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Delineating mouse β-cell identity during 
lifetime and in diabetes with a single cell atlas

Karin Hrovatin    1,2, Aimée Bastidas-Ponce    3,4,5, Mostafa Bakhti    3,4, 
Luke Zappia    1,6, Maren Büttner    1,7,8, Ciro Salinno3,4,5, Michael Sterr3,4, 
Anika Böttcher    3,4, Adriana Migliorini3,4,9, Heiko Lickert    3,4,5    
& Fabian J. Theis    1,2,6 

Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) 
datasets have been generated, a consensus on pancreatic cell states in 
development, homeostasis and diabetes as well as the value of preclinical 
animal models is missing. Here, we present an scRNA-seq cross-condition 
mouse islet atlas (MIA), a curated resource for interactive exploration 
and computational querying. We integrate over 300,000 cells from nine 
scRNA-seq datasets consisting of 56 samples, varying in age, sex and 
diabetes models, including an autoimmune type 1 diabetes model (NOD), 
a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical 
streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals 
new cell states during disease progression and cross-publication differences 
between previously suggested marker genes. We show that β-cells in the 
streptozotocin model transcriptionally correlate with those in human type 
2 diabetes and mouse db/db models, but are less similar to human type 1 
diabetes and mouse NOD β-cells. We also report pathways that are shared 
between β-cells in immature, aged and diabetes models. MIA enables a 
comprehensive analysis of β-cell responses to different stressors, providing a 
roadmap for the understanding of β-cell plasticity, compensation and demise.

The major hallmark of diabetes mellitus is impaired glucose homeo-
stasis. Blood glucose is regulated by multiple hormones secreted from 
pancreatic islets of Langerhans that consist of insulin-producing β-cells, 
which are main acters in diabetes, as well as glucagon-producing α-cells, 
somatostatin-producing δ-cells, pancreatic polypeptide-producing 
γ-cells and ghrelin-producing ε-cells1. Type 1 diabetes (T1D) and type 
2 diabetes (T2D) arise due to the loss or progressive dysfunction of 
β-cells, respectively. Current anti-diabetic medications do not lead 
to remission, whereas more-effective treatments, such as bariatric 

surgery and islet transplantation, are highly invasive or can be only 
offered to a small number of patients2–4. The central role of β-cells in 
diabetes development urges the establishment of new therapies that 
focus on restoring β-cell mass and function4,5. Achieving such strategies 
requires a deeper understanding of β-cell heterogeneity, maturation, 
function and failure6–8.

Shortly after birth, β-cells are immature, defined by poor glucose- 
stimulated insulin secretion (GSIS)9. Immature β-cells gain functional 
maturation, as defined by the expression of several protein markers, 
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senescence-associated secretory phenotype in T1D20,27. β-cell identity 
can also be disrupted due to chemical stress28 and the streptozotocin 
(STZ)-induced ablation of β-cells was previously used to study both 
T1D and T2D29–31. Yet, due to failed clinical translation of treatments 
showing promise in animal models, it is important to decipher to which 
extent models resemble human diabetes25.

The implication of single-cell RNA sequencing (scRNA-seq) has 
greatly enhanced our understanding of β-cell maturation, heterogene-
ity and function in health and disease1,30,32–35. Nevertheless, there is no 
consensus on which β-cell populations exist6,8,36 and which pathways 
lead to β-cell dysfunction in different conditions. For example, for T2D 
progression alone, previous studies used different systems and indi-
vidually identified various molecular changes, associated with energy 
metabolism, compensatory insulin secretion, apoptosis, inflammation, 
dedifferentiation and disrupted islet communication32,37,38. This ambi-
guity can be attributed to heterogeneous cellular states, joint action of 

including Urocortin-3, Flattop, transcription factor MafA and glucose 
transporter encoded by Slc2a2 (also known as Glut2) and accurate 
GSIS in the first weeks after birth and again after weaning9–12. Adult 
β-cells also differ within and across phenotypes and conditions7,11. 
For instance, insulin production and secretion of β-cells are changed 
due to healthy aging or stress-induced senescence13–17. The function 
also differs between sexes, with male β-cells having transcriptomic 
signatures more akin to T2D18.

Different stressors can lead to β-cell failure, which is often studied 
with mouse models19,20. T2D is marked by gluco-/lipotoxicity leading 
to β-cell dedifferentiation, compensatory insulin production and 
resulting endoplasmic reticulum (ER) stress21,22, all of which are also 
present in the hyperphagic mouse db/db model23,24. In contrast, T1D 
is caused by autoimmune attack against β-cells25,26 that is mirrored 
by the mouse non-obese diabetic (NOD) model, which was also used 
to show the importance of β-cell stress-induced senescence and 
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Fig. 1 | The MIA of scRNA-seq datasets across conditions offers new insights 
into islet and β-cell biology. a, MIA content, including different conditions:  
sex, age, diabetes models (STZ, db/db and NOD) and anti-diabetic treatments 
and chemical stress (application of different chemicals such as FoxO inhibitor). 

b, Putative new biological insights. c, Analyses enabled by MIA that would not have 
been possible on individual datasets. d, Potential use cases of MIA as a resource 
for future studies.
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multiple molecular mechanisms, different stressors and confounding 
of unknown environmental factors26,32,35,38,39. Such complexity cannot 
be fully captured in datasets of individual studies. Hence, a combined 
analysis of multiple datasets is needed to comprehensively describe 
β-cell heterogeneity in health and disease and to disentangle molecular 
pathways contributing to the deterioration of glucose homeostasis in 
various dysfunction conditions.

Direct comparison of multiple scRNA-seq datasets generated by 
different scientific groups is often not possible due to batch effects. 
To circumvent this, multiple scRNA-seq data analysis and integra-
tion40–43 approaches have been proposed. This also enabled the crea-
tion of so-called ‘integrated atlases’ that provide an expertly curated 
resource with a high-quality embedding optimized to retain biologi-
cal variation, while removing batch effects. Atlases have become an 
invaluable tool as they provide new insights beyond individual data-
sets, such as the description of the cellular landscape in health and 
disease, and comparison across animal or in vitro models and cor-
responding human datasets44–46. While previous efforts have been 
made to compare the results of multiple islet scRNA-seq studies18,35,47, 
a comprehensive integrated atlas of mouse pancreatic islet cells across 
biological conditions and datasets with sufficient power to identify 
cell states is still missing. Therefore, we present the integrated MIA 
of scRNA-seq datasets across conditions (Fig. 1a). The analysis of MIA 
provided insights that could not be obtained from individual data-
sets (Fig. 1c), including a holistic description of the β-cell landscape 
across datasets and conditions, identification of similarities and dif-
ferences between diabetes models and disentanglement of molecular 
pathways involved in different types of β-cell dysfunction (Fig. 1b). To 
empower future studies we also made MIA available for both interac-
tive and computational analyses (Fig. 1d; https://github.com/theislab/
mouse_cross-condition_pancreatic_islet_atlas).

Results
An integrated atlas of mouse pancreatic islet cells across 
conditions
To better understand what the transcriptome of individual healthy 
pancreatic islet cells looks like and how it changes across a lifetime and 
upon various forms of diabetogenic stress, we integrated nine mouse 
datasets. We comprehensively collected seven previously published 
datasets (Methods describe data inclusion criteria) and generated 
two new datasets (Table 1). MIA contains 301,796 pancreatic islet cells 
from 56 samples (Fig. 2a,c, Table 1 and Supplementary Table 1). We use 
the term dataset for the collection of samples that were generated for 
the same purpose (for example, published together) and the term 
sample for jointly processed cells with shared biology, which may 
originate from a single animal, sequenced individually or demulti-
plexed, or are pooled across multiple animals sequenced on the same 
lane without demultiplexing. The samples within MIA vary in sex, age 
(ranging from embryonic to postnatal, to adult, to aged), applica-
tion of chemical stressors implicated in the loss of cellular identity 
(FoxO inhibitor and artemether) and disease status (diabetes models, 
NOD, db/db and multiple low-dose STZ (mSTZ) together with different 
anti-diabetic treatments (vertical sleeve gastrectomy (VSG), insulin, 
glucagon-like peptide 1 (GLP-1) and estrogen) (Fig. 2a). To cover a wide 
range of developmental stages we extended the available scRNA-seq 
data (embryo to adult) with a newly generated scRNA-seq of aged 
mice (>2 years) across sexes (17,361 cells). To identify characteristics 
of mature cells conserved across datasets we sampled islet cells from 
adult (4-month-old) male mice (17,353 cells), thus complementing two 
other publicly available datasets.

To enable joint analysis of all datasets we performed data integra-
tion, creating a joint embedding space. We ensured optimal trade-off 
between batch correction and biological preservation on the level of 
cell types and cell states by evaluating different integration approaches, 
including preprocessing and data selection, integration tools and 

hyperparameter selection (Fig. 2b), as discussed in Supplementary 
Note 1. The integrated atlas shows clear separation into clusters that 
correspond to distinct cell types (Fig. 2e and Extended Data Fig. 1a–c) 
that colocalize across datasets (Fig. 2d).

As the available cell type annotation was incomplete and inconsist-
ent across datasets (Extended Data Fig. 1c,d) we manually re-annotated 
the integrated embedding (Fig. 2e,f and Extended Data Fig. 1a). This 
enabled us to resolve cell populations that were not annotated in some 
of the original studies, potentially because low cell numbers hamper 
annotation48. For example, we found that Schwann cells (617 out of 
301,796 atlas cells) were present across the studies (Extended Data 
Fig. 2), although they were not annotated in any individual dataset 
(Extended Data Fig. 1d). Similarly, none of the original annotations 
distinguished between activated and quiescent stellate cells and 
some of the studies did not annotate stellate cells at all (Extended Data  
Fig. 1d and Extended Data Fig. 2).

Additionally, we also observed populations influenced by tech-
nical artifacts that colocalized across datasets, namely a low-quality 
cluster (lowQ, 853 cells, as well as low-quality cells identified based on a 
more detailed analysis of individual cell type clusters, 2,782 cells within 
β-cell cluster and 377 cells within α-cell cluster) and mixed (doublet) 
clusters (altogether 9,966 cells) (Extended Data Fig. 1a and Supplemen-
tary Table 2). They may be useful in the future in automatic annotation 
transfer to identify residual low-quality populations in new datasets, 
such as doublets that are often hard to identify.

Embryonic and postnatal endocrine cell type markers 
partially overlap
Pancreatic islet profiling and stem cell differentiation highly depend 
on reliable endocrine cell type markers49; however, markers of indi-
vidual cell types may differ across developmental stages. For example, 
in embryonic and postnatal stages different cell types are present, 
meaning that different markers will be specific for an individual cell 
type against all other present cell types. Furthermore, our integrated 
embedding revealed molecularly distinct cell states within cell types 
across development (Fig. 2d and Extended Data Fig. 1). Thus, we provide 
cell-type-specific markers separately for embryonic and postnatal 
mice (Supplementary Table 3). We did not compute postnatal ε-cell 
and embryonic γ-cell markers due to the lack of these cell types at the 
respective stages.

The identified embryonic and postnatal markers only partially 
overlapped (Extended Data Fig. 3a), confirming that distinct marker 
sets are needed at different developmental stages. For example, while 
the expression of Cer1 is higher in embryonic compared to postnatal 
δ-cells, it is a potential δ-cell marker only in postnatal and not in embry-
onic samples. This is due to the high expression of Cer1 also in ε-cells 
and high-level Ngn3-expressing endocrine precursor cells that are 
present only in the embryo (Extended Data Fig. 3b).

Some of the markers were shared with human endocrine markers 
reported in a recent scRNA-seq meta-analysis49 (mouse homologs 
Ttr, Gcg, Irx2 and Slc7a2 for α-cells; Ins1, Ins2, G6pc2 and Iapp for 
β-cells; Sst and Rbp4 for δ-cell; Ppy for γ-cells; Fig. 3a) and in other 
publications (Ghrl and Irs4 for ε-cells)50,51. Furthermore, we detected 
several new cell-type-specific genes at different developmental 
stages (for example, Wnk3 and Nxph1 for α-cells; Cytip and Spock2 
for β-cells; Slc2a3, Nrsn1 and Spock3 for δ-cells; Vsig1 for γ-cells; 
Fig. 3a). Among these, Spock3 has been reported multiple times as 
a human α-cell, rather than δ-cell marker49,52,53; however, in mice, we 
observed consistent upregulation in δ-cells across datasets, which is 
further supported by a previous study reporting this gene as a δ-cell 
marker in zebrafish54.

We analyzed the protein expression of two transcriptome-based 
markers (Ttr in α-cells and Rbp4 in δ-cells) with immunohistochemistry 
in mouse islets (Extended Data Fig. 3c). As anticipated, the expression 
of Ttr protein, which is involved in the regulation of Gcg expression 
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and glucose homeostasis55, was specific to α-cells. In contrast, Rbp4 
protein, which was previously reported to be a marker of δ-cells49,56, is 
expressed across the whole islet and could thus not be used to reliably 
distinguish δ-cells in immunohistochemistry (Fig. 3a and Extended 
Data Fig. 3c). Its relatively high protein levels in β-cells may be further 
explained by the young developmental stage (P9) of the used islets 
and hence β-cell immaturity, which is known to be associated with 
high Rbp4 expression57,58.

Embryonic δ-cells cluster with postnatal δ-cells
One of the key questions in islet biology is when and how endocrine cells 
become functionally mature, which is of relevance for developing func-
tional cell types from pluripotent stem cells1. As MIA provides a shared 
embedding of different biological conditions from multiple datasets 
that would otherwise not have been comparable due to confound-
ing batch effects, we leveraged it to analyze cell populations during 
endocrine maturation. As expected, most embryonic cells (termed E 
group) generally did not overlap with postnatal cells (termed P group), 
but notably we observed that a large proportion of embryonic δ-cells 
mapped to the postnatal δ-cell cluster (termed E P-like group; Fig. 3b 
and Extended Data Figs. 1d and 3d).

