show that this is also a 

significant ageing biomarker in blood plasma, suggesting a more sys-
temic decrease. Through desaturation and elongation, linoleic acid is 
metabolized to arachidonic acid (FA(20:4)), which we found to increase 
in abundance with increasing age when we applied less stringent filter
ing (Supplementary Fig. 12), further substantiating a general shift 
towards inflammation with ageing. Furthermore, large and small TAGs 
showed distinct patterns, underlining the different functional roles 
along the TAG spectrum. Interestingly, the levels of LPCs, which have 
been implicated in cardiovascular diseases and neurodegeneration41 
and some of which are anti-correlated with CRP (Fig. 2), increased with 
ageing, further underlining their pleiotropic role in human health. 
We also observed a strong sex dimorphism for multiple subclasses 
(Fig. 5e). Beyene et al. reported sex-associated differences in lyso- and 
ether-phospholipid metabolism42, which we confirmed in our study. 
In addition, we observed sex-associated differences for small TAGs as 
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5 years based on the Δage model controlling for BMI and sample storage length. 
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<10%). Enrichments were calculated independently within lipid subclasses, as 
well as across all lipid species (‘all’). log2(odds) values are depicted for significant 
associations with lower or higher age (BH FDR < 5%). Infinite log2(odds) values are 
imputed with 0.5× the mean value of positive/negative log2(odds) determined 
across all data. MUFA, monounsaturated FA. e, Δage coefficients (ageing–sex) 
of individual lipid subclasses for male and female participants, controlling for 
sample storage length and BMI. f, Δage coefficients (ageing–IR/IS) of individual 
lipid subclasses for IR and IS, controlling for storage length, BMI and sex. For  
e and f, data are presented as the mean of estimated coefficients ± s.d., 
determined using an ordinary least-squares regression test.
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a prominent signature in ageing, with higher levels in men and lower 
levels in women.

We next investigated the extent to which IR alters molecular age-
ing signatures and observed that participants with IR had larger coef-
ficients for multiple subclasses, including HCER, LCER, SM and CE, than 
participants with IS. Larger coefficients indicate that ageing-related 
changes may be accelerated in IR versus IS (controlling for storage 
length, sex and BMI; Fig. 5f). In contrast to previous reports that did 
not distinguish IR status35, our study identified a negative association 
between DAGs and ageing in participants with IR. Intriguingly, higher 
DAG levels are commonly linked to dyslipidaemia and IR37,38; however, 
similar to TAGs (see above), DAGs may have a stronger association with 
BMI, which was controlled for in the model. Moreover, PI and PE showed 
opposite ageing effects in participants with IR and IS, which suggests 
IR-specific changes in phospholipid metabolism with ageing. In sum, 
the composition of many lipid subclasses (that is, degree of unsatura-
tion, omega-3 FAs, large TAGs, ether-linked PEs) changes significantly 
with ageing, a process that—for some lipid subclasses—differs between 
the sexes and is distinctly accelerated in the presence of IR.

Specific associations of lipids with cytokines and chemokines
Given the importance of cytokines, chemokines and growth factors 
in diverse biological processes, we characterized their relationship 
to lipids across homoeostasis and various pathophysiological disease 
processes in our longitudinal cohort. We investigated the degree to 
which the abundance of a particular lipid predicts the level of cytokines, 
chemokines or growth factors, controlling for BMI, sex, ethnicity and 
multiple measurements per participant as random effects across 
all samples and timepoints for which both measures were available 
(1,180 samples). Overall, we found 1,245 significant (FDR < 5%) positive  
and negative associations between a majority of lipids (580) and  
40 cytokines, chemokines and growth factors (Fig. 6a).

The largest numbers of positive associations were between granu-
locyte–macrophage colony-stimulating factor (GM-CSF) and TAGs 
and between leptin and TAGs (Fig. 6a and Supplementary Fig. 13). The 
adipokine leptin regulates caloric intake and is commonly present in 
elevated levels in obesity, contributing to the associated inflammatory 
state43. Its amount in the blood correlates with the amount of adipose 
tissue. Its receptor is expressed in the hypothalamus, hippocampus 
and many immune cells; thus, it also acts as a neuroregulator and an 
immunoregulator43,44. The cytokine GM-CSF, originally defined as a 
haemopoietic growth factor, has other biological roles, including exert-
ing proinflammatory effects45–47. These signatures are consistent with 
the inflammatory effect of the high TAG levels that we observed and 
are also found as a consequence of a high-fat diet, obesity and hepatic 
adiposity48,49. The pleiotropic cytokine interleukin-6 (IL-6), whose 
inflammatory and anti-inflammatory effects are context dependent50, 
together with the anti-inflammatory cytokine IL-10 (ref. 51), showed 
negative associations with some TAGs and clustered distinctly from the 
positive TAG–leptin and TAG–GM-CSF associations, suggesting func-
tional differences among different TAG species in immunoregulatory 
networks (Fig. 6a). TAGs showed the overall highest number of associa-
tions with leptin and GM-CSF, whereas lipids from other subclasses, 
such as PE, PC and DAG, were also positively associated (Fig. 6b,c and 
Supplementary Fig. 13). In contrast, lyso species of PE and PC (Fig. 6d,e) 
showed fewer associations with and less central roles for GM-CSF and 
leptin. Overall, these results suggest regulatory commonalities across 
lipid classes (for example, positive associations of TAGs, DAGs, PCs and 
PEs with leptin) and differences within subclasses for proinflammatory 
and immunoregulatory pathways.

