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Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq)
datasets have been generated, a consensus on pancreatic cell statesin
development, homeostasis and diabetes as well as the value of preclinical
animal models is missing. Here, we present an scRNA-seq cross-condition
mouse islet atlas (MIA), a curated resource for interactive exploration

and computational querying. We integrate over 300,000 cells from nine
scRNA-seq datasets consisting of 56 samples, varying in age, sex and
diabetes models, including an autoimmune type 1 diabetes model (NOD),
aglucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical
streptozotocin -cell ablation model. The 3-cell landscape of MIA reveals
new cell states during disease progression and cross-publication differences
between previously suggested marker genes. We show that B-cellsin the
streptozotocin model transcriptionally correlate with those in human type
2 diabetes and mouse db/db models, but are less similar to human type 1
diabetes and mouse NOD [3-cells. We also report pathways that are shared
between [3-cellsinimmature, aged and diabetes models. MIA enables a
comprehensive analysis of B-cell responses to different stressors, providing a
roadmap for the understanding of B-cell plasticity, compensation and demise.

The major hallmark of diabetes mellitus is impaired glucose homeo-
stasis. Blood glucose is regulated by multiple hormones secreted from
pancreaticislets of Langerhans that consist of insulin-producing f3-cells,
whicharemainactersindiabetes, as well as glucagon-producing a-cells,
somatostatin-producing 6-cells, pancreatic polypeptide-producing
y-cells and ghrelin-producing e-cells'. Type 1 diabetes (T1D) and type
2 diabetes (T2D) arise due to the loss or progressive dysfunction of
B-cells, respectively. Current anti-diabetic medications do not lead
to remission, whereas more-effective treatments, such as bariatric

surgery and islet transplantation, are highly invasive or can be only
offered to a small number of patients**. The central role of B-cells in
diabetes development urges the establishment of new therapies that
focus onrestoring B-cell mass and function*. Achieving such strategies
requiresadeeper understanding of B-cell heterogeneity, maturation,
function and failure® s,

Shortly after birth, 3-cells are immature, defined by poor glucose-
stimulated insulin secretion (GSIS)’. Immature B-cells gain functional
maturation, as defined by the expression of several protein markers,
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Fig.1| The MIA of scRNA-seq datasets across conditions offers new insights
intoislet and B-cell biology. a, MIA content, including different conditions:
sex, age, diabetes models (STZ, db/db and NOD) and anti-diabetic treatments
and chemical stress (application of different chemicals such as FoxO inhibitor).

b, Putative new biological insights. ¢, Analyses enabled by MIA that would not have
been possible onindividual datasets. d, Potential use cases of MIA as aresource
for future studies.

including Urocortin-3, Flattop, transcription factor MafA and glucose
transporter encoded by Slc2a2 (also known as Glut2) and accurate
GSIS in the first weeks after birth and again after weaning® ' Adult
B-cells also differ within and across phenotypes and conditions™".
For instance, insulin production and secretion of 3-cells are changed
due to healthy aging or stress-induced senescence™ ™. The function
also differs between sexes, with male 3-cells having transcriptomic
signatures more akin to T2D',

Different stressors canlead to B-cell failure, whichis often studied
with mouse models'*°. T2D is marked by gluco-/lipotoxicity leading
to B-cell dedifferentiation, compensatory insulin production and
resulting endoplasmic reticulum (ER) stress®?, all of which are also
present in the hyperphagic mouse db/db model**?**. In contrast, TID
is caused by autoimmune attack against 3-cells?*?® that is mirrored
by the mouse non-obese diabetic (NOD) model, which was also used
to show the importance of B-cell stress-induced senescence and

senescence-associated secretory phenotype in TID?*%. B-cell identity
canalso be disrupted due to chemical stress®® and the streptozotocin
(STZ)-induced ablation of 3-cells was previously used to study both
T1D and T2D* . Yet, due to failed clinical translation of treatments
showing promise inanimal models, it isimportant to decipher to which
extent models resemble human diabetes®.

The implication of single-cell RNA sequencing (scRNA-seq) has
greatly enhanced our understanding of B-cell maturation, heterogene-
ity and function in health and disease'***>"**, Nevertheless, there is no
consensus on which B-cell populations exist®**¢ and which pathways
lead to 3-cell dysfunctionin different conditions. For example, for T2D
progression alone, previous studies used different systems and indi-
vidually identified various molecular changes, associated with energy
metabolism, compensatory insulinsecretion, apoptosis, inflammation,
dedifferentiation and disrupted islet communication®>*”*®, This ambi-
guity canbe attributed to heterogeneous cellular states, joint action of
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multiple molecular mechanisms, different stressors and confounding
of unknown environmental factors®**>***%*_Such complexity cannot
be fully capturedin datasets of individual studies. Hence, acombined
analysis of multiple datasets is needed to comprehensively describe
B-cell heterogeneity in health and disease and to disentangle molecular
pathways contributing to the deterioration of glucose homeostasisin
various dysfunction conditions.

Direct comparison of multiple scRNA-seq datasets generated by
different scientific groups is often not possible due to batch effects.
To circumvent this, multiple scRNA-seq data analysis and integra-
tion*®"* approaches have been proposed. This also enabled the crea-
tion of so-called ‘integrated atlases’ that provide an expertly curated
resource with a high-quality embedding optimized to retain biologi-
cal variation, while removing batch effects. Atlases have become an
invaluable tool as they provide new insights beyond individual data-
sets, such as the description of the cellular landscape in health and
disease, and comparison across animal or in vitro models and cor-
responding human datasets***°. While previous efforts have been
made to compare the results of multiple islet sScRNA-seq studies'®*>*,
acomprehensiveintegrated atlas of mouse pancreaticislet cellsacross
biological conditions and datasets with sufficient power to identify
cell states is still missing. Therefore, we present the integrated MIA
of scRNA-seq datasets across conditions (Fig. 1a). The analysis of MIA
provided insights that could not be obtained from individual data-
sets (Fig. 1c), including a holistic description of the 3-cell landscape
across datasets and conditions, identification of similarities and dif-
ferences between diabetes models and disentanglement of molecular
pathwaysinvolvedindifferent types of B-cell dysfunction (Fig. 1b). To
empower future studies we also made MIA available for bothinterac-
tiveand computational analyses (Fig. 1d; https://github.com/theislab/
mouse_cross-condition_pancreatic_islet_atlas).

Results

Anintegrated atlas of mouse pancreaticislet cells across
conditions

To better understand what the transcriptome of individual healthy
pancreaticislet cells looks like and how it changes across alifetime and
uponvarious forms of diabetogenic stress, we integrated nine mouse
datasets. We comprehensively collected seven previously published
datasets (Methods describe data inclusion criteria) and generated
two new datasets (Table 1). MIA contains 301,796 pancreaticislet cells
from 56 samples (Fig.2a,c, Table1and Supplementary Table1). We use
the term dataset for the collection of samples that were generated for
the same purpose (for example, published together) and the term
sample for jointly processed cells with shared biology, which may
originate from a single animal, sequenced individually or demulti-
plexed, orare pooled across multiple animals sequenced on the same
lane without demultiplexing. The samples within MIA vary in sex, age
(ranging from embryonic to postnatal, to adult, to aged), applica-
tion of chemical stressors implicated in the loss of cellular identity
(FoxOinhibitor and artemether) and disease status (diabetes models,
NOD, db/db and multiple low-dose STZ (mSTZ) together with different
anti-diabetic treatments (vertical sleeve gastrectomy (VSG), insulin,
glucagon-like peptide 1 (GLP-1) and estrogen) (Fig. 2a). To cover awide
range of developmental stages we extended the available scRNA-seq
data (embryo to adult) with a newly generated scRNA-seq of aged
mice (>2 years) across sexes (17,361 cells). To identify characteristics
of mature cells conserved across datasets we sampled islet cells from
adult (4-month-old) male mice (17,353 cells), thus complementing two
other publicly available datasets.

To enablejoint analysis of all datasets we performed dataintegra-
tion, creating ajointembedding space. We ensured optimal trade-off
between batch correction and biological preservation on the level of
celltypesand cellstates by evaluating differentintegration approaches,
including preprocessing and data selection, integration tools and

hyperparameter selection (Fig. 2b), as discussed in Supplementary
Note 1. The integrated atlas shows clear separation into clusters that
correspond to distinct cell types (Fig. 2e and Extended Data Fig.1a-c)
that colocalize across datasets (Fig. 2d).

Astheavailable cell type annotation wasincomplete and inconsist-
entacross datasets (Extended DataFig. 1c,d) we manually re-annotated
the integrated embedding (Fig. 2e,f and Extended Data Fig. 1a). This
enabled ustoresolve cell populations that were not annotated insome
of the original studies, potentially because low cell numbers hamper
annotation*®. For example, we found that Schwann cells (617 out of
301,796 atlas cells) were present across the studies (Extended Data
Fig. 2), although they were not annotated in any individual dataset
(Extended Data Fig. 1d). Similarly, none of the original annotations
distinguished between activated and quiescent stellate cells and
some of the studies did not annotate stellate cells at all (Extended Data
Fig.1d and Extended Data Fig. 2).

Additionally, we also observed populations influenced by tech-
nical artifacts that colocalized across datasets, namely a low-quality
cluster (lowQ, 853 cells, as well as low-quality cellsidentified based ona
more detailed analysis of individual cell type clusters, 2,782 cells within
B-cell cluster and 377 cells within a-cell cluster) and mixed (doublet)
clusters (altogether 9,966 cells) (Extended Data Fig.1aand Supplemen-
tary Table 2). They may be useful in the future in automatic annotation
transfer to identify residual low-quality populations in new datasets,
suchas doublets that are often hard to identify.

Embryonic and postnatal endocrine cell type markers
partially overlap

Pancreatic islet profiling and stem cell differentiation highly depend
on reliable endocrine cell type markers*’; however, markers of indi-
vidual cell types may differ across developmental stages. For example,
in embryonic and postnatal stages different cell types are present,
meaning that different markers will be specific for an individual cell
type against all other present cell types. Furthermore, our integrated
embedding revealed molecularly distinct cell states within cell types
across development (Fig. 2d and Extended Data Fig. 1). Thus, we provide
cell-type-specific markers separately for embryonic and postnatal
mice (Supplementary Table 3). We did not compute postnatal e-cell
and embryonic y-cell markers due to the lack of these cell types at the
respective stages.

The identified embryonic and postnatal markers only partially
overlapped (Extended Data Fig. 3a), confirming that distinct marker
sets are needed at different developmental stages. For example, while
the expression of Cerl is higher in embryonic compared to postnatal
6-cells, itisapotential 5-cellmarker only in postnatal and notinembry-
onic samples. This is due to the high expression of Cerl also in e-cells
and high-level Ngn3-expressing endocrine precursor cells that are
present only in the embryo (Extended Data Fig. 3b).