To understand this overlap, we evaluated the expression of endo-
crine development and δ-cell function-related genes. The E P-like δ-cells 
had, in comparison to the E group, lower expression of δ-cell lineage 
determinant Hhex59 and lower expression of gene markers enriched in 
the Fev-positive population60, from which δ-cells arise60–63 (Fig. 3c and 
Extended Data Fig. 3e). Among known δ-cell functional genes, somato-
statin was highly expressed already in the E group, likely because Sst has 
been used for δ-cell annotation, therefore not capturing earlier δ-cell 
developmental stages50. Other functional genes encode transcription 
factors involved in Sst gene expression64 and genes encoding sensors 
required for appropriate paracrine regulation, namely neurotransmit-
ters, hormone receptors, including the somatostatin receptor (Sstr3 
gene) (autocrine feedback) and genes encoding nutrient sensors, 
including sensors for milk-based high-fat weaning diet (fatty acids, 
Ffar4 gene; amino acids, SLC7 family)56,65–69 (Fig. 3c). They were relatively 
highly expressed in all cell groups. This indicates that δ-cells already 
possess the machinery for regulating somatostatin expression at the 

embryonic stage and that they quickly downregulate the expression 
of developmental genes, explaining the mapping of embryonic δ-cells 
to the postnatal cluster. However, we must note that genes potentially 
involved in somatostatin regulation could also be related to other cel-
lular functions at this developmental stage. Thus, further validation of 
δ-cell physiology during development would be required.

β-cells show heterogeneity across and within conditions
Extensive research has shown that β-cells are heterogeneous7,9,11; how-
ever, there is a lack of knowledge on how these states relate6,8. Hence, 
we aimed to use MIA to comprehensively describe β-cell states along-
side their molecular characteristics in different sexes, ages and stress 
conditions (Table 1).

To test whether the integration is adequate for downstream anal-
yses of β-cell states we assessed a MIA subset consisting of 102,143 
β-cells. Cells separated on the embedding based on biological covari-
ates, such as age and disease status and overlapped between sam-
ples with similar biological covariates from different datasets (Fig. 4a  
and Extended Data Fig. 4). For example, healthy control β-cells 
mapped together regardless of their dataset of origin (mSTZ, db/db 
and 8–16wNOD), whereas the cells from diabetic samples from these 
datasets mapped away from the healthy clusters. This is in accord-
ance with previously reported β-cell changes in aging and diabetic 
dysfunction6,70,71. Furthermore, we assessed the expression patterns of 
known immaturity (Rbp4), maturity (Mafa), stress (Gast), aging/senes-
cence (Cdkn2a) and inflammatory (B2m) β-cell transcriptomic markers  
(Fig. 4b), showing complementary patterns when considering opposite 
activity of β-cell functional maturation (Mafa) and dedifferentiation 
(Gast) markers. Altogether, this indicates successful integration of the 
datasets both on the cell-type and cell-state level.

Transcriptomic similarity of db/db and STZ diabetes  
model β-cells
The usage of the appropriate mouse model is of utmost importance to 
studying β-cell function both in healthy and disease conditions19. Differ-
ent models with unique phenotypes and disease mechanisms have been 
developed20, each of them with advantages and limitations to be con-
sidered19. To better understand the transcriptomic differences among 

Table 1 | Summary of datasets used for the atlas and their availability. For detailed sample information, including sex, please 
refer to Supplementary Table 1

Name Description N samples GEO accession Reference Source Ensembl 
release

Embryonic Embryo progression from E12.5 to E15.5 4 GSE132188 60 In-house 100

P16 Healthy young (P16) islets sorted according to 
the Fltp lineage-tracing model

3 GSE161966 79 In-house 94

4m Healthy adult (4-month-old) islets from pancreas 
head and tail sorted according to the Fltp Venus 
reporter to isolate FVR+ and FVR− cells

4 GSE211796 Previously unpublished In-house 94

Aged Healthy aged (2-year-old) islets sorted 
according to the Fltp lineage-tracing model

3 GSE211795 Previously unpublished In-house 94

mSTZ Healthy adult control, mSTZ-induced T2D 
model and mSTZ model with different anti-T2D 
treatments

7 GSE128565 30 In-house 100

db/db Healthy adult control, db/db-induced T2D 
model and db/db model with different anti-T2D 
treatments

8 GSE174194 23 In-house 94

5wNOD NOD model of T1D before T1D onset (5 weeks) 3 GSE144471 176 External 100

8–16wNOD NOD model of T1D during T1D development 
(8–16 weeks)

9 GSE117770 27 External 100

Chem Healthy young adult control or with applied 
chemical stress; sequencing with spike-in cells

15 GSE142465 (GSM4228185 to 
GSM4228199)

28 External 100

GEO, Gene Expression Omnibus.
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the diabetes mouse models, we compared the commonly used genetic 
models of T1D (NOD, for which we used samples from early disease 
stages20,27) and T2D (db/db24) together with the β-cell ablation model 
(STZ) that was previously used to study both T1D and T2D29,30. The NOD 
model is characterized by autoimmune and cytokine-mediated destruc-
tion of β-cells as well as ER stress72,73. The leptin-receptor-deficient  
db/db mice are obese, hyperglycemic and dyslipidemic74,75, leading to 
β-cell failure and compensation, which are associated with metabolic 
stress, including ER stress23,24. The STZ treatment is used for specific 
destruction of β-cells due to its affinity for the Slc2a2 (ref. 76) protein 
expressed in β-cells. The stressor is applied either in a single high dose 
to resemble T1D or in multiple low doses to elicit partial β-cell loss 
reminiscent of T2D, but in the absence of insulin resistance19, with both 
strategies analyzed below.

Based on MIA embedding, we found that β-cells from mSTZ- 
induced (multiple low doses) and db/db models mapped together, 
separately from NOD diabetic β-cells (Fig. 4a). To further validate 
the similarity between the mSTZ and db/db models, we mapped onto  
MIA another mouse dataset (referred to as the Feng dataset31, not 
part of MIA), containing samples treated with STZ (single high dose). 
Again, the healthy control cells from the Feng study mapped onto the 

healthy β-cell region of MIA and STZ-treated cells mapped onto the 
region with mSTZ and db/db model samples (Fig. 4c). Similarly, in the 
future mapping onto MIA may reveal relationships between other 
dysfunctional conditions.

To better understand molecular mechanisms underlying β-cell 
dysfunction within each of the models, we analyzed the expression 
of known β-cell function and stress genes (Fig. 4d). In the mSTZ and  
db/db models multiple maturity and insulin-related genes were down-
regulated, while in the NOD model immune modulation genes were 
upregulated. In all three models we observed expression changes in 
several unfolded protein response, reactive oxygen species defense and 
senescence-related genes. This indicates the involvement of metabolic 
stress in db/db and mSTZ models and immune stress in the NOD model, 
in accordance with current views on T1D and T2D pathomechanisms77.

To elucidate which mouse models capture transcriptional signa-
tures of human T1D or T2D, we assessed whether changes observed in 
human diabetes are also present in mice. We performed differential 
gene expression (DGE) analysis on β-cells from multiple human T1D 
and T2D datasets (Table 2), selected genes upregulated across multiple 
datasets per diabetes type (T1D 32 genes, T2D 59 genes) and identified 
enriched gene sets (Supplementary Table 4). We further complemented 
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our gene set list with known human diabetes-associated gene sets from 
the literature. Human T1D is marked by the upregulation of immune 
gene sets21, which were much more strongly upregulated in NOD than 
db/db and mSTZ models (Fig. 4e; details of gene set activity analysis 
across mouse models are provided in Supplementary Note 2). Con-
versely, human T2D is associated with changes in hormone metabolism 
and stress related to metabolic compensation21,22,78, which were upregu-
lated in db/db and mSTZ but not in the NOD model. Thus, the mSTZ 
model reflects key molecular changes of human T2D, but not T1D. The 
presence of metabolic stress in the mSTZ model β-cells after clearance 
of the chemical stressor can be explained by the surviving population 
of β-cells being too small to prevent hyperglycemia and hence leading 
to compensatory insulin-production behavior and subsequent stress.

Markers of β-cell states conserved across datasets
As it is unclear how newly reported β-cell states correspond across 
publications6,7, we next aimed to utilize the cross-dataset integrated 
conditions within MIA to describe β-cell heterogeneity in health 
and disease in a unified manner. We annotated states on postnatal 
non-proliferative β-cells (‘β’ cluster in Fig. 2e) and labeled them on 

the basis of the metadata (altogether referred to as ‘coarse states’; 
Fig. 5a and Extended Data Fig. 5a). We resolved populations of healthy 
adult, immature, aged (separated by sex), NOD diabetes model, mixed  
db/db and mSTZ diabetes models and cells from the dataset with chemi-
cal perturbations in cultured islets (referred to as chem) that likely 
separate due to strong differences in sample handling. For a detailed 
description of states see Supplementary Note 4.

We support the annotation of coarse states with known β-cell 
state markers depicted in Fig. 5b. Some known markers were not 
state-specific, such as certain immature marker genes that were 
also highly expressed in the db/db + mSTZ state (for example, Cd81;  
Fig. 5b), in accordance with β-cell dedifferentiation in mouse diabetes 
models23,30,79. Thus, the identification of new state-specific markers 
could improve the monitoring of β-cells in specific states to study 
their function. We identified markers specific for an individual β-cell 
state and conserved across all datasets mapping to that state, with 
top markers highlighted in Fig. 5c (Supplementary Table 5; a more 
detailed description is in Supplementary Note 4). For example, we 
identified a new marker of healthy adult state Prss53, associated with 
mitochondrial function80.
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To test the robustness of our markers we analyzed their expression 
on the Feng mouse dataset that is not part of the atlas31. This data-
set consists of healthy young and adult mice, with multiple samples 
spanning the ages of 0.1–4 months, as well as STZ-treated diabetic 
samples (Extended Data Fig. 6c,d). The proposed T2D model state 
(db/db + mSTZ) and adult state markers were expressed as expected 
in the Feng dataset; however, we did not observe specific expression of 
immature markers in the young samples. We next evaluated whether 
this difference arises due to a different immature cell state present 
in the Feng dataset or due to technical issues in marker identifica-
tion. Thus, we mapped Feng dataset cells to MIA. Indeed, we observed 
differences in the two immature cell states, as young samples from 
the Feng dataset did not map to MIA immature state (Extended Data  
Fig. 7a,b). The Feng postnatal day 3 (P3) β-cells mapped between 
embryonic and postnatal β-cells of MIA and the young postnatal cells 

(postnatal days 12 (P12) and 21 (P21)) mapped between the immature, 
adult and chem MIA states.

Additionally, we assessed whether previously known and 
MIA-based markers could be directly translated to ten human datasets 
with differences in donor metadata (Extended Data Fig. 6e,f). Only 
B2m (T1D marker)27 and Rbp4 (immature marker)79 were significantly 
upregulated in all human samples associated with those phenotypes. 
This is in accordance with previous reports81 showing that not all mouse 
markers directly translate to human data.

β-cell heterogeneity within biological conditions
β-cells are known to be heterogeneous within individuals11,12,82; how-
ever, our metadata-driven coarse states mainly did not reveal multiple 
populations per sample (Extended Data Fig. 5c). Some marker genes 
were heterogeneously expressed within coarse states, such as Rbp4 in 
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young and db/db + mSTZ states and Mafa and Gast in the db/db + mSTZ 
state (Fig. 4b), indicating that we could identify higher resolution  
states in MIA.

Annotation of cell states is challenging due to uncertainty about 
the number of distinct states83. To ensure that states can always be 
biologically interpreted, we based clustering on interpretable fea-
tures (termed gene programs (GPs); Fig. 5d and Methods). GPs are 
data-driven groups of genes coexpressed across β-cells (27 GPs, 14–228 
genes; Extended Data Fig. 8a and Supplementary Table 6). Most of the 
GPs were enriched for distinct molecular functions (Supplementary 
Table 6) and we show that they generalize to other datasets by explain-
ing variance in two external mouse and ten human datasets (Extended 
Data Fig. 8f).

We defined 19 fine β-cell states (Fig. 5e), which mainly corre-
sponded to subclusters of the coarse states (Extended Data Fig. 5e) and 
described more subpopulations within samples, while still containing 
cells from multiple samples and datasets (Extended Data Fig. 5d and 
Supplementary Table 2). Additionally, two clusters were characterized 
by low-quality control metrics and were thus not regarded as true cell 
states (Fig. 5e and Extended Data Fig. 5b). We further discuss β-cell 
heterogeneity captured within MIA in relation to previous literature 
in Supplementary Note 5.

We observed two populations of β-cells in the mSTZ model 
(states mSTZ and db/db + mSTZ; Fig. 5e and Extended Data Fig. 5d). 
We used biologically interpretable GP differences to ease the com-
parison of these two states (Extended Data Fig. 8b,d; for validation 
of this approach see Supplementary Note 6). The db/db + mSTZ state 
had higher activity of multiple GPs that contained known diabetes 
markers or were associated with ER stress (GP2, GP3 and GP4) and 
cell state mSTZ had higher activity of GPs associated with imma-
turity (GP8 and GP23). Both increased ER stress and immaturity 
were reported in the paper publishing the mSTZ dataset30; however, 
they did not describe dysfunctional populations differing in the 
two processes. While the more immature state (mSTZ state) was 
specific to the mSTZ model, the more stressed state (db/db + mSTZ 

state) also contained db/db model cells. This may be explained by 
either mSTZ diabetes model having a milder hyperglycemia than the  
db/db model23,30, leading to a lower β-cell compensatory response 
and thus reduced stress, or by a different mechanism of β-cell dam-
age due to the use of STZ. As these two populations clearly differ in 
their metabolism, they may be of relevance for studying diabetes 
with the mSTZ model.