To elucidate the extent to which specific subsets of lipid species are 
associated with cytokines and chemokines, we performed an enrich-
ment analysis (Fig. 6f). Overall, we observed strong associations of  
FAs with distinct cytokines. For instance, positive leptin–TAG associa-
tions were significantly enriched for SFA, the polyunsaturated FA(18:3) 

and small TAGs. In contrast, large TAGs were negatively associated with 
IL-6 and IL-10. Moreover, we observed a hub of negative associations 
between TAGs containing FA(22:5) and multiple cytokines, including 
the anti-inflammatory IL-10 and the proinflammatory IL-23, as well as 
IL-6. Enrichment of TAG subclasses for positive and negative associa-
tions within both proinflammatory and immunoregulatory cytokines 
suggests that TAG subclasses (in terms of both the length and satura-
tion of the acyl chain) have distinct roles in immunoregulation and 
signalling.

In Fig. 2, we found that some LPCs were associated with anti- 
inflammatory, hence healthier, signatures. Here, LPCs were positively 
associated with several growth factors, such as epidermal growth fac-
tor (EGF), vascular endothelial growth factor (VEGF) and brain-derived 
neurotrophic factor (BDNF), and resistin. VEGF is involved in promoting 
angiogenesis, whereas BDNF and EGF promote cell proliferation, with 
BDNF having a cardinal role in neurogenesis and plasticity52. In addition, 
LPCs were positively associated with the soluble CD40 ligand (sCD40L), 
which is secreted by activated T cells and platelets during inflamma-
tion, as well as with the inflammatory cytokine IL-1⍺ and the adipose 
tissue-specific secretory factor resistin, which induces other cytokines 
and has been suggested to contribute to a chronic proinflammatory 
cascade in T2D53. Together, LPCs demonstrated contrasting associa-
tions, including some anti-inflammatory and tissue repair as well as pro-
inflammatory signatures. These associations may highlight a difference 
between chronic inflammation (for example, mediated by factors such 
as resistin during T2D) and acute inflammation (for example, during 
an infection), which is strongly associated with high CRP levels. It may 
also reflect that both inflammatory and anti-inflammatory mediators 
are present in amounts that regulate a response so that it is effective 
but not excessive. Moreover, PCs containing linoleic acid (FA(18:2)) 
were negatively associated with the chemokines CXC motif ligand 9 
(CXCL9; also known as MIG (monokine induced by interferon-γ (IFNγ))) 
and CXCL10 (also known as IP-10 (IFNγ-induced protein 10 kDa); Fig. 
6b,f). CXCL9 and CXCL10 are induced by IFNγ to recruit cells to sites of 
inflammation; they bind to the same chemokine receptor, CXCR3. This 
association suggests that these lipids may affect immune cell migra-
tion during inflammation, in addition to their immune modulation 
role that we observed during RVI (Fig. 4). Overall, our multiomics data 
outline complex associations between cytokines and lipid subclasses 
as well as differential associations of lipids with specific FA composi-
tions, suggesting distinct roles ranging from immune activation to 
immunosuppression.

Discussion
Until recently, most omics studies have focused on transcriptomics, 
proteomics and, more recently, metabolomics, which is more closely 
associated with many phenotypes54. However, lipidomics remains 
largely underexplored despite lipids’ important roles in cell signalling, 
cell structure and energy management. The lipidome has been difficult 
to study owing to its complexity and the fact that it is derived from 
both endogenous and exogenous factors, such as the microbiome and 
lifestyle (diet and physical activity). Investigating the dynamic range 
of lipid changes, including which lipids change with acute or chronic 
conditions over what period, may reveal markers of early disease onset 
and progression as well as mechanistic insights that can be used to 
develop better and personalized treatments.

By following participants for up to 9 years, we identified highly 
participant-specific lipids and lipid subclasses (Figs. 1e and 2a–c), 
functional modules of lipids that map to clinical measures at base-
line and throughout diseases (Figs. 2d,f and 3f ), and lipid outlier  
signatures that may be predictive of diseases such as hepatic steato-
sis (Supplementary Fig. 6). Across perturbations such as IR (Fig. 3),  
viral infections (Fig. 4), ageing (Fig. 5) and cytokine–lipid associations 
(Fig. 6), we observed distinct behaviours among many lipid subclasses, 
such as ether- and ester-linked PEs, small and large TAGs, and lipids 
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with specific FA configurations (for example, omega-3/omega-6 FAs, 
PUFAs and SFAs). Overall, our results point to the distinct biological 
roles of lipid subclasses and demonstrate that conventional clinical 
lipid profiles (that is, overall TAG levels) do not resolve many changes 
relevant to metabolic health.