Some of the markers were shared withhuman endocrine markers
reported in a recent scRNA-seq meta-analysis*’ (mouse homologs
Ttr, Geg, Irx2 and Sic7a2 for a-cells; Ins1, Ins2, G6pc2 and lapp for
B-cells; Sst and Rbp4 for &-cell; Ppy for y-cells; Fig. 3a) and in other
publications (Ghrland Irs4 for e-cells)***". Furthermore, we detected
several new cell-type-specific genes at different developmental
stages (for example, Wnk3 and Nxphl for a-cells; Cytip and Spock2
for B-cells; Slc2a3, Nrsni and Spock3 for &-cells; Vsigl for y-cells;
Fig. 3a). Among these, Spock3 has been reported multiple times as
ahuman a-cell, rather than 8-cell marker*>*>**; however, in mice, we
observed consistent upregulationin §-cells across datasets, which is
further supported by a previous study reporting this gene as a §-cell
marker in zebrafish**.

We analyzed the protein expression of two transcriptome-based
markers (Ttrin a-cellsand Rbp4in &-cells) withimmunohistochemistry
inmouseislets (Extended Data Fig. 3c). As anticipated, the expression
of Ttr protein, which is involved in the regulation of Gcg expression
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Table 1| Summary of datasets used for the atlas and their availability. For detailed sample information, including sex, please

refer to Supplementary Table 1

Name Description Nsamples GEO accession Reference Source Ensembl
release
Embryonic  Embryo progression from E12.5 to E15.5 4 GSE132188 60 In-house 100
P16 Healthy young (P16) islets sorted according to 3 GSE161966 79 In-house 94
the Fltp lineage-tracing model
4m Healthy adult (4-month-old) islets from pancreas 4 GSE211796 Previously unpublished  In-house 94
head and tail sorted according to the Fltp Venus
reporter to isolate FVR* and FVR cells
Aged Healthy aged (2-year-old) islets sorted 3 GSE211795 Previously unpublished  In-house 94
according to the Fltp lineage-tracing model
mSTZ Healthy adult control, mSTZ-induced T2D 7 GSE128565 30 In-house 100
model and mSTZ model with different anti-T2D
treatments
db/db Healthy adult control, db/db-induced T2D 8 GSE174194 23 In-house 94
model and db/db model with different anti-T2D
treatments
5wNOD NOD model of T1D before T1D onset (5 weeks) 3 GSE14447 176 External 100
8-16wNOD  NOD model of T1D during T1D development 9 GSE117770 27 External 100
(8-16 weeks)
Chem Healthy young adult control or with applied 15 GSE142465 (GSM4228185t0 28 External 100

chemical stress; sequencing with spike-in cells

GSM4228199)

GEO, Gene Expression Omnibus.

and glucose homeostasis®, was specific to a-cells. In contrast, Rbp4
protein, which was previously reported to be amarker of §-cells***¢, is
expressed across the wholeislet and could thus not be used to reliably
distinguish &-cells inimmunohistochemistry (Fig. 3a and Extended
DataFig.3c). Itsrelatively high protein levelsin B-cells may be further
explained by the young developmental stage (P9) of the used islets
and hence B-cell immaturity, which is known to be associated with
high Rbp4 expression®”*,

Embryonic 8-cells cluster with postnatal 6-cells

One ofthekey questionsinislet biology is whenand how endocrine cells
become functionally mature, whichis of relevance for developing func-
tional cell types from pluripotent stem cells’. As MIA provides ashared
embedding of different biological conditions from multiple datasets
that would otherwise not have been comparable due to confound-
ing batch effects, we leveraged it to analyze cell populations during
endocrine maturation. As expected, most embryonic cells (termed E
group) generally did not overlap with postnatal cells (termed P group),
but notably we observed that alarge proportion of embryonic §-cells
mapped to the postnatal §-cell cluster (termed E P-like group; Fig. 3b
and Extended Data Figs.1d and 3d).

To understand this overlap, we evaluated the expression of endo-
crine development and 6-cell function-related genes. The E P-like 6-cells
had, in comparison to the E group, lower expression of &-cell lineage
determinant Hhex> and lower expression of gene markers enrichedin
the Fev-positive population®, from which 8-cells arise®®** (Fig. 3cand
Extended DataFig.3e). Among known &-cell functional genes, somato-
statinwas highly expressed already inthe Egroup, likely because Sst has
been used for 6-cell annotation, therefore not capturing earlier &-cell
developmental stages™. Other functional genes encode transcription
factors involved in Sst gene expression® and genes encoding sensors
required for appropriate paracrine regulation, namely neurotransmit-
ters, hormone receptors, including the somatostatin receptor (Sstr3
gene) (autocrine feedback) and genes encoding nutrient sensors,
including sensors for milk-based high-fat weaning diet (fatty acids,
Ffar4 gene; amino acids, SLC7 family)***>° (Fig. 3c). They were relatively
highly expressed in all cell groups. This indicates that §-cells already
possess the machinery for regulating somatostatin expression at the

embryonic stage and that they quickly downregulate the expression
of developmental genes, explaining the mapping of embryonic &-cells
to the postnatal cluster. However, we must note that genes potentially
involved in somatostatin regulation could also be related to other cel-
lular functions at this developmental stage. Thus, further validation of
&-cell physiology during development would be required.

B-cells show heterogeneity across and within conditions
Extensive research has shown that B-cells are heterogeneous”'; how-
ever, there is a lack of knowledge on how these states relate®®. Hence,
we aimed to use MIA to comprehensively describe 3-cell states along-
side their molecular characteristics in different sexes, ages and stress
conditions (Table 1).

Totest whether the integrationis adequate for downstream anal-
yses of B-cell states we assessed a MIA subset consisting of 102,143
B-cells. Cells separated on the embedding based on biological covari-
ates, such as age and disease status and overlapped between sam-
ples with similar biological covariates from different datasets (Fig. 4a
and Extended Data Fig. 4). For example, healthy control 3-cells
mapped together regardless of their dataset of origin (mSTZ, db/db
and 8-16wNOD), whereas the cells from diabetic samples from these
datasets mapped away from the healthy clusters. This is in accord-
ance with previously reported -cell changes in aging and diabetic
dysfunction®’*”!, Furthermore, we assessed the expression patterns of
knownimmaturity (Rbp4), maturity (Mafa), stress (Gast), aging/senes-
cence (Cdkn2a) and inflammatory (B2m) 3-cell transcriptomic markers
(Fig.4b), showing complementary patterns when considering opposite
activity of B-cell functional maturation (Mafa) and dedifferentiation
(Gast) markers. Altogether, thisindicates successful integration of the
datasets both on the cell-type and cell-state level.

Transcriptomic similarity of db/db and STZ diabetes

model B-cells

The usage of the appropriate mouse model is of utmostimportance to
studying B-cell functionbothin healthy and disease conditions'. Differ-
entmodels withunique phenotypes and disease mechanisms have been
developed®, each of them with advantages and limitations to be con-
sidered”. To better understand the transcriptomic differences among
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Fig.2|Theintegrated MIA captures cell types and states across lifetime,
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datasets. a, Metadata of datasets and samples used in MIA. b, Overview of atlas
integration evaluation. We tested multiple integration approaches and used the
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E, embryonic; P, postnatal; d, days; w, weeks; m, months; y, years; A1/A10,
artemether (1or 10 pM); FOXO, FoxO inhibitor; G, GLP-1; e, estrogen; i, insulin; PF,
pair-fed; VSG, vertical sleeve gastrectomy; endo., endocrine; prolif., proliferative;
stellate a., stellate-activated; stellate q., stellate-quiescent.

the diabetes mouse models, we compared the commonly used genetic
models of TID (NOD, for which we used samples from early disease
stages”>?) and T2D (db/db**) together with the B-cell ablation model
(STZ) that was previously used to study both T1ID and T2D**°. The NOD
modelis characterized by autoimmune and cytokine-mediated destruc-
tion of B-cells as well as ER stress’>”. The leptin-receptor-deficient
db/db mice are obese, hyperglycemic and dyslipidemic™ 7, leading to
B-cell failure and compensation, which are associated with metabolic
stress, including ER stress**. The STZ treatment is used for specific
destruction of B-cells due to its affinity for the Slc2a2 (ref. 76) protein
expressedin f3-cells. The stressor is applied either inasingle high dose
toresemble T1D or in multiple low doses to elicit partial B-cell loss
reminiscent of T2D, but in the absence of insulin resistance’, with both
strategies analyzed below.

Based on MIA embedding, we found that -cells from mSTZ-
induced (multiple low doses) and db/db models mapped together,
separately from NOD diabetic 3-cells (Fig. 4a). To further validate
the similarity between the mSTZ and db/db models, we mapped onto
MIA another mouse dataset (referred to as the Feng dataset®, not
part of MIA), containing samples treated with STZ (single high dose).
Again, the healthy control cells from the Feng study mapped onto the

healthy B-cell region of MIA and STZ-treated cells mapped onto the
region withmSTZ and db/db model samples (Fig. 4c). Similarly, inthe
future mapping onto MIA may reveal relationships between other
dysfunctional conditions.

To better understand molecular mechanisms underlying (3-cell
dysfunction within each of the models, we analyzed the expression
of known B-cell function and stress genes (Fig. 4d). Inthe mSTZ and
db/db models multiple maturity and insulin-related genes were down-
regulated, while in the NOD model immune modulation genes were
upregulated. In all three models we observed expression changes in
several unfolded proteinresponse, reactive oxygen species defense and
senescence-related genes. Thisindicates the involvement of metabolic
stressindb/db and mSTZ models and immune stress inthe NOD model,
inaccordance with current views on T1D and T2D pathomechanisms”.

To elucidate which mouse models capture transcriptional signa-
tures of human T1D or T2D, we assessed whether changes observedin
human diabetes are also present in mice. We performed differential
gene expression (DGE) analysis on -cells from multiple human T1D
and T2D datasets (Table 2), selected genes upregulated across multiple
datasets per diabetes type (T1D 32 genes, T2D 59 genes) and identified
enriched genesets (Supplementary Table 4). We further complemented
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Fig.3|Theintegrated atlas embedding shows differences between
embryonic and postnatal endocrine cells. a, Expression of endocrine markers
shown across postnatal (P) and embryonic (E) endocrine cell types, including
known markers shared with human (labeled human) and newly identified
markers (labeled new). b, Number of cells in each embryonic endocrine cell
group withinindividual embryonic samples, expressed as a fraction of cells

within asample. Cell groups are E, embryonic cells mapping to the embryonic
cluster; and E P-like, embryonic cells mapping to the postnatal cluster.