Publications based on individual datasets often do not agree on 
β-cell heterogeneity markers35. Thus, we used the wide range of β-cell 
phenotypes across datasets within MIA, encompassed by the fine β-cell 
states, to assess population markers manually extracted from the lit-
erature (Fig. 5f and Supplementary Table 7). Some markers previously 
reported as marking the same β-cell population, such as markers of 
maturity or dedifferentiation (often related to T2D models), separated 
into multiple groups with distinct expression patterns across fine 
states (Fig. 5f). This shows how MIA could be used to find specific and 
sensitive markers. Furthermore, we observed that different groups 
of markers reported across studies with different biological focuses 
share similar expression profiles, such as mature10,23,84,85, extreme 
insulin-producing23,85 and immune-attack-susceptible markers86. The 
immune-attack-susceptible markers were extracted by Rui et al.86 who 
reported NOD subpopulations differing in immune-attack susceptibil-
ity. They reported that the immune-attack-susceptible population 
expressed β-cell maturity genes and indeed we observed that the popu-
lation markers reported by Rui et al. colocalized with known maturity 
genes in MIA (Fig. 5f). This demonstrates how the heterogeneous cell 
states within MIA can be used for gene contextualization by providing 
information on which β-cell states express a gene of interest and which 
known markers have similar expression patterns.

β-cell dysfunction patterns within healthy samples
In our GP analysis we observed that GPs that changed between healthy 
and T2D model cells (GPs 3, 4, 19 and 20; Extended Data Fig. 8a,b) were 
also among GPs explaining the largest proportion of cell-to-cell vari-
ability within healthy datasets and samples in both mouse and human 

Table 2 | Datasets used for validation, not part of the atlas. For detailed sample information, including sex, please refer to 
Supplementary Table 12

Species Description N samples Technology N cells (N β-cells) GEO accession Reference

Mouse Healthy adult and aged islets 2 SMARTer 207 (207) GSE83146 177

Mouse Endocrine cells from healthy young and adult 
mice and adult mice treated with STZ or STZ and 
insulin, with samples collected at different times 
after STZ treatment

17 STRT-seq 2,999 (1,005) GSE137909 31

Human Islets from non-diabetic, T1D and non-diabetic 
islet autoantibody positive donors, including 
child donors

24 Chromium v2/v3 66,052 (11,298) GSE148073 26

Human Islets from non-diabetic and T2D adult donors 18 SMARTer Ultra 
Low RNA

1,600 (503) GSE81608 52

Human Islets from non-diabetic adult and aged donors 5 Chromium v2 26,474 (11,923) GSE198623 81

Human Islets from non-diabetic child and adult donors 8 Smart-seq2 2,282 (348) GSE81547 15

Human Islets from adult non-diabetic and T2D donors 8 SMARTer 617 (264) GSE86469 178

Human FACS-sorted islet cells from adult and aged 
donors with or without T2D

14 Smart-seq2 2,245 (674) GSE124742 (FACS) 21

Human Patch-seq of islet cells from adult and aged 
donors without diabetes, with T1D (adult only) or 
with T2D

53 Smart-seq2 2,319 (496) GSE124742, GSE164875 
(patch-seq)

21,97

Human Islets from non-diabetic and T2D adult donors 9 Drop-seq 27,996 (9,958) GSE101207 78

Human Islets from non-diabetic child and non-diabetic 
and T2D adult donors

22 Smart-seq 619 (182) GSE154126 179

Human Islets from non-diabetic child and non-diabetic, 
T1D and T2D adult donors

9 Smart-seq 457 (111) GSE83139 22

http://www.nature.com/natmetab
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(Extended Data Fig. 8g and Supplementary Table 6). This motivated 
us to describe heterogeneity conserved across healthy adult samples.

We collected genes that are consistently variable within individual 
healthy samples and grouped them based on coexpression patterns 
conserved across samples, resulting in five gene groups (a detailed 
description of groups is in Supplementary Note 7 and Supplementary 
Table 8). Groups 3 and 5 were associated with β-cell maturity and insulin 
production, with group 3 having a stronger insulin-production-related 
stress signature (Fig. 5g and Supplementary Table 8). Group 1 contained 

genes implicated in β-cell metabolic stress recovery, such as ATP 
production-related genes82 (Fig. 5g and Supplementary Table 8).  
The negative correlation between the expression of group 1 and 
groups 3 and 5 (Extended Data Fig. 9) is in accordance with previously 
reported cycling of β-cells between insulin production and recov-
ery in mice and humans82,87,88. As group 1 genes, including multiple 
mitochondria-associated genes, β-cell maturation and function genes 
(Ucn3, Ftl1, Cd63 and Scg2)47,89 and protective genes (Nupr1, Atp2a2 
and Atf5)90–92, are involved in healthy metabolic stress recovery they 

Coarse subtypes
a b c

Gene programs variable across the atlas

Select variable genes
with Moran’s I

Cluster variable genes

C
el

ls

Genes
Programs

Applications

Functional β-cell subtypes

C
el

ls

Gene programs

Cell clusters with unique 
combination of gene programs

Variability within
the whole atlas

Samples

Gene programs

Variability conserved across samples

Conserved
Sample specific

Gene programs

d

C
el

l c
lu

st
er

s

db/db-VSG
db/db + mSTZ

mSTZ
Imm.3
Chem1

NOD-imm.
NOD-D
D-inter.
Adult2

Adult-imm.2
Chem3
Chem2

Imm.1
Imm.2

Adult-imm.1
Adult1

Adult + agedM
AgedF1
AgedF2

Pd
x1

N
kx

2−
2

N
kx

6−
1

C
hg

a
U

cn
3

Sy
tl4

In
s1

In
s2

Sl
c2

a2
M

af
a

At
f3

C
dk

n2
a

C
hg

b
Ab

cc
8

Tn
fr

sf
11

b
Ia

pp

Se
rp

in
e1

G
px

3
C

d8
1

N
eu

ro
g3

G
c

C
ck

C
xc

l1
N

py
C

at
C

dk
n1

a
C

dk
n2

b
C

cl
4

C
xc

l1
0

Rb
p4

M
af

b
G

lp
1r

T1D

Imm.

β Imm. Mature Aged T1D T2D Imm. Adult AgedF AgedM NOD-D db/db + mSTZ Chem

Adult
AgedF

AgedM
NOD-D

db/db + mSTZ
Chem

Imm.
Adult
AgedF
AgedM
NOD-D
db/db + mSTZ
Chem

Fraction of
cells

20 40 60 80
10

0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

Relative
mean expression

Relative mean
quality metric

Female
ratio

LowQ
LowQ-hMT

In
s1

In
s2

N
kx

6-
1

Pd
x1

Rb
p4

C
d8

1
M

af
b

M
af

a
U

cn
3

Sl
c2

a2
C

dk
n2

a
Tr

p5
3b

p1
B2

m
G

as
t

G
c

Al
dh

1a
3

C
ck

Al
do

b
C

hg
b

N
 c

ou
nt

s
N

 g
en

es
M

T 
fr

ac
. F

To
r3

a
Pr

kc
a

Sl
c3

7a
1

Pr
ss

53
N

eb
Fb

xw
18

B3
ga

lt1
Tp

h1
Fm

o1
D

lg
ap

1
G

ad
1

Irs
2

Bm
t2

99
30

02
1J

03
Ri

k
F8

30
01

6B
08

Ri
k

G
m

48
41

Ig
tp

Id
nk

Pp
a1

So
rc

s2
Sl

c5
a1

0
G

as
t

Se
rp

in
a7

Ta
gl

n3
Pk

n2 Ki
z

Aged
Dedi�erentiated

Extreme
Immature

Immune-attack resistant
Immune-attack susceptible

Immune-infiltration
Mature

Proliferative
Senescent

Relative
mean
expression

0

0.5

1.0

Marker
False
True

Annotation
Multi-marker 
similarity

Heterogeneity of 
mature markers

Heterogeneity of 
dedi�erentiation 
markers

f

e Fine subtypes

g

Imm.1

Imm.2

Imm.3

NOD-imm.

Adult-imm.1

Adult-imm.2

Adult1

Adult2

Adult + agedM

AgedF1

AgedF2

D-inter.

NOD-D

db/db + mSTZ

mSTZ

db/db–VSG

Chem1

Chem2

Chem3

Correlation

X, gene contained in gene group

G
en

e 
gr

ou
ps InsL (1) X X X

X X X X X X X X X X X

Matu
re

Insu
lin

relat
ed

Im
matu

re

Dedi�erentia
tio

n

UPR ROS

defense
Horm

one

receptors

Im
mune

infilt
rat

ion

(A
nti)a

poptotic

Pro
tectiv

e

Imm. (2)
InsH-str. (3)

Aged (4)
InsH (5)

Pp
p1

r1
a

U
cn

3
D

na
jc

24
C

ib
2

Pa
ps

s2
M

af
a

Tr
pm

5
Vs

tm
2l

Sy
nd

ig
1l

Pr
ss

53
G

ng
12

Ab
cc

8
Sy

t7
Sc

n1
b

Ff
ar

1
Sl

c3
0a

8
Sy

tl4
G

6p
c2

Pc
sk

1
C

pe
C

hg
b

Pc
sk

2
Ss

r1
P4

hb
In

s2
Ra

b3
a

In
s1

Er
o1

b
Sy

t4
D

dx
1

C
dc

42
Sc

g5
Ia

pp
Pc

sk
1n

C
hg

a
Sc

n3
a

N
py

C
ld

n3
Ap

lp
1

Ig
fb

p7
Rb

p4
C

ld
n4

Al
ca

m
M

sl
nl

Aq
p4

M
af

b
M

lx
ip

l
Te

nm
4

C
d8

1
Pc

p4
l1

Pr
ss

23
Ta

gl
n3

N
eu

ro
g3

C
ltr

n
Sc

g3
Pa

m
C

th
rc

1
N

du
fa

4
Sy

p
G

pd
2

M
t3

N
du

fb
5

Ju
nb

C
al

r
H

sp
a5

H
sp

90
b1

D
er

l3
Vc

p
O

s9
Xb

p1
H

er
pu

d1
Pp

p1
r1

5a
At

f4
D

di
t3

At
f3

H
sp

h1 Ju
n

Ft
l1

M
t2

M
t1

Ft
h1

Ft
l1

-p
s1

N
qo

1
Sl

c3
a2

Pc
bp

1
Pr

dx
2

Tx
nl

1
Pr

dx
6

Tx
n1

Pr
dx

1
G

px
3

Ig
f2

r
In

sr
Ss

tr
3

Ig
f1

r
G

cg
r

Pt
pr

n
G

ad
1

B2
m

Tx
ni

p
Tn

fa
ip

3
Re

l
M

cl
1

Xi
ap

C
as

p9
Bc

l2
l1

C
as

p8
Bc

l2
l2

Ba
d

Bc
l2

N
up

r1
At

p2
a2

At
f5

Ak
t1

N
fe

2l
2

0–1 1

XXXXXXXX
XXXXXXXXXXXXXXXX

XXXXXXX
X XX XX X X X

Fig. 5 | MIA encompasses β-cells heterogeneity across and within biological 
conditions. a, Coarse β-cell states labeled based on sample metadata (excluding 
low-quality clusters) shown as a UMAP. b, Expression of known markers (marker 
groups are specified on the top of the plot), quality control metrics and sex ratios 
across coarse β-cell states displayed in separate dot-plot panels. In the marker 
expression panel, the dot size indicates the fraction of cells expressing a gene, 
whereas in other panels it is set to a fixed size. c, Expression of MIA-based markers 
of coarse β-cell states. d, Overview of the method used for extraction of GPs and 
subsequent cell clustering resolution selection or definition of consistently 
variable GPs across samples. e, Fine β-cell states defined based on the presence of 
a unique combination of GPs (excluding low-quality clusters) shown as a UMAP. 

f, Expression of known β-cell heterogeneity markers across fine β-cell states. 
Phenotypes associated with individual genes (top). The dotted boxes represent 
two distinct sets of maturity (orange) and dedifferentiation or diabetes markers 
(red); the solid cyan box shows overlap and expression similarity between 
maturity, immune-attack susceptibility and extreme insulin producer markers. 
g, Correlation between gene groups variable in all healthy samples and known 
β-cell heterogeneity markers on the healthy β-cell subset. Markers present 
within a specific gene group are annotated with an X. imm., immature; M, male, F, 
female; NOD-D, NOD diabetic; D.-inter, diabetic intermediate; insL/H, insulin low/
high; str., stressed. In b, c and f, relative expression is computed as the average of 
cell groups normalized to [0,1] for each gene feature.
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may be of interest for T2D therapy. Indeed, group 1 showed the lowest 
activity in the diabetes model β-cells (Extended Data Fig. 9b), indicating 
impaired stress recovery.

We also observed two gene groups indicating that cells within 
healthy adults differ in the degree of maturity and senescence. Group 4  
contained senescence genes and healthy adult cells most highly 
expressing these genes colocalized with aged cells. Notably, while 
group 2 contained immaturity genes, the healthy adult cells with high 
expression of this group partially colocalized with the immature subset 
of mSTZ model cells (fine β-cell states imm.3 and mSTZ) (Supplemen-
tary Note 7, Fig. 5g, Extended Data Fig. 9 and Supplementary Table 8).