Throughout our analyses, we consistently observed distinct 
behaviours between ester-linked and ether-linked PEs (PE versus PE-O/
PE-P), as well as between two functionally distinct subgroups of TAGs 
(small TAGs (≤48 carbons across all FAs) and large TAGs (≥49 carbons 

across all FAs)). Ether-linked PEs have been implicated in cell signalling 
and as antioxidants25, and we found them to be significantly associated 
with healthy phenotypes including low SSPG levels and high HDL levels. 
In addition, ether-linked PEs are depleted early during infection, puta-
tively increasing the inflammatory state, and/or depleted by scavenging 
radical oxygen species resulting from inflammation. In addition, PE, 
PE-P and PE-O show sex- and IR/IS-specific signatures during ageing 
(see below). Together, these observations suggest that ether-linked 
PEs are associated with health and chronically low levels of these PEs 
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Fig. 6 | Lipid–cytokine associations. a–e, Network of 1,245 significant  
(BH FDR < 5%) lipid–cytokine associations, indicating positive (red) and negative 
(blue) associations calculated across 1,180 samples, across all lipids (a) and  
for PCs (b), PEs (c), LPCs (d) and LPEs (e). Networks were pruned based on  
a BH FDR of 5% for coefficients determined in linear mixed-effects models. 
Colour indicates lipid class; edge width represents coefficients; and node  
size represents node connectivity (popularity). The network was assembled  
using the ‘graphopt’ layout algorithm. f, Fisher’s exact test enrichment analysis 
comparing the physicochemical properties of lipids (y axis), at the subclass, 
global FA and individual FA level, that are associated with a particular cytokine  
(x axis). The analysis was performed for TAGs only (i), for all non-TAG lipids (ii) 
and across all lipids (iii). Enrichments (log2(odds)) among lipids with positive  

β coefficients (BH FDR < 10%) are indicated in red; enrichments (log2(odds)) 
among lipids with negative β coefficients (BH FDR < 10%) are indicated in 
blue; black denotes cases for which a certain property was enriched in both 
populations (positive and negative associations). log2(odds) values are depicted 
when the respective annotation was significantly associated with a BH FDR 
of <5%. Infinite log2(odds) values are imputed with 0.5× the positive/negative 
log2(odds) values determined across all data. IL-1Ra, IL-1 receptor antagonist; 
ICAM1, intercellular adhesion molecule 1; SDF1⍺, stromal cell-derived factor 1⍺; 
RANTES, regulated on activation, normal T cell expressed and secreted;  
PDGF-BB, platelet-derived growth factor-BB; GRO⍺, growth-regulated ⍺ protein; 
FasL, Fas ligand; TRAIL, tumour necrosis factor-related apoptosis-inducing 
ligand.
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may have detrimental effects in humans. In this context, it will also be 
interesting to investigate other ether-linked lipid subclasses known to 
be detectable in blood plasma, such as PCs with alkyl ether substituent 
(PC-O) and PCs with alkenyl ether (Plasmalogen) substituent (PC-P), 
in future studies.

Recently, we reported the differential regulation of small and large 
TAGs within a 60-min recovery phase after exercise19. Here, we confirm 
and expand our previous observations suggesting new clinically rele-
vant physiological roles of these TAGs within a much larger longitudinal 
cohort. Our data demonstrate that (1) many biological variations are 
captured in TAGs’ abundance profiles (Figs. 1e and 2a), which (2) are 
distinct for TAG subgroups including large and small TAGs, and those 
containing specific FAs (Figs. 5d and 6f). For instance, small TAGs show 
distinct associations with certain cytokines and chemokines and are rap-
idly depleted during early RVI, followed by a rapid recovery to baseline 
levels. Depletion of small TAGs during infection suggests an important 
role in energy metabolism and signalling to support early inflamma-
tion. In addition, during ageing, large and small TAGs differ markedly, 
suggesting distinct roles in ageing-related energy metabolism and 
lipid-mediated signalling. TAGs also showed the highest technical repro-
ducibility in this study, making them an ideal target for new biomarkers 
at the subclass and species levels. We therefore propose that small and 
large TAGs as well as ether-linked PEs could be further explored as health 
biomarkers. Moreover, dietary supplements affecting plasma levels  
may provide a therapeutic avenue to reduce chronic inflammation  
and the detrimental effects of ageing and other conditions.

In addition to identifying lipids that decrease in abundance with 
ageing, such as PUFAs, omega-3 FAs, FA(18:3) and FA(18:2), we identified 
many lipid subclasses and properties that are enhanced with ageing, 
including the proinflammatory CEs, CERs, SMs, arachidonic acid and 
SFAs, as well as LPCs whose role could be more ambiguous. Intriguingly, 
some of these effects were stronger (for example, HCERs, CEs, SMs) or 
directionally different (for example, PEs, DAGs) in participants with IR, 
which can be interpreted as accelerated or differential ageing. IR is asso-
ciated with chronic inflammation and can lead to dyslipidaemia and 
metabolic syndrome, which, in turn, increases the risk of age-related 
morbidities such as diabetes or cardiovascular diseases. Together with 
a distinct regulation between IR and IS, these observations indicate 
a large-scale realignment of chronic inflammatory processes during 
ageing, which may be accelerated in individuals with IR. Moreover, 
we observed strong sex-specific ageing signatures for lipid subclasses 
including CE. As cholesterol is a precursor of steroid hormones, many 
of these sex differences in CE levels may relate to or even cause differ-
ences in sex-specific hormone levels.

In addition to ageing-related differences, we found significant 
differences in both the effect sizes and the direction of the correlation 
of lipid subclasses and clinical measures between participants with IR 
and those with IS. Importantly, our models controlled for—among other 
variables—BMI, which is commonly associated with IR. Our analysis 
therefore highlights significant IR/IS differences separate from BMI 
effects. Key IR/IS-related differences include clinical markers related 
to T2D and the immune response; haematological, hepatic and renal 
measures; as well as electrolytes. For instance, PE-P/PE-O, LPE and LPC 
showed distinct directions of associations with multiple clinical meas-
ures, such as the LDL to HDL ratio and various cell populations, for IR 
and IS, expanding the previously suggested interplay between clinical 
measures and complex lipids41. As many lipids have both bioenergetic 
and signalling functions, our observation indicates important differ-
ences in cellular signalling in participants with IR.