¢, Expression of known maturity and 6-cell function markers across embryonic
8-cells groups. Groups are as in b: P, postnatal cells mapping to the postnatal
cluster.Inaand c, relative expression is computed as the average of cell groups
normalized to [0,1] for each gene feature.

our geneset list with known human diabetes-associated gene sets from
the literature. Human T1D is marked by the upregulation of immune
gene sets”, which were much more strongly upregulated in NOD than
db/db and mSTZ models (Fig. 4e; details of gene set activity analysis
across mouse models are provided in Supplementary Note 2). Con-
versely, humanT2Dis associated with changesin hormone metabolism
andstressrelated to metabolic compensation®-**’8, which were upregu-
lated in db/db and mSTZ but not in the NOD model. Thus, the mSTZ
modelreflects key molecular changes of human T2D, but not T1D. The
presence of metabolic stress in the mSTZ model B-cells after clearance
ofthe chemical stressor can be explained by the surviving population
of B-cells being too small to prevent hyperglycemia and henceleading
to compensatory insulin-production behavior and subsequent stress.

Markers of B-cell states conserved across datasets

As itis unclear how newly reported -cell states correspond across
publications®’, we next aimed to utilize the cross-dataset integrated
conditions within MIA to describe -cell heterogeneity in health
and disease in a unified manner. We annotated states on postnatal
non-proliferative B-cells (B’ cluster in Fig. 2e) and labeled them on

the basis of the metadata (altogether referred to as ‘coarse states’;
Fig.5aand Extended DataFig. 5a). We resolved populations of healthy
adult,immature, aged (separated by sex), NOD diabetes model, mixed
db/dband mSTZ diabetes models and cells from the dataset with chemi-
cal perturbations in cultured islets (referred to as chem) that likely
separate due to strong differences in sample handling. For a detailed
description of states see Supplementary Note 4.

We support the annotation of coarse states with known 3-cell
state markers depicted in Fig. 5b. Some known markers were not
state-specific, such as certain immature marker genes that were
also highly expressed in the db/db + mSTZ state (for example, Cd81;
Fig.5b), inaccordance with 3-cell dedifferentiationin mouse diabetes
models?*?*°”°, Thus, the identification of new state-specific markers
could improve the monitoring of 3-cells in specific states to study
their function. We identified markers specific for an individual -cell
state and conserved across all datasets mapping to that state, with
top markers highlighted in Fig. 5c (Supplementary Table 5; a more
detailed description is in Supplementary Note 4). For example, we
identified a new marker of healthy adult state Prss53, associated with
mitochondrial function®®.
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Fig.4|Theintegrated atlas embedding reveals similarities between mSTZ
and db/db diabetes models. a, Distribution of technical (dataset) and biological
(age, disease status) covariates on a UMAP of the B-cell MIA subset. The age
subplot shows only cells from healthy, non-stressed samples. The disease subplot
shows only cells from samples belonging to datasets that contain both healthy
and diabetes model data. b, Expression of selected 3-cell heterogeneity markers
onaUMAP of the 3-cell MIA subset. ¢, Joint UMAP embedding of the reference
atlas (background) and the external (Feng) mouse dataset (query, foreground)
indicating positioning of healthy control and STZ-treated query cells.

d, Expression of known B-cell function genes across different diabetes models
and corresponding healthy controls from individual datasets (the NOD model

is from the 8-16wNOD dataset, other model names correspond to the dataset
names). Relative expression is computed as the average of cell groups normalized
to[0,1] for each gene feature. e, Activity of gene sets upregulated in T1D or

T2D human samples shown for mouse diabetes models and corresponding
healthy controls from individual datasets (as in d). On the overlay boxplots

the white dot represents the median, the box the quartiles and the whiskers

the minimum and maximum (no cells qualified as outliers). The data sizes are
(reported as ‘Nsamples (N cells)’), NOD_elimination diabetic 6 (3,191) and healthy
3(548); STZ diabetic1(1,496) and healthy 1(5,795); VSG diabetic 2 (5,264) and
healthy 2 (7,706). Each sample containsislets from multiple mice. MHC, major
histocompatibility complex.

Totest the robustness of our markers we analyzed their expression
on the Feng mouse dataset that is not part of the atlas®. This data-
set consists of healthy young and adult mice, with multiple samples
spanning the ages of 0.1-4 months, as well as STZ-treated diabetic
samples (Extended Data Fig. 6¢,d). The proposed T2D model state
(db/db + mSTZ) and adult state markers were expressed as expected
inthe Feng dataset; however, we did not observe specific expression of
immature markers in the young samples. We next evaluated whether
this difference arises due to a different immature cell state present
in the Feng dataset or due to technical issues in marker identifica-
tion. Thus, we mapped Feng dataset cells to MIA. Indeed, we observed
differences in the two immature cell states, as young samples from
the Feng dataset did not map to MIA immature state (Extended Data
Fig. 7a,b). The Feng postnatal day 3 (P3) (3-cells mapped between
embryonic and postnatal 3-cells of MIA and the young postnatal cells

(postnatal days 12 (P12) and 21 (P21)) mapped between the immature,
adult and chem MIA states.

Additionally, we assessed whether previously known and
MIA-based markers could be directly translated to ten human datasets
with differences in donor metadata (Extended Data Fig. 6e,f). Only
B2m (T1D marker)” and Rbp4 (immature marker)”® were significantly
upregulated inall human samples associated with those phenotypes.
Thisisinaccordance with previous reports® showing that not allmouse
markers directly translate to human data.

B-cell heterogeneity within biological conditions

B-cells are known to be heterogeneous within individuals™'*%%; how-
ever, our metadata-driven coarse states mainly did not reveal multiple
populations per sample (Extended Data Fig. 5c). Some marker genes
were heterogeneously expressed within coarse states, suchas Rbp4in
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Table 2 | Datasets used for validation, not part of the atlas. For detailed sample information, including sex, please refer to

Supplementary Table 12
Species Description Nsamples Technology N cells (N B-cells) GEO accession Reference
Mouse Healthy adult and aged islets 2 SMARTer 207 (207) GSE83146 177
Mouse Endocrine cells from healthy young and adult 17 STRT-seq 2,999 (1,005) GSE137909 31
mice and adult mice treated with STZ or STZ and
insulin, with samples collected at different times
after STZ treatment
Human Islets from non-diabetic, T1D and non-diabetic 24 Chromiumv2/v3 66,052 (11,298) GSE148073 26
islet autoantibody positive donors, including
child donors
Human Islets from non-diabetic and T2D adult donors 18 SMARTer Ultra 1,600 (503) GSE81608 52
Low RNA
Human Islets from non-diabetic adult and aged donors 5 Chromium v2 26,474 (11,923) GSE198623 81
Human Islets from non-diabetic child and adult donors 8 Smart-seq2 2,282 (348) GSE81547 15
Human Islets from adult non-diabetic and T2D donors 8 SMARTer 617 (264) GSE86469 178
Human FACS-sorted islet cells from adult and aged 14 Smart-seq2 2,245 (674) GSE124742 (FACS) 21
donors with or without T2D
Human Patch-seq of islet cells from adult and aged 53 Smart-seq2 2,319 (496) GSE124742, GSE164875 21,97
donors without diabetes, with T1D (adult only) or (patch-seq)
with T2D
Human Islets from non-diabetic and T2D adult donors 9 Drop-seq 27,996 (9,958) GSE101207 78
Human Islets from non-diabetic child and non-diabetic 22 Smart-seq 619 (182) GSE154126 179
and T2D adult donors
Human Islets from non-diabetic child and non-diabetic, 9 Smart-seq 457 (111) GSE83139 22

T1D and 72D adult donors

young and db/db + mSTZ states and Mafa and Gastin the db/db + mSTZ
state (Fig. 4b), indicating that we could identify higher resolution
statesin MIA.

Annotation of cell states is challenging due to uncertainty about
the number of distinct states®. To ensure that states can always be
biologically interpreted, we based clustering on interpretable fea-
tures (termed gene programs (GPs); Fig. 5d and Methods). GPs are
data-driven groups of genes coexpressed across [3-cells (27 GPs, 14-228
genes; Extended Data Fig. 8aand Supplementary Table 6). Most of the
GPs were enriched for distinct molecular functions (Supplementary
Table 6) and we show that they generalize to other datasets by explain-
ing variance intwo external mouse and ten human datasets (Extended
DataFig. 8f).

We defined 19 fine -cell states (Fig. 5e), which mainly corre-
sponded tosubclusters of the coarse states (Extended Data Fig. 5e) and
described more subpopulations within samples, while still containing
cells from multiple samples and datasets (Extended Data Fig. 5d and
Supplementary Table 2). Additionally, two clusters were characterized
by low-quality control metrics and were thus not regarded as true cell
states (Fig. 5e and Extended Data Fig. 5b). We further discuss (3-cell
heterogeneity captured within MIA in relation to previous literature
inSupplementary Note 5.

We observed two populations of 3-cells in the mSTZ model
(statesmSTZ and db/db + mSTZ; Fig. 5Se and Extended Data Fig. 5d).
We used biologically interpretable GP differences to ease the com-
parison of these two states (Extended Data Fig. 8b,d; for validation
ofthis approach see Supplementary Note 6). The db/db + mSTZ state
had higher activity of multiple GPs that contained known diabetes
markers or were associated with ER stress (GP2, GP3 and GP4) and
cell state mSTZ had higher activity of GPs associated with imma-
turity (GP8 and GP23). Both increased ER stress and immaturity
were reported in the paper publishing the mSTZ dataset®’; however,
they did not describe dysfunctional populations differing in the
two processes. While the more immature state (mSTZ state) was
specific to the mSTZ model, the more stressed state (db/db + mSTZ

state) also contained db/db model cells. This may be explained by
either mSTZ diabetes model having a milder hyperglycemia thanthe
db/db model***°, leading to a lower B-cell compensatory response
and thus reduced stress, or by a different mechanism of 3-cell dam-
age due to the use of STZ. As these two populations clearly differ in
their metabolism, they may be of relevance for studying diabetes
with the mSTZ model.

Publications based on individual datasets often do not agree on
B-cell heterogeneity markers®. Thus, we used the wide range of 3-cell
phenotypesacross datasets within MIA, encompassed by the fine 3-cell
states, to assess population markers manually extracted from the lit-
erature (Fig. 5fand Supplementary Table 7). Some markers previously
reported as marking the same [3-cell population, such as markers of
maturity or dedifferentiation (often related to T2D models), separated
into multiple groups with distinct expression patterns across fine
states (Fig. 5f). This shows how MIA could be used to find specific and
sensitive markers. Furthermore, we observed that different groups
of markers reported across studies with different biological focuses
share similar expression profiles, such as mature'®?*5*%, extreme
insulin-producing®*® and immune-attack-susceptible markers®. The
immune-attack-susceptible markers were extracted by Ruiet al.* who
reported NOD subpopulations differing inimmune-attack susceptibil-
ity. They reported that the immune-attack-susceptible population
expressed f3-cell maturity genes and indeed we observed that the popu-
lation markers reported by Rui et al. colocalized with known maturity
genes in MIA (Fig. 5f). This demonstrates how the heterogeneous cell
states within MIA can be used for gene contextualization by providing
information onwhich 3-cell states express agene of interest and which
known markers have similar expression patterns.