Comparison to a meta-analysis of human healthy heterogeneity 
markers35, revealed shared genes Tm4sf4 and Clu from group 3 (insulin 
production and metabolic stress) and genes Fos, Herpud1 and Rgs4 from 
group 4 (aging). While these orthologs likely share function across spe-
cies, Mawla and Huising35 did not specifically state which β-cell states 
they are associated with.

Diabetes response of β-cells is highly complex
While β-cells are the primary cell type affected in diabetes, the disease 
also has broader effects on the whole islet93,94. To investigate these 
effects, we performed DGE analysis between healthy and T1D model 
or T2D model samples in α-, β−, γ- and δ-cells. All cell types had a large 
number of differentially expressed genes (DEGs) in both diabetes types 
(Supplementary Fig. 2 and Supplementary Table 9). DEGs in the β-cell 
T1D model and T2D model had a relatively low overlap and were also 
distinct from DEGs in other cell types (Fig. 6b). This is in accordance 
with different mechanisms that lead to the loss or dysfunction of β-cells 
in T1D and T2D77. In contrast, DEGs overlapped more strongly between 
T1D model and T2D model within α-, γ- and δ-cells and also showed a 
relatively high overlap across these cell types. This is likely due to β-cells 
being the primary cell type affected in diabetes, further leading to islet 
disruption and causing residual stress in other endocrine cells95,96.

To characterize the residual stress within endocrine cell types 
other than β-cells we examined shared DEGs in both diabetes types. 
Upregulated genes were enriched for ER stress, whereas downregulated 
genes were enriched for gene sets related to membrane depolarization 
and ion transport (Supplementary Table 9) and contained hormone 
genes (Gcg in α-cells, Ppy in γ-cells and Sst in δ-cells) (Supplementary 
Table 9). This indicates that diabetes also affects endocrine hormone 
production and secretion in endocrine cell types beyond β-cells. In 
support of this, a recent human α-cell patch-seq study reported a loss of 
electrophysiological identity in T2D97 and electrophysiology of δ-cells 
was likewise reported to be disrupted in prediabetic mice98. However, in 
further analyses we decided to focus on β-cells due to their importance 
in diabetes development94.

Diabetes-unique and cross-condition dysfunction in β-cells
To find genes dysregulated in the T1D NOD model and T2D db/db and 
mSTZ model β-cells, a DGE analysis was performed for each model 
group. As cells within individual subjects can be heterogeneously dys-
functional, leading to reduced power in DGE analysis78, we leveraged 
MIA embedding to assign cells from healthy controls and disease mod-
els along a healthy–dysfunctional trajectory (Extended Data Fig. 10a 
and Supplementary Note 8). This is of special importance for NOD mice, 
as in the original study the authors observed incomplete penetrance27 
dysfunctional β-cell phenotype27.

As the DGE analysis resulted in hundreds of DEGs that are expected 
to be heterogeneous in terms of their molecular function, we clus-
tered them using their expression across all β-cells within MIA (sizes 
12–349 genes; Fig. 6a and Supplementary Table 10). The groups are 
described in more detail in Supplementary Table 10 in terms of gene 
set enrichment, gene membership and cell states with high expression. 
In the text they are referred to as T1 groups for NOD and T2 groups for  
db/db + mSTZ.

First, we used the DEG groups to disentangle dysfunction patterns 
of interest from confounding effects. In the original NOD dataset paper 
by Thompson et al.27 the authors observed confounding of dysfunc-
tion progression and age differences between samples containing 
healthy (8 weeks) and dysfunctional cells (14 and 16 weeks), impairing 
the interpretation of diabetes-associated changes. Indeed, we also 
observed, among NOD downregulated genes, one group (T1-down1), 
which was highly expressed across multiple immature states (Fig. 6a) 
and contained genes associated with immaturity (Pyy and Npy)99,100 thus 
likely representing a confounding effect of age. Other gene groups did 
not seem to be associated with known batch effects.

With our DEG clustering approach, we disentangled two 
NOD-upregulated immune processes (groups T1-up2 and T1-up3) that 
showed differences in expression across β-cell states. Group T1-up3 
was NOD diabetic cells (state 14–16wNOD) specific and more strongly 
enriched for antigen-processing genes (containing genes B2m, Tap2 and 
major histocompatibility complex (MHC) II group members), whereas 
T1-up2 was, in addition to NOD diabetic cells, also highly expressed in 
immature cells (Fig. 6a) and more strongly enriched for innate immune 
response genes (containing genes Stat1, Stat2, Gbp7 and immunopro-
teasome group members), potentially representing the regulation 
of β-cells by the immune system that is not restricted to diabetes101. 
Upregulation of both T1-up3 and T1-up2 in NOD is in accordance with 
the active involvement of β-cells in T1D-related immune response by 
means of antigen presentation and immune infiltration in the islets27,102, 
respectively. Furthermore, in the NOD diabetes model, we also observed 
upregulation of senescence-related genes (group T1-up4) that were 
shared with aged females (Fig. 6a). Indeed, senescence genes have  
been previously reported in association with NOD model dysfunction 
and aging individually27,103 and we here show their relationship.

As expected, in db/db + mSTZ cellular metabolism that is nec-
essary for normal β-cell function77 was disrupted. A group of genes 
(T2-down3) was downregulated across all T2D model cell states and was 
higher across healthy cell states (Fig. 6a), with enrichment for insulin 
secretion and steroid metabolism. Additionally, we observed DEG 
groups supporting mSTZ subpopulations associated with immaturity 
or metabolic stress, which we observed above based on GP differences 
(Supplementary Note 9).

Multiple parallels can be drawn between NOD and db/db + mSTZ 
dysregulation. For example, NOD group T1-up1 also showed high 
expression in cell states from db/db and mSTZ datasets (Fig. 6a) and 
partially overlapped with db/db + mSTZ upregulated genes (Extended 
Data Fig. 10d), with the overlap containing multiple genes previously 
associated with diabetes (Gc, Fabp5, Spp1 and Vgf)104–107. NOD and  
db/db + mSTZ also shared similarities in downregulated genes 
(T1-down4 and T2-down2; Extended Data Fig. 10d) that were, in turn, 
highly expressed in healthy mature cells (Fig. 6b). These groups 
contained multiple cross-species conserved β-cell genes (Atf3, Btg2,  
Ddit3, Egr4, Fosb and Jun)108, targets of β-cell expression program  
regulator CREB (Per1, C2cd4b, Nr4a2, Fos and Dusp1)108,109 and genes 
involved in management of metabolic stress involved in insulin pro-
duction and secretion in non-diabetic β-cells (Egr1, Hspa1b, Ddit3 and 
Dnajb1)82,110. This indicates that the β-cell phenotype is compromised 
across diabetes models. In contrast, some gene groups were conversely 
expressed in NOD and db/db + mSTZ analyses. For example, NOD group 
T1-down3, containing some genes involved in adaptive stress response 
(Txnip and Herpud1)33,111, was, in addition to healthy cells, also highly 
expressed in db/db and mSTZ model cells.

As it has been previously reported that diabetes results in the 
dedifferentiation of β-cells toward less-mature states in both mice 
and humans22,23,30,112 we compared the expression of upregulated 
genes across postnatal β-cell states and embryonic cell types, includ-
ing endocrine cells and their progenitors. Among both the NOD and 
db/db + mSTZ upregulated genes we found genes that were strongly 
expressed in embryonic data or were specific to diabetes model 
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cells (Extended Data Fig. 10c). This shows that changes in diabetes 
models involve both dedifferentiation as well as diabetes-model- 
specific responses.

To validate our findings, we further examined whether DEGs are 
translatable to other datasets. In the Feng dataset, which is not part of 
the atlas and contains STZ-treated samples31, most T2-groups had the 
expected expression direction in the STZ model cells (Extended Data 
Fig. 10b). However, two gene groups (T2-down1 and T2-down5) did not 
show different expression activity between diabetic-model and healthy 
Feng cells. For group T2-down5 the discrepancy could be explained by 
the gene group being most highly expressed in immature healthy cell 
states from MIA (Fig. 6a), which, as discussed above, are absent in the 

Feng dataset (Extended Data Fig. 7). In contrast, group T2-down1 had 
a relatively low expression difference between diabetic and healthy 
MIA cell states (Fig. 6a). For both gene groups, the observed expres-
sion patterns in MIA already indicate that they may not generalize to 
other datasets that have a somewhat different healthy and diseased cell 
state composition. The dissection of DEGs based on MIA β-cell states 
enabled us to explain why a subset of DEGs may not be translatable to 
other datasets, which is a common, usually unexplained, problem in 
scRNA-seq studies.

To support RNA-level DGE results (Supplementary Table 10) at the 
protein level, we selected relatively highly expressed DEGs and stained 
them with specific antibodies in islets from healthy and diabetes model 
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(NOD and db/db) mice (Fig. 6d,e). First, we validated that islets con-
tain expected healthy and dysfunctional β-cell states by profiling the 
protein expression of insulin, an established maturation marker Ucn3 
(ref. 9) and a dedifferentiation marker Aldh1a3 (refs. 113,114) (Fig. 6d,e 
and Supplementary Note 10). We next profiled three new markers of 
the T2D model: Nucb2, which is involved in insulin secretion115,116 and 
whose mutations were reported to be associated with diabetes risk117, 
Fkbp11, an ER-located chaperone previously reported to be upregu-
lated in certain mouse T2D models118,119 and Mt3, which was reported 
to be associated with β-cell death120. Protein and RNA levels of Nucb2 
were upregulated in both NOD and db/db islets and Fkbp11 and Mt3 in 
the db/db islets. This validation supports the observations from our 
DGE analysis and proposes new dysfunction markers on both the RNA 
and protein level.

When comparing NOD and db/db + mSTZ genes to multiple 
human datasets we did not observe the expected DEG group activ-
ity differences between healthy and diabetic samples in a consistent 
manner (Extended Data Fig. 10b); however, certain diabetes hallmark 
genes translate across the species. For example, the Dgkb gene, whose 
ortholog is associated with human T2D121, was upregulated in our  
db/db + mSTZ analysis. Thus, future studies could use our diabetes 
DGE results to query for molecular changes shared with humans and 
thus assess whether pathways of interest could be further profiled with 
NOD, db/db or mSTZ models.

A shared progression state in type 1 and 2 diabetes model β-cells
One of the key goals of diabetes research is to understand the tran-
sition from pre-diabetes to diabetes and back upon treatment to 
identify disease states where remission is still possible. To decipher 
the relationships between healthy and diseased states we calculated 
a partition-based graph abstraction (PAGA) on the fine β-cell states  
(Fig. 6f). The connection from the main healthy state (adult2, con-
taining healthy adult cells across datasets) to the T1D model state  
(14–16wNOD) or the T2D model state (db/db + mSTZ) led in both cases 
via an intermediate state (D-inter.). Indeed, it has been suggested previ-
ously that both T1D and T2D may share some molecular stress patterns 
in β-cells, but diverge in the final outcome due to a persistent immune 
or metabolic challenge, respectively27,122–124; however, we did not find a 
report of a shared intermediate state in T1D and T2D models.

The intermediate state contained both stressed healthy and dia-
betic cells (Extended Data Fig. 5d and Supplementary Note 7), includ-
ing cells from the Feng dataset mapped onto MIA (Fig. 4c); however, 
the sample with the largest cell proportion localizing in this state 
was the mSTZ diabetes model sample with regenerative anti-diabetic 
treatment30 (GLP-1 + estrogen + insulin; Extended Data Fig. 5d). This 
indicates that the intermediate state may be related to either treatment 
effects or diabetes progression and β-cell stress.

Molecular differences between the healthy and the intermediate 
state resembled those observed in the diabetic states (14–16wNOD,  
db/db + mSTZ; Extended Data Fig. 8c,e), as described in Supplemen-
tary Note 11. As the intermediate state may be related to both T1D 
and T2D models we profiled the expression of diabetes DEGs shared 
between T1D model and T2D model DGE analyses (described above). 
Most of these genes already exhibited expression differences between 
the healthy and the intermediate state and further changed from the 
intermediate to the diabetes model states (Fig. 6g and Supplementary  
Note 11). Notably, shared downregulated genes (89 genes) were strongly 
enriched for response to extracellular stimuli and transcription factor 
regulation of gene expression due to genes of activator protein-1 (AP-1) 
complex, which are involved in cell survival and death125. This indicates 
that regulatory mechanisms are disrupted between the healthy and 
intermediate states.

Our analysis suggests that the intermediate state presents a snap-
shot of the transition between healthy and dysfunctional cells in dif-
ferent diabetes models; however, it is unclear whether this is part of 

disease progression or a result of treatment and further investigations 
are required to clarify this state.

Sex differences in β-cells involve diabetes-associated genes
Sex differences affect normal β-cell function and subsequent develop-
ment of diabetes126–129. Therefore, we assessed sex differences across 
ages and their relationships to diabetes models. Two datasets from 
early postnatal (P16) and aged (2 years) mice with a mixture of male 
and female cells were used. In P16 mice we did not observe any DEGs, 
except for sex-linked Y-chromosome genes (Ddx3y, Eif2s3y and Uty), 
which were also used during data preprocessing for sex-annotation of 
cells. More DEGs were observed in aged mice (26 male and 116 female 
upregulated genes; Supplementary Table 11), which is also reflected 
in the clear separation of these cells into two distinct states (Fig. 5a). 
To further dissect the aged DEGs we clustered them based on expres-
sion across all β-cells of MIA, resulting in four female and four male 
groups (female1–4 and male1–4; Fig. 6c, Supplementary Fig. 3 and 
Supplementary Table 11).