Overall, these results underscore that the holistic assessment of 
metabolic health state is highly useful, and in some cases necessary, 
to improve the interpretation of conventional clinical measures such 
as the LDL to HDL ratio.

We identified distinct lipid subclasses and species that change 
in various disease states such as acute (RVI) and chronic (diabetes, 

ageing) inflammatory conditions. The role of lipids in immunity is 
only partially understood given the complexity of both the immune 
system and lipid metabolism. Our analysis covered myriad positive and 
negative cytokine–lipid associations, providing a valuable reference 
and resource for future studies. An important finding in this study is 
the strong positive associations of GM-CSF, leptin and the chemokine 
eotaxin (CCL11) with small TAG species (Fig. 6). As GM-CSF and leptin 
are involved in regulating and promoting inflammation, their strong 
associations with small TAGs underscore the central and distinct role 
these lipids may have in immunoregulation in comparison with groups 
of large TAGs.

Moreover, our data provide strong evidence for the pleiotropic role 
of LPCs, which are categorized as proinflammatory41. We found a strong 
positive association with proinflammatory signalling molecules, includ-
ing IL-1⍺ and sCD40L, in addition to positive associations with growth 
factors such as BDNF and negative correlations with the proinflamma-
tory markers CRP and SSPG. There may be feedback loops such that a 
response is balanced, leading to the production of both inflammatory 
and anti-inflammatory cytokines with different kinetics. Inflamma-
tory responses must be proportionate to the stimulus so that they are 
effective but not excessive (leading to damage, for example, a cytokine 
storm). After the initial acute inflammation, the response needs to dimin-
ish and anti-inflammatory signals need to increase. This process needs 
to be tuned in both magnitude and kinetics, and associated lipids may 
have a role in these responses. Although this study was not designed 
to mechanistically resolve the role of LPCs and other lipid subclasses 
that we observed to be longitudinally associated with, for instance, 
viral infections, our data provide a resource for future studies and high-
light putatively competing roles that may depend on physiological and 
pathological contexts, including comorbidities, age, BMI or IR/IS status.

Although the study cohort is ethnically diverse and sex balanced 
similar to the US population, there are some limitations. (1) There is 
a bias towards middle-aged and highly educated participants with 
a higher proportion of individuals living in northern California.  
(2) Some of the insights were generated based on small sample numbers 
(for example, outlier analysis; Supplementary Fig. 6). Therefore, not 
all observations and findings may be generalizable to a wider popula-
tion that is subject to different lifestyles. Although we identified many 
signatures that have been observed in previous studies, supporting the 
validity of our findings, lifestyle differences can have an effect19,55–57 and 
future studies should be designed to confirm and extend our observa-
tions. (3) Our lipidomics pipeline targets >1,100 lipid species but does 
not always resolve the exact molecule identity (for example, position 
of a double bond in FAs). To expand the set of lipids investigated in 
this study, we included phosphatidylinositol (PI) as a new lipid class 
in multiple-reaction-monitoring transitions (MRMs) and observed 
multiple PI species to be significantly altered, for example, during 
RVIs. For this lipid class, however, no internal spike-in standards were 
included in the sample preparation, which limits the accuracy of the 
abundance information for all PIs. Moreover, not all putatively detect-
able blood plasma lipids, including PC-O and PC-P, were monitored. 
(4) The biphasic extraction method used here is an established and 
efficient procedure that is compatible with high-quality non-glass labo-
ratory equipment. However, we have observed that FFAs have higher 
baseline levels when extracted with non-glass material, which can lead 
to an overestimation of the levels of certain FFAs. This ratio compres-
sion can reduce the sensitivity for detecting subtle changes between 
participants. (5) We used descriptive models (that is, we did not evalu-
ate the predictive power by using cross-validation and hold-out data). 
Although we confirmed many previous findings and observed new 
lipid–phenotype associations, correlations are not proof of causation. 
In addition, our models controlled for multiple covariates (for example, 
sex and BMI), allowing for separation of effects, such as lipid–age-
ing versus lipid–BMI associations. Ageing is a complex process, and 
increasing BMI may be a default process for industrialized societies and 
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lifestyles. Moreover, high BMI has been linked to inflammation. Thus, 
controlling for BMI may not always be desirable for understanding 
age- and inflammation-related changes in these cohorts. (6) The roles 
of complex lipids are diverse, and the physiological impacts of lipids 
with specific properties (for example, the fraction of complex lipids 
containing arachidonic acid) may not be due to direct effects.

Our study provides a longitudinal, in-depth analysis of intricate 
lipid–health relationships during acute and chronic inflammation, 
metabolic diseases and ageing. The multitude of lipid–phenotype 
connections we have revealed here serve as a valuable resource for 
biomarker discovery, a starting point to investigate disease mecha-
nisms, and a basis to conceive therapeutic and preventive strategies. 
For instance, although many lipids undergo intestinal lipolysis driven 
by endogenous enzymes and microbial processes, some dietary lipids 
are absorbed directly. Our research suggests a variety of potential 
dietary interventions that could improve human health. Supplements 
such as ether-linked PEs may alleviate inflammation, providing effec-
tive treatment for chronic inflammation and facilitating recovery 
after RVI by minimizing damage related to reactive oxidative agents. 
Alongside adjusting the small TAG to large TAG ratio, these lipids 
could also be instrumental in addressing ageing- and IR-associated 
dyslipidaemia. Moreover, some lipid species and subclasses, includ-
ing FFAs, ether-linked PEs, CEs or CERs, demonstrate sex-specific and 
ageing-related patterns. This prominent sex dimorphism suggests that 
sex- and age-specific interventions should be considered and might 
enhance therapeutic effects. It would also be worthwhile to assess the 
impact of genetic polymorphisms, particularly in relation to lipid spe-
cies and subclasses exhibiting high variance, such as certain TAG, DAG 
and PE species, which may be relevant for personalized interventions. 
Together, future studies should explore how altering the exogenous 
lipid intake (for example, through diet) or targeting lipid conversion 
enzymes can affect both plasma lipid signatures and clinical pheno-
types such as IR, acute and chronic inflammation, and molecular ageing.