B-cell dysfunction patterns within healthy samples

Inour GP analysis we observed that GPs that changed between healthy
and T2D model cells (GPs 3, 4,19 and 20; Extended Data Fig. 8a,b) were
also among GPs explaining the largest proportion of cell-to-cell vari-
ability within healthy datasets and samples inboth mouse and human
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Fig. 5| MIA encompasses B-cells heterogeneity across and within biological
conditions. a, Coarse 3-cell states labeled based on sample metadata (excluding
low-quality clusters) shown as a UMAP. b, Expression of known markers (marker
groups are specified on the top of the plot), quality control metrics and sex ratios
across coarse -cell states displayed in separate dot-plot panels. In the marker
expression panel, the dot size indicates the fraction of cells expressing a gene,
whereasin other panelsit is set to a fixed size. ¢, Expression of MIA-based markers
of coarse 3-cell states. d, Overview of the method used for extraction of GPs and
subsequent cell clustering resolution selection or definition of consistently
variable GPs across samples. e, Fine 3-cell states defined based on the presence of
aunique combination of GPs (excluding low-quality clusters) shown as a UMAP.

f, Expression of known B-cell heterogeneity markers across fine B-cell states.
Phenotypes associated with individual genes (top). The dotted boxes represent
two distinct sets of maturity (orange) and dedifferentiation or diabetes markers
(red); the solid cyan box shows overlap and expression similarity between
maturity, immune-attack susceptibility and extreme insulin producer markers.
g, Correlation between gene groups variable in all healthy samples and known
B-cell heterogeneity markers on the healthy B-cell subset. Markers present
within a specific gene group are annotated with an X. imm., immature; M, male, F,
female; NOD-D, NOD diabetic; D.-inter, diabetic intermediate; insL/H, insulin low/
high; str., stressed. Inb, cand f, relative expression is computed as the average of
cellgroups normalized to [0,1] for each gene feature.

(Extended Data Fig. 8g and Supplementary Table 6). This motivated
ustodescribe heterogeneity conserved across healthy adult samples.

We collected genes that are consistently variable within individual
healthy samples and grouped them based on coexpression patterns
conserved across samples, resulting in five gene groups (a detailed
description of groupsisin Supplementary Note 7and Supplementary
Table 8). Groups 3 and 5 were associated with 3-cell maturity and insulin
production, with group 3 having astronger insulin-production-related
stress signature (Fig. 5g and Supplementary Table 8). Group 1 contained

genes implicated in 3-cell metabolic stress recovery, such as ATP
production-related genes®’ (Fig. 5g and Supplementary Table 8).
The negative correlation between the expression of group 1 and
groups 3 and 5 (Extended DataFig. 9) isin accordance with previously
reported cycling of B-cells between insulin production and recov-
ery in mice and humans®>*’%¢, As group 1 genes, including multiple
mitochondria-associated genes, [3-cellmaturation and function genes
(Ucn3, Ftll1, Cd63 and Scg2)**° and protective genes (Nuprl, Atp2a2
and Atf5)°°"%?, are involved in healthy metabolic stress recovery they
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may be of interest for T2D therapy. Indeed, group 1showed the lowest
activity inthe diabetes model 3-cells (Extended DataFig. 9b), indicating
impaired stress recovery.

We also observed two gene groups indicating that cells within
healthy adults differin the degree of maturity and senescence. Group 4
contained senescence genes and healthy adult cells most highly
expressing these genes colocalized with aged cells. Notably, while
group 2 contained immaturity genes, the healthy adult cells with high
expression of this group partially colocalized with theimmature subset
of mSTZ model cells (fine B-cell statesimm.3 and mSTZ) (Supplemen-
tary Note 7, Fig. 5g, Extended Data Fig. 9 and Supplementary Table 8).

Comparison to a meta-analysis of human healthy heterogeneity
markers®, revealed shared genes Tm4sf4 and Clufromgroup 3 (insulin
productionand metabolicstress) and genes Fos, Herpudl and Rgs4from
group 4 (aging). While these orthologs likely share function across spe-
cies, Mawla and Huising™® did not specifically state which B-cell states
they are associated with.

Diabetes response of B-cells is highly complex
While 3-cells are the primary cell type affected in diabetes, the disease
also has broader effects on the whole islet™°*. To investigate these
effects, we performed DGE analysis between healthy and T1D model
or T2D modelsamplesina-, -, y-and &-cells. All cell types had alarge
number of differentially expressed genes (DEGs) inboth diabetes types
(Supplementary Fig. 2 and Supplementary Table 9). DEGsin the 3-cell
T1D model and T2D model had a relatively low overlap and were also
distinct from DEGs in other cell types (Fig. 6b). This is in accordance
with different mechanisms that lead to the loss or dysfunction of B-cells
inTID and T2D”. In contrast, DEGs overlapped more strongly between
T1D model and T2D model within a-, y- and &-cells and also showed a
relatively high overlap across these cell types. Thisis likely due to B-cells
beingthe primary cell type affected in diabetes, further leading toislet
disruption and causing residual stress in other endocrine cells™>?°.
To characterize the residual stress within endocrine cell types
other than 3-cells we examined shared DEGs in both diabetes types.
Upregulated geneswere enriched for ER stress, whereas downregulated
geneswere enriched for gene setsrelated to membrane depolarization
and ion transport (Supplementary Table 9) and contained hormone
genes (Gecgin a-cells, Ppyin y-cells and Sstin §-cells) (Supplementary
Table 9). This indicates that diabetes also affects endocrine hormone
production and secretion in endocrine cell types beyond B-cells. In
supportofthis, arecent humana-cell patch-seq study reported aloss of
electrophysiological identity in T2D°” and electrophysiology of §-cells
was likewise reported to be disrupted in prediabetic mice’®. However, in
further analyses we decided to focus on 3-cells due to theirimportance
in diabetes development®.

Diabetes-unique and cross-condition dysfunctionin p-cells

To find genes dysregulated in the TID NOD model and T2D db/db and
mSTZ model B-cells, a DGE analysis was performed for each model
group. As cells withinindividual subjects can be heterogeneously dys-
functional, leading to reduced power in DGE analysis’, we leveraged
MIA embedding to assign cells from healthy controls and disease mod-
els along a healthy-dysfunctional trajectory (Extended Data Fig. 10a
and Supplementary Note 8). This is of special importance for NOD mice,
asintheoriginal study the authors observed incomplete penetrance?
dysfunctional B-cell phenotype”.

Asthe DGE analysis resulted in hundreds of DEGs that are expected
to be heterogeneous in terms of their molecular function, we clus-
tered them using their expression across all B-cells within MIA (sizes
12-349 genes; Fig. 6a and Supplementary Table 10). The groups are
described in more detail in Supplementary Table 10 in terms of gene
setenrichment, gene membership and cell states with high expression.
Inthe text they arereferred to as T1groups for NOD and T2 groups for
db/db + mSTZ.

First, we used the DEG groups to disentangle dysfunction patterns
ofinterest from confounding effects. In the original NOD dataset paper
by Thompson et al.” the authors observed confounding of dysfunc-
tion progression and age differences between samples containing
healthy (8 weeks) and dysfunctional cells (14 and 16 weeks), impairing
the interpretation of diabetes-associated changes. Indeed, we also
observed, among NOD downregulated genes, one group (T1-downl),
which was highly expressed across multiple immature states (Fig. 6a)
and contained genes associated withimmaturity (Pyyand Npy)°*'°° thus
likely representing a confounding effect of age. Other gene groups did
not seem to be associated with known batch effects.

With our DEG clustering approach, we disentangled two
NOD-upregulated immune processes (groups T1-up2 and T1-up3) that
showed differences in expression across 3-cell states. Group T1-up3
was NOD diabetic cells (state 14-16wNOD) specific and more strongly
enriched for antigen-processing genes (containing genes B2m, Tap2and
major histocompatibility complex (MHC) llgroup members), whereas
T1-up2 was, in addition to NOD diabetic cells, also highly expressed in
immature cells (Fig. 6a) and more strongly enriched for innate immune
response genes (containing genes Statl, Stat2, Gbp7 and immunopro-
teasome group members), potentially representing the regulation
of B-cells by the immune system that is not restricted to diabetes'".
Upregulation of both T1-up3 and T1-up2 in NOD is in accordance with
the active involvement of B-cells in TID-related immune response by
means of antigen presentationand immuneinfiltration in the islets™*?,
respectively. Furthermore, inthe NOD diabetes model, we also observed
upregulation of senescence-related genes (group T1-up4) that were
shared with aged females (Fig. 6a). Indeed, senescence genes have
been previously reported in association with NOD model dysfunction
and aging individually””'°* and we here show their relationship.

As expected, in db/db + mSTZ cellular metabolism that is nec-
essary for normal B-cell function’” was disrupted. A group of genes
(T2-down3) was downregulated across all T2D model cell states and was
higher across healthy cell states (Fig. 6a), with enrichment for insulin
secretion and steroid metabolism. Additionally, we observed DEG
groups supporting mSTZ subpopulations associated withimmaturity
or metabolicstress, which we observed above based on GP differences
(Supplementary Note 9).

Multiple parallels can be drawn between NOD and db/db + mSTZ
dysregulation. For example, NOD group T1-upl also showed high
expression in cell states from db/db and mSTZ datasets (Fig. 6a) and
partially overlapped with db/db + mSTZ upregulated genes (Extended
Data Fig.10d), with the overlap containing multiple genes previously
associated with diabetes (Gc, Fabp$, Spp1 and Vgf)'**"'”. NOD and
db/db + mSTZ also shared similarities in downregulated genes
(T1-down4 and T2-down2; Extended Data Fig. 10d) that were, in turn,
highly expressed in healthy mature cells (Fig. 6b). These groups
contained multiple cross-species conserved B-cell genes (Atf3, Btg2,
Ddit3, Egr4, Fosb and Jun)'®, targets of B-cell expression program
regulator CREB (Per1, C2cd4b, Nr4a2, Fos and Dusp1)'°*'*° and genes
involved in management of metabolic stress involved in insulin pro-
ductionand secretionin non-diabetic -cells (Egrl, Hspalb, Ddit3 and
Dnajb1)®*"°, This indicates that the B-cell phenotype is compromised
across diabetes models. In contrast, some gene groups were conversely
expressedin NOD and db/db + mSTZ analyses. For example, NOD group
T1-down3, containing some genesinvolvedin adaptive stress response
(Txnip and HerpudI)*™, was, in addition to healthy cells, also highly
expressed in db/db and mSTZ model cells.

As it has been previously reported that diabetes results in the
dedifferentiation of B-cells toward less-mature states in both mice
and humans?****?%12 we compared the expression of upregulated
genes across postnatal 3-cell states and embryonic cell types, includ-
ing endocrine cells and their progenitors. Among both the NOD and
db/db + mSTZ upregulated genes we found genes that were strongly
expressed in embryonic data or were specific to diabetes model
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graph showing connectivity (lines) between fine -cell states (dots) imposed on
B-cell UMAP. The connections between healthy, intermediate and diabetes model
states are marked in solid lines. g, Expression of DEGs with the same direction in
NOD and db/db + mSTZ trajectories in healthy, intermediate and diseased states
per dataset (dataset 8-16wNOD is abbreviated as NOD). Expression is normalized
per gene and dataset. imm.,immature; M, male; F, female; NOD-D, NOD diabetic;
D.-inter, diabetic intermediate. In a, ¢, d and g relative expression is computed as
the average of cell groups normalized to [0,1] for each gene feature.

cells (Extended Data Fig. 10c). This shows that changes in diabetes
models involve both dedifferentiation as well as diabetes-model-
specific responses.