Females are known to have higher insulin production and are less 
prone to develop T2D18,130. Indeed, we observed some DEG groups 
explaining these phenotypes. Group male4, which was highly expressed 
in T2D model state (Fig. 6c), contained multiple genes related to ded-
ifferentiation, immaturity and other endocrine cell types49,113,131–133 
(Supplementary Table 11). In contrast, the female1 group, which was 
likewise expressed in T2D model state (Fig. 6c), contained multiple 
genes previously reported to be upregulated in pregnancy23,134 (Supple-
mentary Table 11) as well as genes related to insulin secretion (Chgb)135 
and stress response (Mapk4 and Gpx3)136,137. Furthermore, a group 
expressed specifically in aged female cells (female4, 78 genes; Fig. 6c), 
contained some genes involved in insulin regulation138–140 and glucose 
metabolism141,142 (Supplementary Table 11). Altogether, this indicates 
that female β-cells are more inclined to diabetes-associated compensa-
tion and male β-cells to loss of identity.

Discussion
Here we present the MIA, a high-quality integrated atlas, that compiles 
multiple developmental stages and disease conditions from 56 samples 
with transcriptomics readouts of over 300,000 cells. The exploration of 
MIA provides new insights into islet biology and diabetes research that 
could not have been obtained from individual datasets. Our key discov-
eries are the description of the β-cell landscape from diverse datasets, 
the proposition that mSTZ diabetes model molecularly resembles T2D 
rather than T1D and the identification of molecular pathways involved 
in different types of β-cell dysfunction. While this paper is focused on 
β-cells, we also showcased that MIA can be used for studying other cell 
types, presenting an opportunity for future studies.

We used MIA to comprehensively describe the β-cell landscape 
across datasets and conditions. We identified molecular variation 
conserved across healthy adult β-cells. This included pathways of 
immaturity and aging as well as pathways potentially involved in 
cycling between insulin production and metabolic stress, followed 
by regeneration. We further proposed the use of GPs to identify and 
characterize molecularly distinct cell states in the β-cell landscape. 
This led to the identification of an intermediate β-cell state between 
healthy controls and different diabetes models that may be involved 
in diabetes progression or treatment-induced remission. We also 
observed two distinct populations within the mSTZ model differing in 
immaturity and compensatory phenotype, which may be of relevance 
when using the STZ model in future diabetes studies. Notably, when 
comparing different diabetes models, we observed that β-cells in the 
STZ model exhibited a gene expression profile akin to the db/db model 
and not the NOD model. This was again reflected in comparison to 
human data, where mSTZ β-cells showed upregulation of T2D-related 
metabolic stress pathways while lacking upregulation of T1D-related 
immune pathways.
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For future studies, MIA enables automatic cell type and state trans-
fer as well as cross-study and cross-condition comparison by embedding 
cells into a shared reference space. We have demonstrated this with the 
Feng dataset, which is not part of MIA, resulting in the expected mapping 
of healthy control and STZ diabetes model β-cells to the corresponding 
MIA regions. This also showed that the immature populations present in 
MIA and the Feng dataset differ, indicating that the reason for them not 
sharing markers is likely of biological nature, attributed to different cell 
states. Our vision is that future studies can similarly map their datasets 
on top of MIA and publicly provide the generated embeddings to further 
extend the conditions compiled in MIA. As an example, we showed this 
for a young (P3) sample from the Feng dataset, for which we do not 
have a matched developmental stage in MIA, with its embedding filling  
the gap between our embryonic and older postnatal samples.

The heterogeneity compiled within MIA also enables contextu-
alization at the gene level. For example, known β-cell maturity and 
dysfunction markers are more heterogeneous than expected, showing 
distinct expression subgroups across β-cells states of MIA. Similarly, 
researchers could use the interactive cellxgene143 instance of MIA to 
analyze the expression of their genes of interest across cell types and 
diverse biological conditions within MIA.

Our next aim was to describe which pathways are involved in dif-
ferent β-cell dysfunction phenotypes. Therefore, we used MIA to group 
DEGs and contextualize them based on expression across other con-
ditions. For diabetes-model DEGs this approach revealed phenotype 
specific as well as shared molecular changes across diabetes mod-
els, aging and immaturity. Grouping of DEGs also identified distinct 
dysfunction-associated changes across sexes, explaining lower suscep-
tibility of females for diabetes due to upregulation of compensatory 
rather than loss of identity pathways that were observed in males. In the 
future, the dissection of dysfunction patterns based on multiple pheno-
types may provide valuable insights for personalized medicine, which is 
based on knowledge about different disease-associated molecular pat-
terns. It may also be useful for drug repurposing, which relies on path-
ways shared across diseases144–146. For example, it was previously shown 
that removing senescent cell populations in NOD mice and models of 
aging improves the overall regulation of glucose levels27,103. Indeed, 
in our analysis, we observed upregulation of senescence-associated 
genes in both aged and T1D model cells.

We show that our results are reproducible in independent mouse 
transcriptomic data and in immunohistochemistry, proposing new 
markers of T2D model-associated dysfunction (Nucb2, Fkbp11 and 
Mt3). Comparison to human datasets revealed some similarities to 
mice; however, new methods will be required to improve cross-species 
comparison and translation.

In conclusion, MIA provides a useful tool for islet biology and 
diabetes research. It is available as a curated resource in formats that 
enable interactive exploration via cellxgene and computational analy-
ses (https://github.com/theislab/mouse_cross-condition_pancre-
atic_islet_atlas), including access to the cellxgene curated dataset via 
Sfaira147. Our discoveries in β-cell biology showcase how MIA can be 
used both as a reference of cell states as well as for further querying of 
gene expression across conditions.

Methods
Animal studies were conducted with adherence to relevant ethical 
guidelines for the use of animals in research in agreement with German 
animal welfare legislation with the approved guidelines of the Society 
of Laboratory Animals and the Federation of Laboratory Animal Science 
Associations. The study was approved by the Helmholtz Munich Animal 
Welfare Body and by the Government of Upper Bavaria.

Generation of new mouse samples included in the atlas
Mice were housed in groups of two to four animals and maintained 
at 23 ± 1 °C and 45–65% humidity on a 12-h dark–light cycle with ad 

libitum access to diet (irradiated standard diet for rodents, Altromin 
1314, Altromin Spezialfutter) and water.

Islets of Langerhans have been isolated using a standard pro-
tocol148,149. The aged dataset was generated from islets of Langer-
hans isolated from the Fltp lineage-tracing mouse model (Fltp iCre 
mTmG)150 in mice older than 2 years. Two male and two female mice 
were pooled together after islet isolation and before FACS. The sort-
ing was used to separate cells into Fltp-negative (tomato-positive), 
Fltp-lineage-positive (GFP positive) and Fltp-transient (double-positive) 
populations (Supplementary Fig. 4), using FACSDiva (v.6.1.3) and 
FlowJo (v.10.8.1) software. Separate libraries were generated for each 
sorted population after pooling across sexes. For the 4m dataset, 
we used the Fltp reporter mouse line FltpZV (ref. 151). The pancreas 
head and tail were anatomically separated before islet isolation. Islets 
from six FltpZV/+ male mice were pooled. Subsequently, Fltp Venus 
reporter-positive and negative cells were sorted (Supplementary Fig. 4),  
thus generating four libraries. The metadata of all samples are shown 
in Supplementary Table 1.

Libraries of single cells were produced using the Chromium 
Single-Cell 3′ library and 10x Genomics gel bead kit v.3.1 (PN 1000121) 
in the aged dataset and with v.2 (PN 120237) in the 4m dataset. Briefly, 
10,000 cells were loaded per channel of a 10x chip to produce gel 
bead-in-emulsions (GEMs). Then the samples underwent reverse tran-
scription to barcoded RNA, followed by cleanup, complementary DNA 
amplification, enzymatic fragmentation, 5′ adaptor and sample index 
attachment. The samples of the aged dataset were sequenced using a 
NovaSeq6000 (Illumina) with 100-bp paired-end sequencing and the 
samples of 4m dataset were sequenced using a HiSeq4000 (Illumina) 
with 150-bp paired-end sequencing of read 2.

Datasets included in the atlas
We used nine mouse pancreatic islet scRNA-seq datasets previously 
generated with 10x Genomics Chromium technology. Data availabil-
ity is described in Table 1. Public data were obtained from the GEO in 
July 2020 by comprehensively searching for mouse pancreatic islet 
scRNA-seq datasets. From the collected datasets we excluded datasets 
that would not be applicable for analysis of β-cell heterogeneity, such 
as cancer and reprogramming datasets as well as datasets with low 
endocrine cell counts, including embryonic datasets, with the excep-
tion of an in-house embryonic dataset. We also excluded datasets that 
were not generated with Chromium (namely Smart-seq2) as most of 
them had low cell counts and could lead to strong cross-technology 
batch effects due to differences in sensitivity and bias in the type of 
captured genes152. Furthermore, some of the integration methods 
are not designed for full-length reads, such as Smart-seq2 (ref. 41). 
Altogether, using additional sequencing technologies would make 
the integration more challenging.

All computational analyses of scRNA-seq data were performed 
with Scanpy (v.1.6–1.8.1)153, except where noted elsewhere.

Datasets for atlas validation
For validation we collected public mouse and human scRNA-seq 
datasets (Table 2 and Supplementary Table 12) and downloaded their 
expression count matrices and metadata from GEO and paper sup-
plements. If raw counts were available, re-normalization was per-
formed with the Scanpy normalize_total function, otherwise, the 
available pre-normalized data were used. For downstream analyses, 
log(expr + 1)-transformed normalized expression was used. We manu-
ally unified cell type annotation from original studies to a shared set of 
cell-type names by renaming existing labels. No further preprocessing 
was performed on these datasets. These datasets were not included 
in the atlas and were always analyzed individually. In the text, we refer 
to the GSE137909 dataset as the Feng dataset. Where necessary, we 
mapped genes across species based on ortholog information from 
BioMart154 (Ensembl Genes v.103).
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Preprocessing of datasets for atlas building
Gene expression counts were calculated based on genome versions 
described in Table 1 with 10x Genomics CellRanger (v.2.2.1–v.3.1.0)155. 
Each dataset was separately preprocessed with the below-described 
steps, except when we note that a processing step was performed per 
sample, and filtering thresholds were determined on a per-dataset level.

Ambient gene identification
To reduce the effect of ambient expression on embedding calculation 
we removed the most prominent ambient genes, which were identified 
as described here. We selected likely empty droplets that contained 
only ambient RNA based on having fewer than 100 counts. Gene propor-
tions within empty droplets were computed on raw counts per sample, 
representing gene proportions within the ambient RNA. Genes with 
the highest ambient proportion were selected with a dataset-specific 
ambient proportion threshold, selecting genes as the union across 
samples, generating a set of approximately 20 genes per dataset. Owing 
to the proportional nature of expression measurements a relatively 
high ambient proportion of some genes leads to lower proportions in 
other ambient genes. Thus, we reduced the ambient threshold when 
some genes had a relatively high ambient proportion to also capture 
fewer ambient genes that are nevertheless known to strongly affect 
ambient profiles, such as endocrine hormone genes. Additionally, 
a larger set of approximately 100 genes was generated with a more 
permissive threshold that aimed to include top ambient genes so that 
selecting more genes would no longer evidently increase the captured 
cumulative ambient proportion given by the sum of the per-gene 
ambient proportions.

Dataset quality control
Empty droplet score was computed per sample with DropletUtils 
(v.1.10.3)156 emptyDrops function using LogProb output for down-
stream visual quality control assessment purposes. Cell-containing 
droplets as determined by the CellRanger pipeline were used in down-
stream analyses. Cell filtering was performed based on guidelines 
published previously157, excluding cells with a low number of expressed 
genes, low total counts or high mitochondrial proportion and outliers 
with a very high number of total counts or expressed genes. Genes 
expressed in a very small number of cells and top ambient genes were 
excluded for the purpose of annotation and integration. Doublets were 
filtered out with Scrublet (v.0.2.1)158 scores computed per sample using 
a manually set threshold to separate the scores into cross-cell type 
doublet and potential non-doublet populations as proposed in the 
tutorial158, while ensuring that selected doublet cells mainly mapped 
into discrete cluster locations on the Uniform Manifold Approximation 
and Projection (UMAP) embedding. The choice of the threshold was 
set permissively, as indicated by the presence of some residual doublet 
populations in the final atlas version.

Dataset-wise cell annotation
To perform cell annotation within individual datasets normalization 
was performed per dataset with scran (v.1.16.0–1.18.7) pooled size 
factors159,160, data were log(expr + 1)-transformed and 2,000 highly 
variable genes (HVGs) were selected with Scanpy using the cell_ranger 
selection flavor and samples as batches. The cell cycle stage of each 
cell was annotated using the Cyclone method161 as implemented in 
scran. For datasets without per-cell sex information, the sex was anno-
tated based on Y-chromosome located HVGs with high expression. 
We assigned cells into insulin, glucagon, somatostatin and pancreatic 
polypeptide high or low groups per-sample based on scores from the 
Scanpy score_genes function. Cell types were annotated in the follow-
ing datasets: P16, 4m, aged, mSTZ (healthy sample), db/db (healthy 
samples), based on known pancreatic cell type markers followed by 
recursive subclustering until homogenous clusters were reached.  
Rare cell types that did not form a separate cluster were annotated 

based on per-cell marker scores (for example, ε-cells in the P16 dataset). 
Here and in the below re-annotation of the integrated data we relied 
on the following cell type markers across multiple datasets, although 
on the per-dataset level, we also used other markers, expressed in cell 
subpopulations present in only some of the datasets. The marker list is 
acinar: Cpa1, Prss2; α: Gcg; β: Ins1, Ins2; δ: Sst; ductal: Krt19, Muc1, Sox9; 
endothelial: Pecam1, Plvap; ε: Ghrl; γ: Ppy; immune: Cd52, Lyz2, Ptprc; 
stellate-activated: Col1a2, Bicc1, Pdgfra; stellate-quiescent: Ndufa4l2, 
Acta2, Cspg4, Rgs5; and Schwann: Cryab, Plp1, Sox10. Expected multi-
plet rates were computed and together with Scrublet scores used to 
determine which annotated multiplet cell types present true cells or 
residual multiplets. We annotated β-cell states based on the expression 
of known β-cell heterogeneity markers.