Methods
Study design
Participants were enrolled as ‘healthy volunteers’ in the framework of 
the National Institutes of Health integrated Human Microbiome Project 
2 (ref. 17). Inclusion and exclusion criteria were previously described 
in detail18. Participants provided informed written consent for the 
study under research study protocol 23602 approved by the Stanford 
University Institutional Review Board.

Lipid extraction
Plasma samples were prepared and analysed in a randomized order. 
Plasma was thawed on ice, and lipids were extracted using a biphasic 
separation technique (ice-cold methanol, methyl tert-butyl ether and 
water). A 260-μl volume of methanol and 40 μl of a spike-in standard 
(cat. no. 5040156, Sciex) were added to 40 μl of plasma, and the mix-
ture was vortexed for 20 s. Lipids were extracted by adding 1,000 μl 
of methyl tert-butyl ether and incubating the samples under agitation 
for 30 min at 4 °C. Phase separation was induced by adding 250 μl of 
ice-cold water, followed by vortexing for 1 min and centrifugation at 
14,000g for 15 min at 4 °C. The upper phase containing the lipids was 
collected, dried down under nitrogen and stored at −20 °C in 200 μl of 
methanol. On the day of MS acquisition, lipids were dried down under 
nitrogen and reconstituted with 300 μl of 10 mM ammonium acetate 
in a 9:1 mixture of methanol and toluene.

Lipidomics data acquisition
The QTRAP 5500 system (Sciex) equipped with a DMS device (Lipidyzer) 
was operated with a Shimadzu SIL30AC autosampler for targeted lipi-
domics, with a modified strategy to include additional lipid species 
in the acquisition. To ensure robustness of results, the Lipidyzer was 
cleaned and tuned after each batch (every 48 h; Supplementary Fig. 14). 

The tuning solution contained 40 μl of the SPLASH internal standard 
mix, 100 μl of the Sciex tuning mix, 100 μl of Lyso-tune mix (1 mg ml−1 
17:1 lysophosphatidylglycerol (LPG), 1 mg ml−1 17:1 lysophosphatidyl-
serine (LPS), 0.1 mg ml−1 17:1 lysophosphatidylinositol (LPI), 10 μg ml−1 
lysophosphatidic acid (LPA)) and 760 μl toluene–methanol (1:9) with 
10 mM ammonium acetate.

For lipid extracts from 40 μl of plasma, three acquisition methods 
were used. The injection volumes were 42, 50 and 39 μl for methods 
1, 2 and 3, respectively. The source temperature was set to 150 °C for 
all methods. Methods 1 and 3 were operated with DMS enabled and at 
a separation voltage of 3,700 V. Lipid classes were monitored as fol-
lows: method 1—PC (140), PE (119), PE-O (36), PE-P (61), LPC (26), LPE 
(26); method 2—CE (26), CER (12), DCER (12), HCER (12), LCER (12), FFA 
(26), TAG (519), DAG (59); method 3—SM (12), phosphatidic acid (PA; 
77), LPA (12), phosphatidylglycerol (PG; 78), LPG (16), PI (77), LPI (16), 
phosphatidylserine (PS; 78), LPS (16). Each transition was acquired 20 
times (see Supplementary Data 2 for the compensation voltage, Q1 and 
Q3 masses, and dwell times). Method 1, method 2 and the positive mode 
of method 3 (SM) contained transitions of the Lipidyzer original setup. 
Method 3 negative mode targets additional lipids.

Raw data extraction and processing
Data acquisition was performed similarly to the processing of the 
Lipidyzer Workflow Manager. First, *.wiff files were converted to 
*.mzML files with MSConvert (v.3.0), setting ‘write index’ and ‘TPP 
compatibility’ to true. For each raw file, data extraction was performed 
in R. In brief, *.mzML files were imported with

�openMSfile(FileAndPath, backend = “pwiz”) 
chromatograms(‘openMSfile_output)