To validate our findings, we further examined whether DEGs are
translatable to other datasets. In the Feng dataset, whichis not part of
the atlas and contains STZ-treated samples®, most T2-groups had the
expected expression directionin the STZ model cells (Extended Data
Fig.10b). However, two gene groups (T2-downland T2-down5) did not
show different expression activity between diabetic-model and healthy
Feng cells. For group T2-downS5 the discrepancy could be explained by
the gene group being most highly expressed inimmature healthy cell
states from MIA (Fig. 6a), which, as discussed above, are absent in the

Feng dataset (Extended Data Fig. 7). In contrast, group T2-down1 had
arelatively low expression difference between diabetic and healthy
MIA cell states (Fig. 6a). For both gene groups, the observed expres-
sion patterns in MIA already indicate that they may not generalize to
other datasets that have asomewhat different healthy and diseased cell
state composition. The dissection of DEGs based on MIA (3-cell states
enabled us to explain why a subset of DEGs may not be translatable to
other datasets, which is a common, usually unexplained, problem in
scRNA-seq studies.

Tosupport RNA-level DGE results (Supplementary Table 10) at the
proteinlevel, we selected relatively highly expressed DEGs and stained
themwith specificantibodiesinislets from healthy and diabetes model
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(NOD and db/db) mice (Fig. 6d,e). First, we validated that islets con-
tain expected healthy and dysfunctional 3-cell states by profiling the
protein expression of insulin, an established maturation marker Ucn3
(ref. 9) and adedifferentiation marker Aldhla3 (refs.113,114) (Fig. 6d,e
and Supplementary Note 10). We next profiled three new markers of
the T2D model: Nucb2, which is involved in insulin secretion>"° and
whose mutations were reported to be associated with diabetes risk'”,
Fkbpll, an ER-located chaperone previously reported to be upregu-
lated in certain mouse T2D models"®" and Mt3, which was reported
to be associated with B-cell death', Protein and RNA levels of Nucb2
were upregulated inboth NOD and db/db islets and Fkbplland Mt3in
the db/db islets. This validation supports the observations from our
DGE analysis and proposes new dysfunction markers onboth the RNA
and protein level.

When comparing NOD and db/db + mSTZ genes to multiple
human datasets we did not observe the expected DEG group activ-
ity differences between healthy and diabetic samples in a consistent
manner (Extended Data Fig.10b); however, certain diabetes hallmark
genes translate across the species. For example, the Dgkb gene, whose
ortholog is associated with human T2D'”, was upregulated in our
db/db + mSTZ analysis. Thus, future studies could use our diabetes
DGE results to query for molecular changes shared with humans and
thus assess whether pathways of interest could be further profiled with
NOD, db/db or mSTZ models.

Ashared progression statein type 1and 2 diabetes model 3-cells
One of the key goals of diabetes research is to understand the tran-
sition from pre-diabetes to diabetes and back upon treatment to
identify disease states where remission is still possible. To decipher
the relationships between healthy and diseased states we calculated
a partition-based graph abstraction (PAGA) on the fine 3-cell states
(Fig. 6f). The connection from the main healthy state (adult2, con-
taining healthy adult cells across datasets) to the TID model state
(14-16wNOD) or the T2D model state (db/db + mSTZ) led in both cases
viaanintermediate state (D-inter.).Indeed, it has been suggested previ-
ously thatboth T1D and T2D may share some molecular stress patterns
in B-cells, but diverge inthe final outcome due to a persistentimmune
or metabolic challenge, respectively”'**'**; however, we did not find a
report of ashared intermediate state in T1ID and T2D models.

The intermediate state contained both stressed healthy and dia-
betic cells (Extended Data Fig. 5d and Supplementary Note 7), includ-
ing cells from the Feng dataset mapped onto MIA (Fig. 4c); however,
the sample with the largest cell proportion localizing in this state
was the mSTZ diabetes model sample with regenerative anti-diabetic
treatment® (GLP-1+ estrogen + insulin; Extended Data Fig. 5d). This
indicates that the intermediate state may be related to either treatment
effects or diabetes progression and 3-cell stress.

Molecular differences between the healthy and the intermediate
state resembled those observed in the diabetic states (14-16wNOD,
db/db + mSTZ; Extended Data Fig. 8c,e), as described in Supplemen-
tary Note 11. As the intermediate state may be related to both T1ID
and T2D models we profiled the expression of diabetes DEGs shared
between T1D model and T2D model DGE analyses (described above).
Most of these genes already exhibited expression differences between
the healthy and the intermediate state and further changed from the
intermediate to the diabetes model states (Fig. 6g and Supplementary
Note1l). Notably, shared downregulated genes (89 genes) were strongly
enriched for response to extracellular stimuliand transcription factor
regulation of gene expression due to genes of activator protein-1(AP-1)
complex, which areinvolved in cell survival and death'®, This indicates
that regulatory mechanisms are disrupted between the healthy and
intermediate states.

Our analysis suggests that the intermediate state presents a snap-
shot of the transition between healthy and dysfunctional cells in dif-
ferent diabetes models; however, it is unclear whether this is part of

disease progression or aresult of treatment and further investigations
arerequired to clarify this state.

Sex differences in B-cells involve diabetes-associated genes
Sex differences affect normal 3-cell function and subsequent develop-
ment of diabetes'* ">, Therefore, we assessed sex differences across
ages and their relationships to diabetes models. Two datasets from
early postnatal (P16) and aged (2 years) mice with a mixture of male
and female cells were used. In P16 mice we did not observe any DEGs,
except for sex-linked Y-chromosome genes (Ddx3y, Eif2s3y and Uty),
whichwere also used during data preprocessing for sex-annotation of
cells. More DEGs were observed in aged mice (26 male and 116 female
upregulated genes; Supplementary Table 11), which is also reflected
in the clear separation of these cells into two distinct states (Fig. 5a).
To further dissect the aged DEGs we clustered them based on expres-
sion across all B-cells of MIA, resulting in four female and four male
groups (femalel-4 and malel-4; Fig. 6¢, Supplementary Fig. 3 and
Supplementary Table 11).

Females are known to have higher insulin productionand are less
prone to develop T2D™*"*°, Indeed, we observed some DEG groups
explaining these phenotypes. Group male4, which was highly expressed
in T2D model state (Fig. 6¢c), contained multiple genes related to ded-
ifferentiation, immaturity and other endocrine cell types**1>13-133
(Supplementary Table 11). In contrast, the femalel group, which was
likewise expressed in T2D model state (Fig. 6¢), contained multiple
genes previously reported to be upregulated in pregnancy**** (Supple-
mentary Table11) as well as genes related to insulin secretion (Chgh)™
and stress response (Mapk4 and Gpx3)"*'’, Furthermore, a group
expressed specifically in aged female cells (female4, 78 genes; Fig. 6¢),
contained some genesinvolved ininsulinregulation**™*° and glucose
metabolism''** (Supplementary Table 11). Altogether, this indicates
that female 3-cells are more inclined to diabetes-associated compensa-
tion and male -cells to loss of identity.

Discussion

Here we present the MIA, a high-quality integrated atlas, that compiles
multiple developmental stages and disease conditions from 56 samples
withtranscriptomics readouts of over 300,000 cells. The exploration of
MIA provides newinsightsintoislet biology and diabetes research that
could not have been obtained from individual datasets. Our key discov-
eriesarethedescription of the B-cell landscape from diverse datasets,
the proposition that mSTZ diabetes model molecularly resembles T2D
rather than T1D and the identification of molecular pathwaysinvolved
indifferent types of B-cell dysfunction. While this paper is focused on
[B-cells, we also showcased that MIA can be used for studying other cell
types, presenting an opportunity for future studies.

We used MIA to comprehensively describe the -cell landscape
across datasets and conditions. We identified molecular variation
conserved across healthy adult B-cells. This included pathways of
immaturity and aging as well as pathways potentially involved in
cycling between insulin production and metabolic stress, followed
by regeneration. We further proposed the use of GPs to identify and
characterize molecularly distinct cell states in the (3-cell landscape.
This led to the identification of an intermediate -cell state between
healthy controls and different diabetes models that may be involved
in diabetes progression or treatment-induced remission. We also
observed two distinct populations within the mSTZ model differingin
immaturity and compensatory phenotype, which may be of relevance
when using the STZ model in future diabetes studies. Notably, when
comparing different diabetes models, we observed that 3-cellsinthe
STZ model exhibited agene expression profile akin to the db/db model
and not the NOD model. This was again reflected in comparison to
humandata, where mSTZ 3-cells showed upregulation of T2D-related
metabolic stress pathways while lacking upregulation of T1D-related
immune pathways.
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For future studies, MIA enables automatic cell type and state trans-
fer aswellas cross-study and cross-condition comparison by embedding
cellsinto ashared reference space. We have demonstrated this with the
Fengdataset, whichisnot part of MIA, resulting in the expected mapping
ofhealthy controland STZ diabetes model 3-cells to the corresponding
MIAregions. This also showed that theimmature populations presentin
MIA and the Feng dataset differ, indicating that the reason for them not
sharing markersis likely of biological nature, attributed to different cell
states. Our visionis that future studies can similarly map their datasets
ontop of MIAand publicly provide the generated embeddings to further
extend the conditions compiled in MIA. As anexample, we showed this
for a young (P3) sample from the Feng dataset, for which we do not
have amatched developmental stage in MIA, withitsembedding filling
the gap between our embryonic and older postnatal samples.

The heterogeneity compiled within MIA also enables contextu-
alization at the gene level. For example, known B-cell maturity and
dysfunction markers are more heterogeneous thanexpected, showing
distinct expression subgroups across f-cells states of MIA. Similarly,
researchers could use the interactive cellxgene' instance of MIA to
analyze the expression of their genes of interest across cell types and
diverse biological conditions within MIA.

Our next aim was to describe which pathways are involved in dif-
ferent B-cell dysfunction phenotypes. Therefore, we used MIAto group
DEGs and contextualize them based on expression across other con-
ditions. For diabetes-model DEGs this approach revealed phenotype
specific as well as shared molecular changes across diabetes mod-
els, aging and immaturity. Grouping of DEGs also identified distinct
dysfunction-associated changes across sexes, explaining lower suscep-
tibility of females for diabetes due to upregulation of compensatory
rather thanloss of identity pathways that were observed in males. Inthe
future, the dissection of dysfunction patterns based on multiple pheno-
types may provide valuable insights for personalized medicine, whichis
based onknowledge about different disease-associated molecular pat-
terns. It may also be useful for drug repurposing, whichrelies on path-
ways shared across diseases'*'*%, For example, it was previously shown
that removing senescent cell populations in NOD mice and models of
aging improves the overall regulation of glucose levels*'*. Indeed,
in our analysis, we observed upregulation of senescence-associated
genesinboth aged and T1D model cells.