Batch-wise preprocessing for integration
We tested different methods for ambient expression correction: Cell-
Bender (v.0.2.0)162, SoupX (v.1.5.0)163 and DecontX (from celda v.1.5)164. 
We did not use CellBender preprocessed data further as we observed 
non-homogeneous correction within clusters, namely some genes 
known to be cell type-specific, such as β-cell-specific Ins1 and Ins2, 
were removed partially and at different levels across cells within other 
cell types. For other methods, different ambient correction strengths 
were used and one or more were selected for integration per method. 
Non-ambient-corrected data were also used. Top ambient genes 
were excluded, also in ambient corrected datasets (using the smaller 
ambient gene set). The ambient correction method selected for final 
integration is described in the ‘Integration selection’ section. Genes 
previously marked as too lowly expressed on a per-dataset level were 
also removed. To enable integration with samples as batches and future 
mapping of new samples onto the reference the data was per-sample 
scran normalized and transformed with log(expr + 1). The batch-wise 
re-normalization was performed as scran size factors may not be com-
parable across multiple runs due to size factors being relative within 
a dataset160. These additional batch differences can thus be learned 
to be corrected by the integration model. By performing batch-wise 
normalization (here, batch is a sample) we ensure that the integration 
model can account for this effect when removing batch effects. For scVI 
integration non-normalized data were used. Expression matrices of all 
samples were merged, retaining the intersection of genes. The 2,000 
HVGs obtained with the scIB (developmental version, last updated on 
17 January 2022)41 hvg_batch function was used.

Integration selection
For integration we used scVI v.0.7.0a5 (ref. 40) with hyperopt hyperpa-
rameter optimization and scArches v.0.1.5 (ref. 42) with manual param-
eter optimization. First, we performed integration on the annotated 
data only to select scVI parameters with hyperopt (number of network 
layers and their size, number of latent dimensions, reconstruction loss, 
dropout rate, learning rate, gene dispersion and number of epochs) and 
scArches parameters based on visual evaluation (different HVG selec-
tion, integration strength regulated by the weight between reconstruc-
tion and Kullback–Leibler divergence loss, number of network layers 
and reconstruction metrics), to ensure that selected parameters lead 
to a reasonable integration. Afterward, integration was performed on 
all data. Different integration methods and preprocessing combina-
tions were evaluated with scIB metrics. We added a new biological 
conservation metric named Moran’s I conservation, which does not 
require cell-type annotation. For biological conservation evaluation 
we excluded unannotated and multiplet cells, except for Moran’s I, 
which could be run on all cells. As annotation was available only for a 
subset of cells the batch correction metrics were run both on all data, 
using clusters instead of cell-type labels and on the annotated data 
subset. We also performed evaluation on β-cells only, using β-cell 
states as cell labels, with different integration strengths. Top selected 
integrations were run multiple times to better distinguish between 
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random initialization and true performance variation. The best method 
(removed top ambient genes and scArches-cVAE) was selected based 
on summarized biological conservation and batch correction scores, 
as described in scIB, with a special focus on β-cell state conservation.

We also tested β-cell-specific integration, using β-cells defined 
based on an integrated annotation (see below) with the same integra-
tion settings as for the whole atlas, but with multiple different inte-
gration strengths in scArches-cVAE. Batch correction evaluation was 
run on all cells, using clusters instead of cell type labels and biological 
preservation evaluation on cells that had state annotation. The results 
were compared to metrics computed on the same set of cells from the 
whole atlas integration.

For comparison, we also show unintegrated embedding, which was 
computed using the same set of genes as the final atlas integration. We 
normalized expression using the Scanpy normalize_total function as 
scran normalization performed on individual samples, as used for inte-
gration, leads to lower comparability of normalization factors across 
samples. Data were log(expr + 1)-transformed and scaled, followed by 
principal-component analysis (PCA)-embedding computation that was 
used as the basis for UMAP.

Integration evaluation with Moran’s I conservation
We proposed a new biological conservation metric for comparison 
across integration runs without the need for cell type annotation that 
determines how strongly genes are variable across the integrated 
embedding. Namely, if embedding captures biological variation at a 
finer scale, for example, within cell types, then the expression variation 
of genes that are potential determinants of cell state differences  
(for example, HVGs) should be non-random across the embedding. 
The method first computes HVGs (g , 1,000 genes) on the expression 
data with Scanpy highly_variable_genes function using cell_ranger 
flavor and batch_key parameters. Moran’s I for these HVGs is then 
computed on the integrated embedding (i) with Scanpy morans_i func-
tion. This function uses information about each cell’s k-nearest neigh-
bors graph computed with Scanpy neighbors function on the integrated 
embedding with Euclidean distance metric. The final score is computed 
as the mean of per-gene scores. This score is rescaled to fall within range 
[0,1], matching other scIB scores. This can be formulated as:

score =

1
g

g

∑
1
(ig) + 1

2

The final annotation of the integrated atlas
We defined cell types on the integrated atlas by consecutive Leiden165 
subclustering with Scanpy, namely by manually selecting clusters to 
be subclustered as needed to separate cell types, relying on informa-
tion about previously annotated cells, hormone expression high/low 
assignment and quality metrics. Namely, empty droplets were identi-
fied based on low expression and high empty droplet probability and 
doublet clusters based on higher doublet scores and expression of 
markers of multiple cell types. We compared the re-annotation to the 
annotation from original publications, for which we manually unified 
cell type labels by renaming the labels to a shared set of names.

As scran normalization performed per-sample is not comparable 
across samples (described above) scran size factors were recalculated 
on the integrated cell clusters and the atlas was jointly re-normalized. 
In downstream analyses, we used this normalized data, except for the 
methods that required raw counts.

To disentangle biologically relevant differentially active genes 
from genes whose expression is likely a result of ambient expression dif-
ferences in the downstream analyses, we defined genes that may be pre-
dominately ambiently expressed in a given cell type. Top ambient genes 
likely not coming from β-cells were defined as follows. For each sample, 
genes with high expression in empty droplets, containing fewer than 
100 counts, were selected with a single threshold across all samples 

and the genes were pooled across samples. These ambient genes were 
clustered based on expression across integrated cell clusters. Ambient 
gene clusters were assigned to non-β-cell originating ambient genes if 
they had relatively low expression across all β-cell clusters compared 
to cell clusters coming from other cell types. Besides making the set 
of likely non-β-cell ambient genes, we used during interpretation a 
per-gene metric that can indicate ambient gene origin, namely relative 
gene expression in a cell type compared to other cell types, with higher 
scoring genes being less likely ambient. As this metric was used for 
postnatal endocrine analyses the embryonic clusters were excluded as 
they are not expected to contribute to ambience in postnatal samples. 
The atlas subset was then subclustered using Leiden clustering with 
resolution of 2. Mean expression in cell clusters was maxabs-scaled 
across clusters, representing relative expression in each cluster. To 
determine the relative expression of a gene in a cell type we used the 
highest relative expression obtained across all cell clusters containing 
predominantly that cell type.

In all further analyses where we needed to reduce the number 
of cells due to computational constraints we prepared pseudobulk 
data (here, termed ‘fine pseudobulk’) by Leiden clustering with high 
resolution (such as resolution of 20) to create tens or hundreds of 
clusters (depending on data size) that should capture the majority 
of heterogeneity within the data. This is akin to recently proposed 
methods that aim at creating so-called ‘metacells’ that group together 
cells without biological differences166,167. Pseudobulk expression was 
computed as the mean of log(expr + 1)-transformed normalized expres-
sion within each cluster. For DGE analysis on pseudobulk (here termed 
‘metadata-based pseudobulk’) we grouped cells based on their meta-
data, such as sample and cell type, as before suggested for single cell 
DGE analysis168. Here, normalized counts were summed across cells 
and log(expr + 1)-transformation was not applied.

Identification of endocrine cell type markers
For the identification of endocrine cell type markers one-versus-one 
DGE analyses were performed with edgeR (v.3.32.1)169. For the post-
natal markers metadata-based pseudobulks of postnatal datasets 
per cell type, sample and sex were created. We excluded embryonic, 
doublet and endocrine proliferative cell types. The former cell type 
was excluded as a minute number of postnatal cells mapped to the 
embryonic clusters (Extended Data Fig. 1). The latter two cell type 
groups were excluded as they share gene expression with matched 
non-doublet and non-proliferative cell types, which would prevent the 
identification of these genes as DGE markers. Lowly expressed genes 
were removed with edgeR and a single DGE test was fitted, using edgeR 
general linear model (GLM) with robust dispersion, with sample and 
sex as covariates and two-sided likelihood-ratio significance testing. 
To obtain one-versus-rest upregulated genes for each endocrine cell 
type the factors across cell types were compared. Marker genes were 
selected based on a false discovery rate (FDR) <0.05 and log fold change 
(FC) >1.5 against all other cell types. In the supplementary tables we 
reported the maximal adjusted P values across compared cell types and 
for logFC we reported 0 if logFC across comparisons had both nega-
tive and positive values and otherwise signed minimal logFC based on 
absolute value sorting. For embryonic markers, the embryonic dataset 
with cell type annotation from the original study60 was used. The Fev+ 
cluster was excluded as it contained precursors of individual endocrine 
cell types with similar expressions as in the descendant cell types, 
which would prevent the identification of markers. Metadata-based 
pseudobulks were created per cell type and sample, whereas sex was 
not used as a covariate, as at this age strong sex differences were not 
expected. Endocrine cell-type markers were identified as for the post-
natal datasets. In the postnatal dataset, we used 52 samples and in the 
embryonic dataset we used 4 samples, with some cell types being rep-
resented in fewer samples and some samples containing data pooled 
across multiple animals.
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Comparison of embryonic and postnatal endocrine cells
We grouped α-, β- and δ-cells into three groups per cell type: embryo 
(cells that were annotated as a certain endocrine cell type in the original 
embryo study and mapped into the embryo endocrine atlas cluster); 
embryo postnatal-like (cells from the embryo dataset that mapped into 
one of the postnatal endocrine atlas clusters); and postnatal (cells from 
postnatal datasets that mapped into one of the postnatal endocrine 
atlas clusters). For embryo and embryo postnatal-like cell types, we 
computed what proportion of embryonic cells per sample-specific 
age group they represent.

Reference mapping of the external mouse dataset
The Feng dataset (query) was re-normalized per-sample with scran 
and log(expr + 1)-transformation to match atlas (reference) datasets 
preprocessing. The reference scArches model was used to compute 
the query embedding, using samples as batches. For query β-cell map-
ping analysis the cell type annotations from the original study31 were 
used. A joint UMAP embedding of query and reference β-cells was 
computed, as well as a UMAP with added reference embryonic β-cells, 
using β-cells from the original study annotation60 that mapped into 
the atlas embryo endocrine cluster, and reference proliferative β-cells, 
defined as endocrine proliferative cells that were previously annotated 
as highly expressing insulin, but not other hormones. Query β-cell 
states were predicted based on atlas coarse β-cell states with the addi-
tion of embryonic and proliferative β-cell groups. For cell type transfer 
a weighted k-NN classifier adapted from scArches manuscript42 was 
used with an uncertainty threshold of 0.75.

Comparison of diabetes models to human T1D and T2D
To obtain T1D and T2D gene sets conserved across human datasets 
the T1D or T2D cells were compared against cells from non-diabetic 
samples in each human dataset (the number of samples in each group 
varied across datasets; Supplementary Table 12 shows sample group 
sizes). Only genes expressed in at least 10% of diabetic or healthy cells 
per dataset were used. Genes with an FDR <0.25 and logFC >0.5 in at 
least half of the datasets based on the Scanpy rank_genes_groups t-test 
function (two-sided Welch’s test on cell level) were selected.

Gene set enrichment was computed with hypeR (v.1.6.0)170 at the 
FDR threshold of 0.25 using Gene Ontology (GO), KEGG and Reactome 
gene sets from MSigDB (v.7.4.1). Before enrichment, each gene set was 
subsetted to genes present in the background that consisted of all 
genes used for the analysis (here, genes tested for DGE) and gene sets 
containing less than five or more than 500 genes were removed. From 
enriched gene sets with shared genes, we manually selected representa-
tive gene sets to be highlighted in the text.

Mouse diabetes model β-cells were scored for both the newly 
defined and literature-based gene sets with Scanpy score_genes 
function on each dataset. Comparisons were performed between 
the following groups: in the 8–16wNOD dataset the 8-week (healthy) 
versus 14- and 16-week samples (diabetic); in the mSTZ dataset con-
trol (healthy) versus the mSTZ-treated sample (diabetic) and in the  
db/db dataset control (healthy) versus db/db sham-operated samples 
(diabetic). Gene set score distributions in healthy and diabetic groups 
within each dataset (sample numbers for healthy mSTZ = 1, db/db = 2, 
8–16wNOD = 3; and diabetic mSTZ = 1, db/db = 2, 8–16wNOD = 6; some 
samples contained pooled animals) were compared using a two-sided 
Mann–Whitney U-test on cell level and a natural-logarithm based logFC 
was computed between distribution medians.