using mzR (v.2.6.2). Next, all transitions with more than two zero 
intensities throughout the 20 repeated measurements were excluded 
(reported as ‘not available’). For all remaining transitions, the mean 
intensity was calculated (excluding zero-intensity recordings). Lipid 
species identities were matched based on the Q1 and Q3 masses and the 
corresponding scan index (the order in which MRMs were scheduled) 
in methods 1 (negative mode: PC, PE, LPC, LPE), 2 (negative mode: FFA; 
positive mode: TAG, CE, DAG, CER, DCER, HCER, LCER) and 3 (negative 
mode: LPG, PG, LPI, PI, LPS, PS, LPA, PA; positive mode: SM). Note that 
the transitions PG, PS, PA and their respective lyso forms were not 
considered for analysis. For lipids monitored in methods 1 and 2, as well 
as SM (method 3), internal standards from the Sciex Lipidyzer internal 
spike (LPISTDKIT-102b) were matched according to the Sciex Lipidyzer 
protocol. Individual concentrations were estimated based on the known 
abundance of the corresponding spike-ins. In brief, concentrations 
(‘actual concentration’) of all spike-in standards were retrieved from the 
‘certificate of analysis’ of the internal spikes and converted to ‘nmol ml−1’. 
Lipidyzer assumes that, in plasma, nmol g−1 = nmol ml−1. Internal spike 
stocks of individual lipid classes were mixed, dried down and resus-
pended in a volume to adjust their respective stock concentration to 
the expected plasma levels (using the Lipidyzer Workflow Manager as a 
reference). The internal spike area measured by MS was compared with 
that of the respective endogenous lipids to approximate the absolute 
concentrations of the endogenous lipids. For complex lipids with two 
identical FAs, it was assumed that the measured signal from the frag-
ment ions was at 2× intensity. Lipids belonging to the additional classes 
in method 3 had no corresponding standards and were normalized 
based on one of the other spiked-in lipids, as detailed in the next section.

The Lipidyzer resolves an individual FA as part of a TAG within each 
transition, a layer of information that we use to evaluate changes in FA 
compositions. For analyses that do not rely on the specific FA compo-
sition depicted in Fig. 3c, we aggregated TAGs to groups defined by 
summed FA carbons and the number of unsaturations, summing the 
untransformed concentrations of the corresponding TAGs.
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Normalization of lipid intensities in method 3
Spike-in standards (internal spikes) were not available at the time of 
lipid extraction for the lipids monitored here. Although this allows a 
relative comparison across samples given a reproducible workflow, 
we desired to leverage the information of the other internal spikes to 
further normalize for variances introduced across samples. To that 
end, we performed a correlation analysis by using QC samples derived 
from the same stocks that were measured across all batches. The lipid 
intensities in these samples are expected to be the same, and the ratios 
of internal lipids compared with internal spikes will be the same if the 
variation introduced by lipid extraction or MS analysis affects them in 
a similar manner. This setup allowed us to identify spike-in standards 
to normalize the additional lipids monitored in method 3 (PA, LPA, 
PG, LPG, PS, LPS, PI, LPI). For this normalization, we only considered 
internal spikes of the classes PC, PE, LPC and LPE, as those were also 
acquired in positive mode with DMS enabled.

We calculated the Pearson correlation coefficients for 
log10(intensities) comparing internal spikes and the new lipid spe-
cies, and selected pairs according to the following hierarchy: (1) the 
highest correlating internal spike with at least 50% complete obser-
vations across QC samples was selected; (2) if a match could not be 
determined for a lipid species–internal spike pair, we selected the 
internal spike that showed the highest correlation with any other lipid 
of the same class; and (3) if both (1) and (2) did not select an internal 
spike, the highest correlating spike-in standard across all additional 
lipid classes was selected.

Abundance estimation of lipids in method 3
For all original lipid classes, internal spikes of known concentrations 
allow the approximation of absolute abundances. As described above, 
the missing internal spikes for new lipids in method 3 do not allow 
direct inference of absolute abundances. Using a linear regression 
model based on all the known concentrations of lipids in the samples, 
we predicted the concentrations of the new lipids. As the normal-
ized abundances for these lipids (method 3) are not based on labelled 
spike-in of the same molecular class and thus do not account for ioni-
zation efficiency differences, they provide an estimate of the absolute 
abundance range of the new classes. Importantly, this normalization 
does not affect the comparison of the relative abundance of the same 
lipid species across samples.

Lipidomics data filtering
To ensure the accuracy and reliability of our analysis, we implemented 
several data filtering criteria. First, we excluded from the analysis 
biosamples with >25% missing data. Additionally, lipids with <10% valid 
values, as determined by the Lipidyzer reporting requirements, were 
also excluded. To further ensure high-quality quantitative results for 
the results presented in Figs. 2–6, we removed any lipid with a CV of 
>20% in QC samples and the few lipids for which the CV in QC samples 
was higher than the CV across the remaining biosamples. Furthermore, 
owing to limitations in separation by DMS, we did not include PAs in 
our analysis. We also excluded PS/LPS and PG/LPG from the analysis 
as they showed a significant number of missing values. PI(16:0/18:3) 
was removed from the dataset owing to its association with incorrect 
masses. Finally, QC_73 from batch 21 was removed owing to separate 
clustering compared with all other QC samples.

Internal spike-in reassignment
Four internal spikes were not consistently quantified across the sam-
ples (missingness rate >5%) and were substituted with similar deu-
terated (d) standards belonging to the same class: dDAG(16:0/18:3) 
missing in 21% of the samples was substituted with dDAG(16:0/18:2); 
dDAG(16:0/20:5) missing in 12% was substituted with dDAG(16:0/20:4); 
dPE(18:0/22:5) missing in 44% was substituted with dPE(18:0/20:4); 
and dPE(18:0/20:5) missing in 8% was substituted with dPE(18:0/20:4).