We show that our results are reproducibleinindependent mouse
transcriptomic data and in immunohistochemistry, proposing new
markers of T2D model-associated dysfunction (Nucb2, Fkbp11 and
Mt3). Comparison to human datasets revealed some similarities to
mice; however, new methods will be required toimprove cross-species
comparison and translation.

In conclusion, MIA provides a useful tool for islet biology and
diabetes research. Itis available as a curated resource in formats that
enableinteractive exploration via cellxgene and computational analy-
ses (https://github.com/theislab/mouse_cross-condition_pancre-
atic_islet_atlas), including access to the cellxgene curated dataset via
Sfaira'’. Our discoveries in B-cell biology showcase how MIA can be
used both as areference of cell states as well as for further querying of
gene expression across conditions.

Methods

Animal studies were conducted with adherence to relevant ethical
guidelines for the use of animalsin researchinagreement with German
animal welfare legislation with the approved guidelines of the Society
of Laboratory Animals and the Federation of Laboratory Animal Science
Associations. The study was approved by the Helmholtz Munich Animal
Welfare Body and by the Government of Upper Bavaria.

Generation of new mouse samples included in the atlas
Mice were housed in groups of two to four animals and maintained
at 23 +1°C and 45-65% humidity on a 12-h dark-light cycle with ad

libitum access to diet (irradiated standard diet for rodents, Altromin
1314, Altromin Spezialfutter) and water.

Islets of Langerhans have been isolated using a standard pro-
tocol*®*°, The aged dataset was generated from islets of Langer-
hans isolated from the Fltp lineage-tracing mouse model (Fltp iCre
mTmG)™ in mice older than 2 years. Two male and two female mice
were pooled together after islet isolation and before FACS. The sort-
ing was used to separate cells into Fltp-negative (tomato-positive),
Fltp-lineage-positive (GFP positive) and Fltp-transient (double-positive)
populations (Supplementary Fig. 4), using FACSDiva (v.6.1.3) and
FlowJo (v.10.8.1) software. Separate libraries were generated for each
sorted population after pooling across sexes. For the 4m dataset,
we used the Fltp reporter mouse line Fltp?¥ (ref. 151). The pancreas
head and tail were anatomically separated beforeisletisolation. Islets
from six Fltp?Y/* male mice were pooled. Subsequently, Fltp Venus
reporter-positive and negative cellswere sorted (Supplementary Fig. 4),
thus generating four libraries. The metadata of all samples are shown
inSupplementary Table 1.

Libraries of single cells were produced using the Chromium
Single-Cell 3’ library and 10x Genomics gel bead kit v.3.1(PN1000121)
inthe aged dataset and with v.2 (PN120237) in the 4m dataset. Briefly,
10,000 cells were loaded per channel of a10x chip to produce gel
bead-in-emulsions (GEMs). Then the samples underwent reverse tran-
scriptionto barcoded RNA, followed by cleanup, complementary DNA
amplification, enzymatic fragmentation, 5’ adaptor and sampleindex
attachment. The samples of the aged dataset were sequenced using a
NovaSeq6000 (Illumina) with 100-bp paired-end sequencing and the
samples of 4m dataset were sequenced using a HiSeq4000 (Illumina)
with150-bp paired-end sequencing of read 2.

Datasets included in the atlas
We used nine mouse pancreatic islet sScRNA-seq datasets previously
generated with 10x Genomics Chromium technology. Data availabil-
ity is described in Table 1. Public data were obtained from the GEO in
July 2020 by comprehensively searching for mouse pancreatic islet
scRNA-seq datasets. Fromthe collected datasets we excluded datasets
that would not be applicable for analysis of 3-cell heterogeneity, such
as cancer and reprogramming datasets as well as datasets with low
endocrine cell counts, including embryonic datasets, with the excep-
tion of anin-house embryonic dataset. We also excluded datasets that
were not generated with Chromium (namely Smart-seq2) as most of
them had low cell counts and could lead to strong cross-technology
batch effects due to differences in sensitivity and bias in the type of
captured genes'. Furthermore, some of the integration methods
are not designed for full-length reads, such as Smart-seq2 (ref. 41).
Altogether, using additional sequencing technologies would make
the integration more challenging.

All computational analyses of scRNA-seq data were performed
with Scanpy (v.1.6-1.8.1)"’, except where noted elsewhere.

Datasets for atlas validation

For validation we collected public mouse and human scRNA-seq
datasets (Table 2 and Supplementary Table 12) and downloaded their
expression count matrices and metadata from GEO and paper sup-
plements. If raw counts were available, re-normalization was per-
formed with the Scanpy normalize_total function, otherwise, the
available pre-normalized data were used. For downstream analyses,
log(expr +1)-transformed normalized expression was used. We manu-
ally unified cell type annotation from original studies to ashared set of
cell-type names by renaming existing labels. No further preprocessing
was performed on these datasets. These datasets were not included
inthe atlas and were always analyzed individually. In the text, we refer
to the GSE137909 dataset as the Feng dataset. Where necessary, we
mapped genes across species based on ortholog information from
BioMart"* (Ensembl Genes v.103).
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Preprocessing of datasets for atlas building

Gene expression counts were calculated based on genome versions
described in Table 1 with 10x Genomics CellRanger (v.2.2.1-v.3.1.0)*.
Each dataset was separately preprocessed with the below-described
steps, except when we note that a processing step was performed per
sample, and filtering thresholds were determined ona per-dataset level.

Ambient gene identification

Toreduce the effect of ambient expression on embedding calculation
we removed the most prominent ambient genes, which were identified
as described here. We selected likely empty droplets that contained
onlyambient RNA based on having fewer than100 counts. Gene propor-
tions within empty droplets were computed on raw counts per sample,
representing gene proportions within the ambient RNA. Genes with
the highest ambient proportion were selected with a dataset-specific
ambient proportion threshold, selecting genes as the union across
samples, generating aset of approximately 20 genes per dataset. Owing
to the proportional nature of expression measurements a relatively
high ambient proportion of some genesleads to lower proportionsin
other ambient genes. Thus, we reduced the ambient threshold when
some genes had a relatively high ambient proportion to also capture
fewer ambient genes that are nevertheless known to strongly affect
ambient profiles, such as endocrine hormone genes. Additionally,
alarger set of approximately 100 genes was generated with a more
permissive threshold that aimed toinclude top ambient genes so that
selecting more genes would no longer evidently increase the captured
cumulative ambient proportion given by the sum of the per-gene
ambient proportions.

Dataset quality control

Empty droplet score was computed per sample with DropletUtils
(v.1.10.3)"*¢ emptyDrops function using LogProb output for down-
stream visual quality control assessment purposes. Cell-containing
droplets as determined by the CellRanger pipeline were used in down-
stream analyses. Cell filtering was performed based on guidelines
published previously, excluding cells with alow number of expressed
genes, low total counts or high mitochondrial proportion and outliers
with a very high number of total counts or expressed genes. Genes
expressedinavery small number of cells and top ambient genes were
excluded for the purpose of annotation and integration. Doublets were
filtered out with Scrublet (v.0.2.1)** scores computed per sample using
amanually set threshold to separate the scores into cross-cell type
doublet and potential non-doublet populations as proposed in the
tutorial™®, while ensuring that selected doublet cells mainly mapped
into discrete cluster locations on the Uniform Manifold Approximation
and Projection (UMAP) embedding. The choice of the threshold was
set permissively, asindicated by the presence of some residual doublet
populationsin the final atlas version.

Dataset-wise cell annotation

To perform cell annotation within individual datasets normalization
was performed per dataset with scran (v.1.16.0-1.18.7) pooled size
factors™*'*°, data were log(expr +1)-transformed and 2,000 highly
variable genes (HVGs) were selected with Scanpy using the cell_ranger
selection flavor and samples as batches. The cell cycle stage of each
cell was annotated using the Cyclone method' as implemented in
scran. For datasets without per-cell sexinformation, the sex was anno-
tated based on Y-chromosome located HVGs with high expression.
We assigned cells into insulin, glucagon, somatostatin and pancreatic
polypeptide high or low groups per-sample based on scores from the
Scanpy score_genes function. Cell types were annotated in the follow-
ing datasets: P16, 4m, aged, mSTZ (healthy sample), db/db (healthy
samples), based on known pancreatic cell type markers followed by
recursive subclustering until homogenous clusters were reached.
Rare cell types that did not form a separate cluster were annotated

based on per-cell marker scores (for example, e-cells in the P16 dataset).
Here and in the below re-annotation of the integrated data we relied
onthe following cell type markers across multiple datasets, although
onthe per-dataset level, we also used other markers, expressed in cell
subpopulations presentin only some of the datasets. The marker list is
acinar: Cpal, Prss2; a: Geg; B: Ins1, Ins2; 6: Sst; ductal: Krt19, Mucl, Sox9;
endothelial: Pecam1i, Plvap; €: Ghrl; y: Ppy; immune: Cd52, Lyz2, Ptprc;
stellate-activated: Colla2, Biccl, Pdgfra; stellate-quiescent: Ndufa4(2,
Acta2, Cspg4, Rgs5; and Schwann: Cryab, Plp1, Sox10. Expected multi-
plet rates were computed and together with Scrublet scores used to
determine which annotated multiplet cell types present true cells or
residual multiplets. We annotated -cell states based on the expression
of known f-cell heterogeneity markers.

Batch-wise preprocessing for integration

We tested different methods for ambient expression correction: Cell-
Bender (v.0.2.0)'*?, SoupX (v.1.5.0)'** and DecontX (from celda v.1.5)"**.
We did not use CellBender preprocessed data further as we observed
non-homogeneous correction within clusters, namely some genes
known to be cell type-specific, such as 3-cell-specific InsI and Ins2,
were removed partially and at different levels across cells within other
celltypes. For other methods, different ambient correction strengths
were used and one or more were selected for integration per method.
Non-ambient-corrected data were also used. Top ambient genes
were excluded, also in ambient corrected datasets (using the smaller
ambient gene set). The ambient correction method selected for final
integration is described in the ‘Integration selection’ section. Genes
previously marked as too lowly expressed on a per-dataset level were
alsoremoved. To enableintegration with samples as batches and future
mapping of new samples onto the reference the data was per-sample
scran normalized and transformed with log(expr +1). The batch-wise
re-normalization was performed as scran size factors may not be com-
parable across multiple runs due to size factors being relative within
a dataset’*®. These additional batch differences can thus be learned
to be corrected by the integration model. By performing batch-wise
normalization (here, batchis asample) we ensure that the integration
model canaccount for this effect when removing batch effects. For scVI
integration non-normalized datawere used. Expression matrices of all
samples were merged, retaining the intersection of genes. The 2,000
HVGs obtained with the scIB (developmental version, last updated on
17 January 2022)* hvg_batch function was used.