Coarse β-cell states and their markers
Clusters were computed with the Scanpy Leiden function and were 
thereafter added descriptive annotation based on sample ratios 
across clusters, relying on sample metadata, quality scores and rela-
tionships between clusters determined with PAGA. Initial clustering 
was performed with a relatively high resolution so that we could 

later merge clusters that we could not interpret as separate based 
on the criteria described above while ensuring that we did not miss 
any unique clusters.

Cluster-specific markers conserved across datasets were computed 
as follows. Data were subsetted to exclude low-quality clusters and the 
embryo dataset as it contained too few β-cells (fewer than 20 per sample 
across all β-cell clusters). Cell groups used for DGE were defined as a 
combination of cluster and dataset, using for each cluster only datasets 
with a high proportion of cells in that cluster in at least one sample. 
For each dataset-cluster group DGE analysis was performed with the 
Scanpy rank_genes_groups t-test function against all other cell groups, 
except the ones from the same cluster, excluding genes that were lowly 
expressed in both clusters before DGE analysis. The number of samples 
per group varied across cell states, with the total number of considered 
samples before grouping being 52, with some samples containing pooled 
animals. As markers, we selected genes that were significantly upregu-
lated (FDR < 0.1 and logFC > 0) in all datasets across all other cell groups 
and for plotting genes were prioritized based on the highest minimal 
logFC across all comparisons. Genes were further filtered to select likely 
non-ambient genes by keeping only genes with relatively high expres-
sion in β-cells (>0.7). Hemoglobin genes were also removed as they were  
not caught by the relative expression filter as erythrocytes are absent 
from data, but the transcripts are still present in the ambient RNA.

Markers of adult, immature and T2D model states were visually 
validated on the external mouse dataset. The healthy β-cells were 
grouped by age and the STZ-treated cell groups were based on the 
administration of insulin.

Translation of markers to the human data was tested based on all 
collected human datasets with per-dataset one-versus-rest one-sided 
t-tests on cell level and P value significance threshold of 0.05. We also 
report log2-based logFC between group means. The following cell 
groups were defined: T1D or T2D groups contained all cells annotated 
as T1D or T2D and were used to test both known T1D or T2D markers as 
well as our NOD or db/db + mSTZ markers, respectively and for other 
marker groups only healthy donor cells were used, with the adult set 
used to test our adult mouse cluster and contained ages of 19–64 years, 
mature set used to test known maturity markers and contained ages of 
19 years or more, aged male or female sets contained ages of 65 years 
or more and immature set ages of 18 years or less. Age groups were 
defined based on OLS HsapDv human life cycle stages definitions171. The 
number of samples varied across groups and datasets (Supplementary 
Table 12 provides more details).

Gene programs in β-cells
To define GPs we first identified genes variable across embedding and 
then clustered them based on coexpression (Fig. 5d), as described 
below. To identify variable genes low-quality coarse β-cell clusters 
were excluded before the analysis as they could lead to high spatial 
autocorrelation scores of genes associated with data quality. Lowly 
expressed genes and the non-β-cell ambient gene set were removed. 
Moran’s I was used to assess the autocorrelation of expression across 
the integrated embedding (all 15 dimensions). We observed a bias of 
genes expressed in fewer cells toward lower Moran’s I, which would lead 
to lowly expressed genes unjustly being less often selected as variable 
based on Moran’s I threshold. To account for this bias, we regressed 
out the effect of the number of cells expressing the gene on Moran’s I. 
For this regression we used genes likely not to be truly variable across 
the embedding, as explained below, to estimate the base-level effect 
of expression sparsity across cells on Moran’s I. Genes likely not to be 
truly variable were selected as follows: most highly expressed genes  
(N cells ≥ 40,000 from a total of 99,361 cells) were excluded as they were 
deviating from the trend toward higher Moran’s I values, which was 
likely due to their importance in β-cell function and thus higher vari-
ability across the β-cell embedding. The remaining genes were binned 
(N bins = 20) based on the number of cells in which they were expressed 
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and the five genes with the lowest Moran’s I from each bin were selected 
for regression, representing the base-level (likely not biologically rel-
evant variable) Moran’s I at certain expression strength. The regression 
was fitted on the selected genes and then the corrected Moran’s I score 
was computed as the residuals from regression for all genes for which 
the uncorrected Moran’s I score was initially computed. Finally, GPs 
were defined by selecting genes with the highest corrected Moran’s I 
and clustering them using fine pseudobulk cell clusters as features with 
hierarchical clustering and visually determined cutting threshold based 
on a heat map of gene expression across pseudobulks. Gene set enrich-
ment of GPs was computed as for the human T1D and T2D conserved 
genes. We supplemented GP gene set enrichment interpretation with 
marker-based domain knowledge to support β-cell-specific functional 
annotation, which is not fully encompassed by the more generic gene 
sets available in KEGG, GO and Reactome.

The ratio of variance explained by GPs per dataset was computed 
based on principal component (PC) regression. For each dataset, lowly 
expressed genes were removed and 50 PCs were computed based on 
HVGs. Cells were scored for GP activities with the Scanpy score_genes 
function (excluding genes missing from each dataset from GPs) to ana-
lyze how well GP scores of all or individual GPs explain each PC based 
on regression R2 (coefficient of determination). The total variance 
explained was computed as a sum of R2 across PCs weighted by the ratio 
of variance explained by each corresponding PC. For comparison, the 
same procedure was used to evaluate variance explained by random 
gene groups of the same size as the GPs, repeating the procedure ten 
times to estimate the random distribution. For the analysis of explained 
variance in healthy mouse and human samples, only samples with at 
least 100 β-cells were used and the explained variance was computed as 
described above, repeating the calculation for random gene groups 100 
times. The significance of the explained variance by GPs was computed 
as a one-sided empirical P value compared to the distribution for the 
matched random gene group.

Fine β-cell states
Each cell was scored for each GP with the Scanpy score_genes function 
followed by averaging within the fine pseudobulk clusters to speed 
up further analysis. The GP scores were used as features to cluster 
pseudobulk clusters into β-cell state clusters using hierarchical clus-
tering followed by visual selection of the cutting threshold based on 
GP activity purity within clusters and unique pattern of GPs across 
clusters. Each cell was assigned to the cluster of its pseudobulk group. 
The clusters were named based on the metadata of the samples with 
a large proportion of cells within the cluster. The resulting β-cell state 
clusters were used to obtain a pruned PAGA graph, selecting a pruning 
threshold that separated between high and low connectivities.

We analyzed GP-based molecular differences for individ-
ual datasets between healthy and diseased states (adult2 versus  
db/db + mSTZ (for datasets db/db and mSTZ) and versus NOD-D  
(for dataset 8–16wNOD)) and two diseased states (db/db + mSTZ and 
mSTZ for dataset mSTZ). All β-cells were scored for GP activity with the 
Scanpy score_genes function and individual scores were normalized 
across cells to [0,1] with winsorizing by removing the highest and low-
est 20 cells for setting the scaling range. The per-dataset differences 
between means of the normalized scores within clusters were then 
used for cluster comparison.

We manually extracted known markers of β-cell heterogeneity 
from the literature. For plotting across fine β-cell states we excluded 
markers expressed in less than 1% of β-cells and plotted mean expres-
sion per cell state. A heat map was created with ComplexHeatmap 
(v.2.11.1)172,173.

Conserved β-cell heterogeneity in healthy samples
Low-quality coarse β-cell clusters were excluded as they could lead 
to high spatial autocorrelation scores of genes associated with data 

quality. Control samples from the chem dataset were not used as they 
showed lower integration of β-cells, indicating potential strong batch 
effects, which could negatively affect the identification of variable 
gene groups conserved in healthy β-cells. Thus, healthy adult sam-
ples from db/db, mSTZ and 4m datasets were used. For each sample, 
lowly expressed genes were removed and a neighborhood graph 
was computed on per-sample PC embedding for Moran’s I computa-
tion, as described in the ‘Gene programs in β-cells’ section. Here, we 
adjusted the threshold for removing genes expressed in many cells 
from Moran’s I score correction regression to expression in at least 
30% of cells. Genes with high Moran’s I in all samples were selected. 
To ensure that gene clusters are conserved across samples the genes 
were clustered based on the highest distance on per-sample fine 
pseudobulks using hierarchical clustering. The cutting threshold 
was visually determined based on a heat map of gene expression 
across per-sample pseudobulk. Gene group scores were compared 
to the expression of known β-cell functional and phenotypic markers 
extracted from the literature, with marker correlations computed on 
per-sample pseudobulks and summarized as a mean of per-dataset 
means across per-sample scores. Gene set enrichment was computed 
as for β-cell GPs.

To find the cells with the highest expression of each gene group 
we used Scanpy score_genes function on individual healthy adult sam-
ples, followed by selection of 50 cells with the highest score. As the 
Feng dataset had a low number of healthy adult β-cells we performed 
scoring on all control samples together and selected only the top 20 
cells per gene group.

Differential expression in T1D model and T2D model β-cells
We performed DGE analysis on all samples from 8–16wNOD (n = 9) 
and from db/db and mSTZ (n = 15, samples contained pooled animals) 
datasets, excluding low-quality coarse β-cell clusters. A continuous 
disease process (Extended Data Fig. 10a) was computed with MELD 
(v.1.0.0)174 on the integrated embedding as healthy sample densities 
normalized over healthy and diseased densities, using for healthy and 
diseased the same set of samples as in the diabetes model comparison 
to human diabetes-associated gene sets. In the db/db + mSTZ analysis, 
the final MELD healthy and diseased scores were computed as a mean 
over datasets-specific scores. We observe that the resulting process 
corresponds to the gradient from the healthiest (highest healthy sam-
ple cell density within a region) to the most diabetically stressed cells 
(highest diabetes model sample cell density within a region), with the 
process value of individual cells being determined based on cell embed-
ding location rather than just sample membership. Genes expressed 
in less than 5% of healthy or diabetic sample cells were removed. To 
assess linear change in gene expression along the disease process we 
used diffxpy (v.0.7.4)175 two-sided Wald test that fits a negative binomial 
model to raw counts across cells using expression normalization size 
factors as exposure. Dataset information was used as a covariate in the 
db/db + mSTZ analysis. The DEGs were selected based on FDR < 0.05, 
logFC (binary logarithm of the relevant model coefficient representing 
linear change) >1 and relative expression in β-cells >0.2, to keep only 
genes that are less likely ambient, as described above. For comparison 
to the embryonic data the [0,1]-normalized expression of upregulated 
genes was plotted across fine β-cell states and embryonic clusters as 
annotated in the original study.

For both DGE analyses the up- and downregulated genes were sepa-
rately hierarchically clustered on the whole β-cell fine pseudbulk data. 
Cutting thresholds were selected visually based on heat maps portray-
ing gene expression grouped across fine pseudobulks. All β-cells were 
scored for DEG groups with the Scanpy score_genes function and the 
scores were averaged within β-cell clusters. Gene set enrichment was 
computed as described for human T1D and T2D genes. Gene member-
ship across groups was compared as the relative overlap normalized 
by the size of the smaller group.
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The DEGs in NOD and db/db + mSTZ were compared to three 
human datasets with T1D samples and one mouse and seven human 
datasets with T2D samples, respectively. We scored cells for each DEG 
group activity with the Scanpy score_genes function, followed by [0,1] 
normalization across cells and separately plotted cells from healthy 
and diabetic samples.

For analysis of the DGE patterns in relationship to the D-inter. 
cluster the genes up- or downregulated in both NOD and db/db + mSTZ 
were obtained. We plotted their expression per diabetes model datasets 
across the adult2, D-inter. and 14–16wNOD (for 8–16wNOD dataset) or 
db/db + mSTZ (for db/db and mSTZ datasets) clusters. We normalized 
gene expression across clusters in each dataset to [0,1]. We computed 
the gene set enrichment of the shared DEGs as for human T1D and T2D 
genes. The GP differences between adult2 and D-inter. clusters were 
computed for individual datasets (db/db, mSTZ and 8–16wNOD) as 
described in the section ‘Fine β-cell states’.

Differential expression in T1D model and T2D model 
endocrine cells
To compare DEGs across diabetes models and endocrine cell types we 
fitted a joint model with edgeR. Cells from healthy adults (datasets 
4m, 8–16wNOD samples aged 8 weeks, db/db control, mSTZ control; 
n = 10, some samples contained pooled animals), a T1D model (dataset 
NOD_progression samples aged 14 and 16 weeks; n = 6) and T2D models 
(datasets mSTZ and db/db, both without treatment; n = 3) were used 
to compute metadata-based pseudobulks per disease status group, 
sample, dataset, sex and endocrine cell type. Lowly expressed genes 
were removed with edgeR. A single expression model was fitted, using 
edgeR GLM with robust dispersion, with dataset and sex as covariates. 
A two-sided likelihood-ratio test was used to compare model factors 
for each T1D model or T2D model cell type to the corresponding 
healthy cell type to obtain the T1D model or T2D model effect per cell 
type. The DEGs were selected based on FDR < 0.05, absolute logFC > 1 
and relative expression in individual cell types >0.1 to focus on genes 
that are less likely to be ambiently expressed. Overlap between DEGs 
was computed accounting for DGE direction between the two groups. 
Same direction DEGs across α-, δ- and γ-cells in both diabetes types 
were extracted and gene set enrichment was computed as for human 
T1D and T2D genes.

Sex differences in β-cells during aging
Two datasets that contained a mixture of male and female cells were 
used: P16 and aged. Each dataset was analyzed separately; both data-
sets had three samples per group with pooled animals within samples. 
Cells from low-quality coarse β-cell clusters, genes expressed in less 
than 5% of cells and non-β-cell ambient genes were removed. DGE 
analysis was performed with sex and samples as covariates using dif-
fxpy two-sided Wald test. We removed genes that could not be fitted, 
as indicated by extremely small standard deviations of the regression 
coefficient (s.d. 2.2 × 10−162). DEGs were selected based on FDR < 0.05 
and absolute logFC > 1.