Data normalization
Lipids were normalized based on the internal spike-in standards (see 
above), similar to the standard Lipidyzer workflow that has been vali-
dated previously. Within an expanded method published by Su et al., 
additional MRMs can be used for isotope correction58. Here, we did not 
acquire all of the MRMs needed for isotope correction. Although the 
extent of correction depends on the abundance of interfering species 
and can significantly mask the signal of a targeted lipid species, Su et al. 
reported that no species was corrected by >6% and, outside of TAGs, 
no species was corrected by >3% (ref. 58). Cytokines were obtained in 
three separate batches. Data were log2 transformed and corrected for 
the effect of the batches using the ‘dbnorm’ (v.0.2.2) package59. The 
ComBat model (sva (v.3.38.0))60 showed the best performance and 
thus was considered in this study.

Data imputation
Lipidomics data.  Missing values were imputed using a 
K-nearest-neighbour strategy that accounts for a truncated distribu-
tion (Extended Data Fig. 2)61. This approach involves drawing from 
intensities at the detection limit defined for each lipid class separately. 
This was a reasonable yet conservative assumption that allowed for 
the imputation of missing values without inflating fold changes by 
considering the sensitivity of MS. Missing weight measures in the age-
ing analysis were imputed by taking the mean between the two closest 
adjacent timepoints (Supplementary Data 2). Missing levels of several 
cytokines in batch 1 (that is, hepatocyte growth factor (HGF), basic 
fibroblast growth factor (FGFb), IL-8, IL-9, MIP-1⍺, stem cell factor (SCF) 
and tumour necrosis factor-β (TNFβ)) and batch 2 (that is, IFN⍺2 and 
FGFb) were imputed using the K-nearest-neighbour method with the 
number of neighbours being 10.

Estimation of precision
CV was calculated for non-imputed, untransformed data. If, for a 
participant, multiple samples were collected on the same day, those 
were excluded. Only participants with at least three sampling time-
points were considered. Lipids with fewer than three quantifications 
were excluded. Note that, although the average intraparticipant CV 
was larger than the average QC CV, a small subset of low-abundance 
lipid species for a subset of participants showed lower CVs. These CVs 
emerged from the low signal that results in discrete quantifications 
from the mass analyser.

Dimensionality reduction
t-SNE scatterplots were generated after log2 transformation and z-score 
scaling of the data using the R package ‘Rtsne’ (v.0.15) with the following 
parameters: perplexity = 5, θ = 0.5.

WGCNA
Network analysis using self-reported healthy samples (Fig. 2d) was 
performed using the WGCNA R package (v.1.70-3). The soft-threshold 
power was optimized to achieve approximate scale-free topology 
(R2 > 0.8). Networks were constructed using the ‘blockwiseModules’ 
function. The network dendrogram was created using average linkage 
hierarchical clustering of the topological overlap dissimilarity matrix 
(1 − TOM). Modules were defined as branches of the dendrogram by 
using the hybrid dynamic tree-cutting method62, selecting a minimum 
module size of 5. Modules were presented by their first principal com-
ponent (module eigengene) of the standardized expression profiles. 
Modules with eigengene correlations of >0.8 were merged together, 
generating seven lipid modules. Next, the Pearson correlation coef-
ficients between the module eigengene and clinical measures were 
calculated using the ‘cor.test’ function in R (stats (v.3.6.2)), and all the 
obtained P values for the correlations were corrected for multiple 
hypotheses through the Benjamini–Hochberg (BH) procedure (stats 
(v.3.6.2)).
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Annotation enrichment analysis
To determine over- and under-representation of functional subgroups 
of lipids, we classified all lipid species based on their physicochemical 
properties (Supplementary Data 2) as reported in the LION database63. 
Under- or over-representation was evaluated using a hypergeometric 
test (Fisher’s exact test) or one-dimensional annotation enrichment64,65. 
Our dataset is dominated by TAG species, which could bias the enrich-
ment analysis results. For that reason, we performed the enrichment 
analysis across all lipids and within subclasses. For each figure, the 
following statistics were used to calculate enrichments for categories: 
‘OddEven_All’, ‘Omega_All’, ‘Saturation_All’, ‘Lipid_Class_Detailed_Special’ 
and ‘FA_All’, applying a BH FDR set to 0.1 by using the ‘p.adjust()’ function.

Figure 3e shows the Fisher’s exact test comparing positive SSPG 
coefficients with negative SSPG coefficients. Figure 4c shows the 
Fisher’s exact test determining whether the significantly changed 
lipids during infection (RVI) were enriched. Figure 5f shows the Fisher’s 
exact test comparing positive Δage coefficients with negative Δage 
coefficients. Figure 6f shows the Fisher’s exact test calculating enrich-
ments in positive coefficients as well as negative coefficients. Nega-
tive infinite log2(odds) and positive infinite log2(odds) were imputed 
with 0.5× the minimum log2(odds) and 0.5× the maximum log2(odds), 
respectively. If a category was enriched among negative and positive 
coefficients for a lipid (that is, an over-representation was observed in 
the FDR-significant positive and negative coefficients), the enrichment 
was set to 0 and highlighted in black in the heat map.

Correlation between lipids and clinical measures in IR/IS
Correlations between lipid levels and clinical measures were calculated 
using the ‘cor.test’ function in R. Lipidomics data and laboratory meas-
ures were both standardized before correlation calculation. To inves-
tigate differences between the correlations in IR and IS, we calculated 
the correlations by using only the healthy samples from participants 
with IR and IS, and we highlight only the correlation contrasts that were 
significantly different between IR and IS. The correlations between 
lipid levels and clinical measures from using all healthy samples from 
participants with IR and IS were also calculated and are presented as 
reference values.