Integration selection

Forintegration we used scV1v.0.7.0a5 (ref. 40) with hyperopt hyperpa-
rameter optimization and scArchesv.0.1.5 (ref. 42) with manual param-
eter optimization. First, we performed integration on the annotated
dataonlytoselect scVlparameters with hyperopt (number of network
layers and their size, number of latent dimensions, reconstruction loss,
dropout rate, learningrate, gene dispersion and number of epochs) and
scArches parameters based on visual evaluation (different HVG selec-
tion, integration strength regulated by the weight between reconstruc-
tion and Kullback-Leibler divergence loss, number of network layers
and reconstruction metrics), to ensure that selected parameters lead
toareasonableintegration. Afterward, integration was performed on
all data. Different integration methods and preprocessing combina-
tions were evaluated with scIB metrics. We added a new biological
conservation metric named Moran’s | conservation, which does not
require cell-type annotation. For biological conservation evaluation
we excluded unannotated and multiplet cells, except for Moran’s|,
which could be run on all cells. As annotation was available only for a
subset of cells the batch correction metrics were run both on all data,
using clusters instead of cell-type labels and on the annotated data
subset. We also performed evaluation on B-cells only, using -cell
states as cell labels, with different integration strengths. Top selected
integrations were run multiple times to better distinguish between
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randominitialization and true performance variation. The best method
(removed top ambient genes and scArches-cVAE) was selected based
onsummarized biological conservation and batch correction scores,
as described in scIB, with a special focus on 3-cell state conservation.

We also tested 3-cell-specific integration, using 3-cells defined
based on anintegrated annotation (see below) with the same integra-
tion settings as for the whole atlas, but with multiple different inte-
gration strengths in scArches-cVAE. Batch correction evaluation was
runonallcells, using clusters instead of cell type labels and biological
preservation evaluation on cells that had state annotation. The results
were compared to metrics computed on the same set of cells from the
whole atlas integration.

For comparison, we also show unintegrated embedding, which was
computed using the same set of genes as the final atlas integration. We
normalized expression using the Scanpy normalize_total function as
scrannormalization performed onindividual samples, as used for inte-
gration, leads to lower comparability of normalization factors across
samples. Datawere log(expr + 1)-transformed and scaled, followed by
principal-component analysis (PCA)-embedding computation that was
used as the basis for UMAP.

Integration evaluation with Moran’s I conservation

We proposed a new biological conservation metric for comparison
acrossintegration runs without the need for cell type annotation that
determines how strongly genes are variable across the integrated
embedding. Namely, if embedding captures biological variation at a
finer scale, forexample, within cell types, then the expression variation
of genes that are potential determinants of cell state differences
(for example, HVGs) should be non-random across the embedding.
The method first computes HVGs (g,1,000 genes) on the expression
data with Scanpy highly_variable_genes function using cell_ranger
flavor and batch_key parameters. Moran’s | for these HVGs is then
computed on the integrated embedding (i) with Scanpy morans_i func-
tion. This function uses information about each cell’s k-nearest neigh-
bors graphcomputed withScanpy neighbors function on theintegrated
embedding with Euclidean distance metric. The final score is computed
asthemeanof per-genescores. Thisscoreis rescaled to fall within range
[0,1], matching other scIB scores. This can be formulated as:

g .
le(lg) +1

2

1
:
score =

The final annotation of the integrated atlas
We defined cell types on the integrated atlas by consecutive Leiden'
subclustering with Scanpy, namely by manually selecting clusters to
be subclustered as needed to separate cell types, relying on informa-
tion about previously annotated cells, hormone expression high/low
assignment and quality metrics. Namely, empty droplets were identi-
fied based on low expression and high empty droplet probability and
doublet clusters based on higher doublet scores and expression of
markers of multiple cell types. We compared the re-annotation to the
annotation from original publications, for which we manually unified
cell type labels by renaming the labels to ashared set of names.

Asscrannormalization performed per-sample is not comparable
across samples (described above) scran size factors were recalculated
ontheintegrated cell clusters and the atlas was jointly re-normalized.
In downstream analyses, we used this normalized data, except for the
methods that required raw counts.

To disentangle biologically relevant differentially active genes
from genes whose expressionis likely a result of ambient expression dif-
ferencesinthe downstreamanalyses, we defined genes that may be pre-
dominately ambiently expressedinagivencell type. Top ambient genes
likely not coming from B-cells were defined as follows. For each sample,
genes with high expression in empty droplets, containing fewer than
100 counts, were selected with a single threshold across all samples

and the genes were pooled across samples. These ambient genes were
clustered based on expression acrossintegrated cell clusters. Ambient
gene clusters were assigned to non-f3-cell originating ambient genes if
they had relatively low expression across all 3-cell clusters compared
to cell clusters coming from other cell types. Besides making the set
of likely non-B-cell ambient genes, we used during interpretation a
per-gene metric that canindicate ambient gene origin, namely relative
gene expressioninacell type compared to other cell types, with higher
scoring genes being less likely ambient. As this metric was used for
postnatal endocrine analyses the embryonic clusters were excluded as
they are not expected to contribute to ambience in postnatal samples.
The atlas subset was then subclustered using Leiden clustering with
resolution of 2. Mean expression in cell clusters was maxabs-scaled
across clusters, representing relative expression in each cluster. To
determine the relative expression of a gene in a cell type we used the
highest relative expression obtained across all cell clusters containing
predominantly that cell type.

In all further analyses where we needed to reduce the number
of cells due to computational constraints we prepared pseudobulk
data (here, termed ‘fine pseudobulk’) by Leiden clustering with high
resolution (such as resolution of 20) to create tens or hundreds of
clusters (depending on data size) that should capture the majority
of heterogeneity within the data. This is akin to recently proposed
methods thataim at creating so-called ‘metacells’ that group together
cells without biological differences'**'*’. Pseudobulk expression was
computed asthe mean oflog(expr +1)-transformed normalized expres-
sionwithineach cluster. For DGE analysis on pseudobulk (here termed
‘metadata-based pseudobulk’) we grouped cells based on their meta-
data, such as sample and cell type, as before suggested for single cell
DGE analysis'®®. Here, normalized counts were summed across cells
and log(expr +1)-transformation was not applied.

Identification of endocrine cell type markers

For the identification of endocrine cell type markers one-versus-one
DGE analyses were performed with edgeR (v.3.32.1)'*°. For the post-
natal markers metadata-based pseudobulks of postnatal datasets
per cell type, sample and sex were created. We excluded embryonic,
doublet and endocrine proliferative cell types. The former cell type
was excluded as a minute number of postnatal cells mapped to the
embryonic clusters (Extended Data Fig. 1). The latter two cell type
groups were excluded as they share gene expression with matched
non-doublet and non-proliferative cell types, which would prevent the
identification of these genes as DGE markers. Lowly expressed genes
wereremoved withedgeR and asingle DGE test was fitted, using edgeR
general linear model (GLM) with robust dispersion, with sample and
sex as covariates and two-sided likelihood-ratio significance testing.
To obtain one-versus-rest upregulated genes for each endocrine cell
type the factors across cell types were compared. Marker genes were
selected based on afalse discovery rate (FDR) <0.05 and log fold change
(FC) >1.5 against all other cell types. In the supplementary tables we
reported the maximal adjusted Pvalues across compared cell types and
for logFC we reported O if logFC across comparisons had both nega-
tive and positive values and otherwise signed minimal logFC based on
absolute value sorting. For embryonic markers, the embryonic dataset
with cell type annotation from the original study®® was used. The Fev*
cluster was excluded as it contained precursors of individual endocrine
cell types with similar expressions as in the descendant cell types,
which would prevent the identification of markers. Metadata-based
pseudobulks were created per cell type and sample, whereas sex was
not used as a covariate, as at this age strong sex differences were not
expected. Endocrine cell-type markers were identified as for the post-
natal datasets. In the postnatal dataset, we used 52 samples and in the
embryonic dataset we used 4 samples, with some cell types being rep-
resented in fewer samples and some samples containing data pooled
across multiple animals.
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Comparison of embryonic and postnatal endocrine cells

We grouped a-, B- and 6-cells into three groups per cell type: embryo
(cellsthat were annotated asacertain endocrine cell typein the original
embryo study and mapped into the embryo endocrine atlas cluster);
embryo postnatal-like (cells from the embryo dataset that mapped into
oneof the postnatal endocrine atlas clusters); and postnatal (cells from
postnatal datasets that mapped into one of the postnatal endocrine
atlas clusters). For embryo and embryo postnatal-like cell types, we
computed what proportion of embryonic cells per sample-specific
age group they represent.

Reference mapping of the external mouse dataset

The Feng dataset (query) was re-normalized per-sample with scran
and log(expr +1)-transformation to match atlas (reference) datasets
preprocessing. The reference scArches model was used to compute
the query embedding, using samples as batches. For query 3-cell map-
ping analysis the cell type annotations from the original study® were
used. A joint UMAP embedding of query and reference [3-cells was
computed, as wellasa UMAP with added reference embryonic B-cells,
using B-cells from the original study annotation®® that mapped into
theatlasembryo endocrine cluster, and reference proliferative 3-cells,
defined as endocrine proliferative cells that were previously annotated
as highly expressing insulin, but not other hormones. Query p-cell
states were predicted based on atlas coarse 3-cell states with the addi-
tion ofembryonic and proliferative B-cell groups. For cell type transfer
aweighted k-NN classifier adapted from scArches manuscript* was
used with an uncertainty threshold of 0.75.

Comparison of diabetes models to human T1ID and T2D

To obtain T1D and T2D gene sets conserved across human datasets
the T1D or T2D cells were compared against cells from non-diabetic
samplesin each human dataset (the number of samplesineach group
varied across datasets; Supplementary Table 12 shows sample group
sizes). Only genes expressed in atleast 10% of diabetic or healthy cells
per dataset were used. Genes with an FDR <0.25 and logFC >0.5in at
least half of the datasets based onthe Scanpy rank_genes_groupst-test
function (two-sided Welch’s test on cell level) were selected.

Gene set enrichment was computed with hypeR (v.1.6.0)"° at the
FDR threshold of 0.25 using Gene Ontology (GO), KEGG and Reactome
gene sets from MSigDB (v.7.4.1). Before enrichment, each gene set was
subsetted to genes present in the background that consisted of all
genes used for the analysis (here, genes tested for DGE) and gene sets
containingless than five or more than 500 genes were removed. From
enriched gene sets with shared genes, we manually selected representa-
tive gene sets to be highlighted in the text.