DEGs between sexes in the aged dataset were separated by DGE 
direction and hierarchically clustered on the whole β-cell fine pseu-
dobulk data. Cutting thresholds were selected visually based on heat 
map portraying gene expression across fine pseudobulks. All β-cells 
were scored for DEG groups with the Scanpy score_genes function.

Laboratory validation of diabetes markers
For diabetes markers validation we used healthy adult mice from 
strains C57BL/6J (three males and three females, aged 2–4 months) 
and B6.BKS(D)-Leprdb/J (healthy db/db control), db/db T2D model 
mice (three males aged 8 weeks) and NOD T1D model mice (three 
females aged 8 weeks). For endocrine markers validation we used 
postnatal healthy mice from strain C57BL/6J (two males and one female, 
at P9 stage). Mice were housed in groups of two to four animals and 

maintained at 23 ± 1 °C and 45–65% humidity on a 12-h dark–light cycle 
with ad libitum access to diet (irradiated standard diet for rodents, 
Altromin 1314, Altromin Spezialfutter) and water.

Mice pancreases were dissected and fixed (4% PFA–PBS, 24 h 
at 4 °C). The organs were cryoprotected in a sequential gradient of 
7.5, 15 and 30% sucrose–PBS solutions (each solution 2 h at room 
temperature). Next, pancreases were incubated in 30% sucrose and 
tissue-freezing medium (Leica) (1:1, overnight at 4 °C). Afterward, 
they were embedded using a tissue-freezing medium. Sections of 
20-μm thickness were cut from each sample mounted on a glass slide 
(Thermo Fisher Scientific).

Islet isolation was performed by collagenase P (Roche) digestion of 
the adult pancreas. We injected 3 ml collagenase P (1 mg ml−1) into the 
bile duct and the perfused pancreas was consequently dissected and 
placed into 3 ml collagenase P for 15 min at 37 °C. Then, 10 ml G-solution 
(HBSS (Lonza) + 1% BSA (Sigma)) was added to the samples followed 
by centrifugation at 563g (Eppendorf Centrifuge 5910R) at 4 °C. After 
another washing step with G-solution, the pellets were resuspended 
in 5.5 ml gradient preparation (5 ml 10% RPMI (Lonza) and 3 ml 40% 
Optiprep (Sigma) per sample) and placed on top of 2.5 ml of the same 
solution. To form a three-layer gradient, 6 ml G-solution was added on 
the top. Samples were then incubated for 10 min at room temperature 
before subjecting to centrifugation at 523g (settings were acceleration 
3, stopping 0; Eppendorf Centrifuge 5804R). Finally, the interphase 
between the upper and the middle layers of the gradient was collected 
and filtered through a 70-μm nylon filter and washed with G-solution. 
Islets were handpicked under the microscope. For fixation, islets were 
incubated in 4% PFA–PBS for 15 min at room temperature.

For immunostaining, the cryosections were rehydrated and then 
permeabilized (0.2% Triton X-100-H2O for 30 min at room temperature). 
Then, the samples were blocked in a blocking solution (PBS, 0.1% Tween-
20, 1% donkey serum and 5% FCS for 1 h at room temperature). Primary 
antibodies (Supplementary Table 13) were incubated for at least 4 h at 
room temperature followed by three washes with PBX. The samples were 
then incubated with secondary antibodies (Supplementary Table 13) 
during 4–5 h of incubation. For the anti-Rbp4 antibody, we performed 
antigen retrieval with a citric buffer (10 mM sodium citrate and 0.05% 
Tween-20, pH 6) in addition to the above-described protocol. Finally, 
the pancreatic sections were stained with 4,6-diamidino-2-phenylindole 
(1:500 dilution in 1× PBS for 30 min). All images were obtained on a Leica 
microscope of the type DMI 6000. Images were analyzed using the LAS 
X v.3.5.6 and/or ImageJ Fiji-Win32 software.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Up-to-date data resource links are available from https://github.com/
theislab/mouse_cross-condition_pancreatic_islet_atlas. The two newly 
generated scRNA-seq datasets, the integrated atlas and the reference 
mapped embedding of the Feng dataset were deposited to the GEO 
within super-series GSE211799. The atlas is also available as a cellxgene 
instance (https://cellxgene.cziscience.com/collections/296237e2-
393d-4e31-b590-b03f74ac5070). The scArches model for reference 
mapping and an example code for reference mapping used for the 
Feng dataset are available in https://github.com/theislab/mouse_
cross-condition_pancreatic_islet_atlas/tree/main/reference_map-
ping. The following previously published datasets were included into 
the atlas: GSE132188, GSE161966, GSE128565, GSE174194, GSE144471, 
GSE117770, GSE142465 (GSM4228185 to GSM4228199). The following 
previously published datasets were used for validation: GSE83146, 
GSE137909, GSE148073, GSE81608, GSE198623, GSE81547, GSE86469, 
GSE124742 (FACS), GSE124742 (patch-seq), GSE164875 (patch-seq), 
GSE101207, GSE154126 and GSE83139. Gene sets were obtained from 
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MSigDB (v.7.4.1) and ortholog information was obtained from BioMart 
(Ensembl Genes v.103).

Code availability
All code is available at https://github.com/theislab/mouse_
cross-condition_pancreatic_islet_atlas. This includes both reproduc-
ibility code and an example of how new datasets can be mapped onto 
the atlas.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of cell types assigned in original studies 
and in integrated atlas re-annotation. (a) Atlas-level cell type re-annotation 
within the atlas shown on UMAP, including low-quality and potential doublet 
cells. (b) Cell types used for integration evaluation. Annotation was performed 
for selected samples (colored in cells) per study; unannotated cells are marked 
with NA. Some cell types were later renamed for the final atlas annotation 
(for example, the annotations in panel b contain the name pericyte which was 
later in panel a corrected to stellate activated). (c) Cell types as reported in the 
original publications. Cell type names were unified across studies and cells with 

missing annotation are marked with NA. (d) Comparison of integration-based 
re-annotated and previously reported cell type labels. Datasets that did not have 
previously reported annotation are not shown. Overlaps were normalized per 
previously reported cell type. In the P16 dataset, the dotted rectangle indicates 
rare Schwann cells that were merged with a larger population of stellate cells in 
the original annotation. In the embryonic dataset, the dotted circle indicates the 
mapping of embryonic δ-cells to the postnatal δ-cells cluster. Abbreviations: ‘+’ - 
potential doublet, lowQ - low-quality, EP - endocrine progenitor/precursor, prlf. 
- proliferative, mat. - mature.
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Extended Data Fig. 2 | Number of cells per cell type in each sample. Sample names are given as study_sampleDescription_sampleIdentifier. Some of the datasets 
contained samples enriched for endocrine cells (Supplementary Table 1), which prevents direct cell type proportion comparison between samples with different cell 
sorting.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Endocrine markers differ in embryonic and postnatal 
datasets. (a) Comparison of endocrine markers in embryonic and postnatal data, 
showing whether genes were selected as potential markers in each stage (color). 
Genes missing from a stage-specific DGE analysis were assigned a logFC of 0. 
(b) Expression of Cer1 across embryonic cell types (original study annotation) 
and postnatal cell types (atlas-level re-annotation). (c) Validation of selected 
endocrine markers with immunohistochemistry. Arrows indicate Ttr and Gcg 
double-positive α-cells (left) and Rbp4 and Sst double-positive δ-cells (right).  

The first subplot in the row for either Ttr or Rbp4 experiment shows a zoomed-
out section, with the square denoting the zoomed-in region that is shown on 
the rest of the subplots, with an overlay of channels in the middle and individual 
channels on the right. Scale bars represent 50 μM for zoomed-out images and 
20 μM for zoomed-in images. The images are representative examples from the 
analysis of three independent animals. (d) Number of cells in each endocrine cell 
group. Cell groups are as in Fig. 3. (e) Expression of embryonic Fev+ EP markers 
from Bastidas-Ponce et al. (2019) across endocrine cell groups.
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Extended Data Fig. 4 | Integrated embedding of β-cells from individual samples corresponds to biological conditions. The distribution density of cells from each 
sample on a UMAP of the β-cell atlas subset. Sample names are reported with the sample description and identifier. The embryo dataset is not shown due to a small 
number of cells within the β-cell cluster.
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Extended Data Fig. 5 | See next page for caption.

http://www.nature.com/natmetab


Nature Metabolism

Article https://doi.org/10.1038/s42255-023-00876-x

Extended Data Fig. 5 | Different resolution β-cell states correspond 
to biological conditions. (a) Coarse β-cell states, including low-quality 
clusters. (b) Fine β-cell states, including low-quality clusters. (c) and (d) 
Coarse and fine, respectively, β-cell state proportions in each sample, also 
displaying corresponding sample metadata. Sample names are given as study_
sampleDescription_sampleIdentifier. (e) Comparison of coarse and fine β-cell 

state annotation given as a normalized distribution of each fine state across 
coarse states. (f) A UMAP embedding of male and female β-cells across ages. 
Colored in are cells from datasets that have mixed sexes within samples, other 
β-cells are displayed as a background. (g) Expression of Cfap126 (Flattop gene) 
across cell populations that were sorted based on the Flattop reporter system. 
Abbreviations: hMT - high mitochondrial transcript read fraction.
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Extended Data Fig. 6 | MIA-based β-cell markers are robust across mouse 
datasets, but do not directly translate to humans. (a) Expression of proposed 
β-cell state markers across coarse β-cell states per dataset (in brackets).  
(b) Number of cluster-specific markers extracted per dataset and state or as the 
intersection of all datasets within a state. (c) and (d) Expression of known and 
MIA-based, respectively, β-cell state markers on the external Feng mouse dataset. 

The ideal marker bar represents how we would expect markers of specific clusters 
to be expressed across the cell groups. (e) and (f) Translation of known and MIA-
based, respectively, β-cell state markers to human datasets. In each dataset (dot) 
we compared marker expression within the relevant sample group to all other 
samples, showing a comparison lFC and statistical significance as well as the ratio 
of cells expressing the gene in the target group. Abbreviations: ins - insulin.
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Extended Data Fig. 7 | Reference mapping and cell state transfer for external 
mouse dataset β-cells reveals expected reference and query sample 
relationships. (a) Joint embedding of the atlas (reference) and the external 
mouse dataset (query). Left: All query samples, named as age, treatment and 
replicate when multiple samples with the same age and treatment were present. 
Right: Reference cell groups showing coarse β-cell states, as shown in Fig. 5a, and 

proliferative (part of the ‘endocrine proliferative’ atlas cluster) and embryonic 
β-cells (as annotated in the original study of the embryonic dataset). (b) Label 
transfer from the atlas to query, using cell groups as described in a. Cells with low 
label-transfer probability were assigned to the uncertain group. Shown are the 
ratios of each query sample predicted as a certain cell group.
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Extended Data Fig. 8 | Activity of GPs across β-cells helps in β-cells state 
interpretation. (a) Activity of GPs on UMAP of the β-cell atlas subset. (b) Activity 
of GPs across fine β-cell states normalized per GP across states. (c), (d), (e) 
Differences in GP activity between pairs of fine β-cell states (specified on y axis) 

for individual datasets. (f) Ratio of variance explained by GPs across datasets 
compared to random groups of genes. (g) Relative variance explained by each GP, 
scaled as a ratio of maximal absolute value per dataset.
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Extended Data Fig. 9 | Healthy β-cells contain five distinct variable gene 
groups. (a) Pairwise comparison of the normalized activity of gene groups on 
β-cells from healthy samples shown as kernel-estimated density plots colored 
by study. Lines represent regions containing 5, 34, 67, 95 and 99% of cells. Axes 
represent the activity of the compared gene groups. (b) Mean gene group 
activity within coarse β-cell clusters, normalized across clusters. (c) Per-sample 
distribution of normalized gene group activities in β-cells shown as cumulative 

density functions. (d) Localization of cells with the highest activity of the five 
gene groups on the atlas β-cell UMAP for individual health adult atlas samples 
(named as: dataset sample_metadata sample_name) and the healthy adult 
samples from the external dataset (Feng, GSE137909) mapped on top of the atlas. 
(e) Localization of virgin and non-virgin β-cells from Feng (GSE137909) dataset 
on the integrated atlas UMAP as annotated in the original publication.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Diabetes-related molecular changes of β-cells show 
similarities and differences across dysfunctional states and translate to an 
external mouse dataset. (a) Design of DGE analysis showing original conditions 
in each used dataset (dataset 8-16wNOD for NOD DGE, datasets db/db and mSTZ 
for db/db+mSTZ DGE) and axis used for fitting the DGE model. For NOD we 
also show expression of a known T1D marker B2m. (b) Translation of diabetes 
model DEG groups (T1D NOD, T2D db/db+mSTZ) to external human and mouse 
datasets, indicated as normalized activity of gene groups in T1D or T2D (in mice 

STZ-treated) and healthy samples. Plot titles contain information on species 
(hs - human, mm - mouse), dataset and number of cells in healthy (H) and diabetic 
(D) groups. Encircled are gene groups that translate to the external mouse 
dataset. (c) Expression of genes upregulated in diabetic NOD or db/db+mSTZ 
cells shown across fine β-cell states and embryonic cell types as annotated in the 
original study. Cell color annotations are based on healthy and developmental 
conditions. (d) Overlap between NOD and db/db+mSTZ DEG groups as a ratio of 
the smaller group.
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