RVI clustering and correlation with clinical measures
K-means clustering was performed to investigate lipid similarities fol-
lowing infection by using the lipidomics data of infection events after 
log2 transformation and z-score scaling. We calculated the minimum 
centroid distance for a range of cluster numbers, and the optimal 
number was chosen using the ‘elbow’ method. The median values of 
the lipid profiles belonging to each cluster were correlated with the 
clinical measures to indicate medical implications. The correlations 
were calculated using the ‘cor.test’ function in R, and all the obtained 
P values for the correlations were corrected for multiple hypotheses 
using the BH procedure.

RVI longitudinal IR and IS analysis
To detect the time intervals of differentially abundant lipids between IR 
and IS during infection events, we used a longitudinal analysis method, 
OmicsLonDA66. For each lipid in each group (IR or IS), we used a gene
ralized additive mixed model for modelling nonlinear time-series 
abundance during the inflammation episodes. OmicsLonDA is an 
extension of MetaLonDA67 to account for correlated data, repeated 
measurements and multiple covariates. We accounted for sex, age, 
ethnicity and BMI as covariates, whereas participant identifiers were 
used as random effects. The P values for each lipid at each time interval 
(the time interval unit was set to 1 day) were obtained and then adjusted 
for multiple testing by using the BH procedure. We implemented this 
process on both infection and immunization events, identified the 
significantly different time intervals between IR and IS in both kinds 
of events, and compared these significant time intervals.

Linear mixed models
SSPG association. To identify lipids that were associated with SSPG, 
linear mixed models were applied using log-transformed lipid measure-
ments, controlling for participants, sex, ethnicity, age and BMI (Fig. 3). 
The R package ‘lme4’ (v.1.1-27.1) was used to construct the linear mixed 
models, as well as output estimates and nominal P values. The obtained 
raw P values were corrected for multiple hypotheses through the BH 
procedure by using the ‘p.adjust’ function in R.

Infection. To identify lipids that were significantly changed dur-
ing infection episodes, linear mixed models were applied using 
log-transformed lipid measurements, controlling for participants, 
sex, ethnicity, age and BMI (Fig. 4). The R package ‘lme4’ (v.1.1-27.1) was 
used to construct the linear mixed models, as well as output estimates 
and nominal P values. The obtained raw P values were corrected for 
multiple hypotheses through the BH procedure by using the ‘p.adjust’ 
function in R.

Ageing. For each individual, ageing-associated lipid changes were 
calculated by subtracting measurements obtained at each visit from 
the baseline values (Fig. 5). Accordingly, the number of years since 
onset was calculated as the number of years from the first recorded 
measurement. To estimate the fractional changes in lipid measure-
ments, we used a linear regression model with log-transformed lipid 
measurements, controlling for BMI and storage length (and sex if 
indicated in the figure). To control for potential biases related to the 
number of samples per individual, we excluded measurements from 
one participant with a uniquely large number of samples. To control 
for potential biases related to a few participants with measurements 
spread across a longer enrolment time, we excluded a few samples 
collected >5 years since onset. All coefficients and s.d. values were 
estimated using the ordinary least-squares implementation of the 
linear regression method in the ‘statsmodels’ package with the default 
parameters in Python (v.3.7). Linear models were run either at the lipid 
species level (Fig. 5d) or the lipid class level (sum of raw concentrations) 
for all participants (Fig. 5c), as well as for sex and IR/IS (Fig. 5e,f).

Cytokine–lipid association. We used linear mixed-effects models 
(lmer {lme4}) controlling for BMI, sex, ethnicity and participants (ran-
dom effects) to estimate cytokine levels as a function of estimated lipid 
concentrations (Fig. 6). Both cytokine levels and lipid signals were 
scaled and centred (scale()). Restricted maximum likelihood was set to 
false, and P values were estimated using summ { jtools} and corrected 
for multiple-hypothesis testing with p.adjust() applying a BH FDR of 
<5% for network generation.

Cytokine network
The cytokine–lipid network was constructed based on model coeffi-
cients by using the ‘graphopt’ layout algorithm in graphlayout{ggraph} 
(v.2.1.0), igraph (v.1.5.0) and tidygraph (v.1.2). The network was pruned 
to exclude all coefficients with a BH FDR of >0.05.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Processed lipid data are provided as Supplementary Data 1. Raw mass 
spectrometry data are hosted on our portal at http://hmp2-data.stan-
ford.edu/index.php under the substudy iPOP lipidomics as well as 
at https://www.metabolomicsworkbench.org/ under the direct link 
https://doi.org/10.21228/M8ZM5P. Cytokine and microbiome data are 
hosted at http://hmp2-data.stanford.edu/index.php. Lipids were clas-
sified partially based on their physicochemical properties reported in 
the LION database63. Source data are provided with this paper.
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Code availability
All software and algorithms are mentioned in the Methods section. 
Custom analysis scripts are hosted on the Stanford iPOP site (http://
med.stanford.edu/ipop.html). Enrichment analysis was conducted 
using a modified version of the R AnnoCrawler64 package, with the 
corresponding lipid properties provided as Supplementary Data 2.
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Extended Data Fig. 1 | Principal component analysis for biosamples and quality controls. Principal component analysis of imputed log10 estimated nmol/ml 
concentrations calculated using prcomp (scaled and centered data). Quality control (red) compared to biosamples (light blue) show distinct clustering.
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Extended Data Fig. 2 | KNN-TN class-wise imputation. KNN-TN imputation of missing values (blue) for different lipid classes. Y-axis denotes counts, x axis denotes 
log10 estimated concentrations (nmol/ml).
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