Mouse diabetes model 3-cells were scored for both the newly
defined and literature-based gene sets with Scanpy score_genes
function on each dataset. Comparisons were performed between
the following groups: in the 8-16wNOD dataset the 8-week (healthy)
versus 14- and 16-week samples (diabetic); in the mSTZ dataset con-
trol (healthy) versus the mSTZ-treated sample (diabetic) and in the
db/db dataset control (healthy) versus db/db sham-operated samples
(diabetic). Gene set score distributionsin healthy and diabetic groups
withineach dataset (sample numbers for healthymSTZ =1,db/db =2,
8-16wNOD = 3;and diabeticmSTZ =1, db/db = 2,8-16wNOD = 6; some
samples contained pooled animals) were compared using atwo-sided
Mann-Whitney U-test oncelllevel and a natural-logarithmbased logFC
was computed between distribution medians.

Coarse p-cell states and their markers

Clusters were computed with the Scanpy Leiden function and were
thereafter added descriptive annotation based on sample ratios
across clusters, relying on sample metadata, quality scores and rela-
tionships between clusters determined with PAGA. Initial clustering
was performed with a relatively high resolution so that we could

later merge clusters that we could not interpret as separate based
on the criteria described above while ensuring that we did not miss
any unique clusters.

Cluster-specific markers conserved across datasets were computed
as follows. Data were subsetted to exclude low-quality clusters and the
embryo dataset asit contained too few -cells (fewer than 20 per sample
across all B-cell clusters). Cell groups used for DGE were defined as a
combination of cluster and dataset, using for each cluster only datasets
with a high proportion of cells in that cluster in at least one sample.
For each dataset-cluster group DGE analysis was performed with the
Scanpy rank_genes_groups t-test function against all other cell groups,
except the ones from the same cluster, excluding genes that were lowly
expressed inboth clusters before DGE analysis. The number of samples
per group varied across cell states, with the total number of considered
samplesbefore grouping being 52, with some samples containing pooled
animals. As markers, we selected genes that were significantly upregu-
lated (FDR < 0.1and logFC > 0) inall datasets across all other cell groups
and for plotting genes were prioritized based on the highest minimal
logFCacross all comparisons. Genes were further filtered to select likely
non-ambient genes by keeping only genes with relatively high expres-
sionin f-cells (>0.7). Hemoglobin genes were also removed as they were
not caught by the relative expression filter as erythrocytes are absent
fromdata, but the transcripts are still present in the ambient RNA.

Markers of adult, immature and T2D model states were visually
validated on the external mouse dataset. The healthy p-cells were
grouped by age and the STZ-treated cell groups were based on the
administration of insulin.

Translation of markers to the human data was tested based on all
collected human datasets with per-dataset one-versus-rest one-sided
t-tests on cell level and Pvalue significance threshold of 0.05. We also
report log,-based logFC between group means. The following cell
groups were defined: T1D or T2D groups contained all cellsannotated
asT1D or T2D and were used to test both known T1D or T2D markers as
wellas our NOD or db/db + mSTZ markers, respectively and for other
marker groups only healthy donor cells were used, with the adult set
used to test our adult mouse cluster and contained ages of 19-64 years,
mature set used to test known maturity markers and contained ages of
19 years or more, aged male or female sets contained ages of 65 years
or more and immature set ages of 18 years or less. Age groups were
defined based on OLS HsapDv human life cycle stages definitions'. The
number of samples varied across groups and datasets (Supplementary
Table 12 provides more details).

Gene programsin B-cells

To define GPs we firstidentified genes variable across embedding and
then clustered them based on coexpression (Fig. 5d), as described
below. To identify variable genes low-quality coarse -cell clusters
were excluded before the analysis as they could lead to high spatial
autocorrelation scores of genes associated with data quality. Lowly
expressed genes and the non-B-cell ambient gene set were removed.
Moran’s I was used to assess the autocorrelation of expression across
the integrated embedding (all 15 dimensions). We observed a bias of
genes expressed in fewer cells toward lower Moran’s I, which would lead
tolowly expressed genes unjustly being less often selected as variable
based on Moran’s I threshold. To account for this bias, we regressed
out the effect of the number of cells expressing the gene on Moran’s L.
For this regression we used genes likely not to be truly variable across
the embedding, as explained below, to estimate the base-level effect
of expression sparsity across cells on Moran’s I. Genes likely not to be
truly variable were selected as follows: most highly expressed genes
(Ncells 240,000 fromatotal of 99,361 cells) were excluded as they were
deviating from the trend toward higher Moran’s | values, which was
likely due to their importance in 3-cell function and thus higher vari-
ability across the 3-cellembedding. The remaining genes were binned
(Nbins =20) based on the number of cells in which they were expressed
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and the five genes with the lowest Moran’s | from each bin were selected
for regression, representing the base-level (likely not biologically rel-
evantvariable) Moran’slat certainexpression strength. The regression
wasfitted onthe selected genes and then the corrected Moran’sIscore
was computed as the residuals from regression for all genes for which
the uncorrected Moran’s I score was initially computed. Finally, GPs
were defined by selecting genes with the highest corrected Moran’s |
and clustering themusing fine pseudobulk cell clusters as features with
hierarchical clusteringand visually determined cutting threshold based
onaheat map of gene expression across pseudobulks. Gene set enrich-
ment of GPs was computed as for the human T1D and T2D conserved
genes. We supplemented GP gene set enrichment interpretation with
marker-based domainknowledge to support 3-cell-specific functional
annotation, whichis not fullyencompassed by the more generic gene
sets available in KEGG, GO and Reactome.

Theratio of variance explained by GPs per dataset was computed
based on principal component (PC) regression. For each dataset, lowly
expressed genes were removed and 50 PCs were computed based on
HVGs. Cells were scored for GP activities with the Scanpy score_genes
function (excluding genes missing from each dataset from GPs) to ana-
lyze how well GP scores of all or individual GPs explain each PC based
on regression R? (coefficient of determination). The total variance
explained was computed as asum of R? across PCs weighted by the ratio
of variance explained by each corresponding PC. For comparison, the
same procedure was used to evaluate variance explained by random
gene groups of the same size as the GPs, repeating the procedure ten
times to estimate therandom distribution. For the analysis of explained
variance in healthy mouse and human samples, only samples with at
least 100 3-cells were used and the explained variance was computed as
described above, repeating the calculation for random gene groups 100
times. The significance of the explained variance by GPs was computed
as aone-sided empirical Pvalue compared to the distribution for the
matched random gene group.

Fine B-cell states

Each cell was scored for each GP withthe Scanpy score_genes function
followed by averaging within the fine pseudobulk clusters to speed
up further analysis. The GP scores were used as features to cluster
pseudobulk clusters into B-cell state clusters using hierarchical clus-
tering followed by visual selection of the cutting threshold based on
GP activity purity within clusters and unique pattern of GPs across
clusters. Each cell was assigned to the cluster of its pseudobulk group.
The clusters were named based on the metadata of the samples with
alarge proportion of cells within the cluster. The resulting 3-cell state
clusters were used to obtain a pruned PAGA graph, selecting a pruning
threshold that separated between high and low connectivities.

We analyzed GP-based molecular differences for individ-
ual datasets between healthy and diseased states (adult2 versus
db/db + mSTZ (for datasets db/db and mSTZ) and versus NOD-D
(for dataset 8-16wNOD)) and two diseased states (db/db + mSTZ and
mSTZ for dataset mSTZ). All B-cells were scored for GP activity with the
Scanpy score_genes function and individual scores were normalized
across cellsto [0,1] with winsorizing by removing the highest and low-
est 20 cells for setting the scaling range. The per-dataset differences
between means of the normalized scores within clusters were then
used for cluster comparison.

We manually extracted known markers of B-cell heterogeneity
from the literature. For plotting across fine 3-cell states we excluded
markers expressed in less than 1% of 3-cells and plotted mean expres-
sion per cell state. A heat map was created with ComplexHeatmap
(v.2.11.1)"7>173,

Conserved B-cell heterogeneity in healthy samples
Low-quality coarse B-cell clusters were excluded as they could lead
to high spatial autocorrelation scores of genes associated with data

quality. Control samples from the chem dataset were not used as they
showed lower integration of 3-cells, indicating potential strong batch
effects, which could negatively affect the identification of variable
gene groups conserved in healthy B-cells. Thus, healthy adult sam-
ples from db/db, mSTZ and 4m datasets were used. For each sample,
lowly expressed genes were removed and a neighborhood graph
was computed on per-sample PC embedding for Moran’s | computa-
tion, as described in the ‘Gene programs in 3-cells’ section. Here, we
adjusted the threshold for removing genes expressed in many cells
from Moran’s | score correction regression to expression in at least
30% of cells. Genes with high Moran’s I in all samples were selected.
To ensure that gene clusters are conserved across samples the genes
were clustered based on the highest distance on per-sample fine
pseudobulks using hierarchical clustering. The cutting threshold
was visually determined based on a heat map of gene expression
across per-sample pseudobulk. Gene group scores were compared
to the expression of known f3-cell functional and phenotypic markers
extracted fromtheliterature, with marker correlations computed on
per-sample pseudobulks and summarized as a mean of per-dataset
means across per-sample scores. Gene set enrichment was computed
as for 3-cell GPs.

To find the cells with the highest expression of each gene group
we used Scanpy score_genes function onindividual healthy adult sam-
ples, followed by selection of 50 cells with the highest score. As the
Feng dataset had alow number of healthy adult 3-cells we performed
scoring on all control samples together and selected only the top 20
cells per gene group.

Differential expressionin T1ID model and T2D model B-cells

We performed DGE analysis on all samples from 8-16wNOD (n =9)
and fromdb/db and mSTZ (n =15, samples contained pooled animals)
datasets, excluding low-quality coarse B-cell clusters. A continuous
disease process (Extended Data Fig. 10a) was computed with MELD
(v.1.0.0)" on the integrated embedding as healthy sample densities
normalized over healthy and diseased densities, using for healthy and
diseased the same set of samples as in the diabetes model comparison
tohumandiabetes-associated gene sets. Inthe db/db + mSTZ analysis,
the final MELD healthy and diseased scores were computed asamean
over datasets-specific scores. We observe that the resulting process
correspondsto the gradient from the healthiest (highest healthy sam-
ple cell density within aregion) to the most diabetically stressed cells
(highest diabetes model sample cell density within aregion), with the
process value of individual cellsbeing determined based on cell embed-
ding location rather than just sample membership. Genes expressed
in less than 5% of healthy or diabetic sample cells were removed. To
assess linear change in gene expression along the disease process we
used diffxpy (v.0.7.4)"* two-sided Wald test that fits anegative binomial
model to raw counts across cells using expression normalization size
factors asexposure. Dataset information was used as a covariate in the
db/db + mSTZ analysis. The DEGs were selected based on FDR < 0.05,
logFC (binary logarithm of the relevant model coefficient representing
linear change) >1 and relative expression in 3-cells >0.2, to keep only
genes thatareless likely ambient, as described above. For comparison
tothe embryonic datathe[0,1]-normalized expression of upregulated
genes was plotted across fine -cell states and embryonic clusters as
annotated in the original study.

Forboth DGE analyses the up-and downregulated genes were sepa-
rately hierarchically clustered onthe whole 3-cell fine pseudbulk data.
Cutting thresholds were selected visually based on heat maps portray-
ing gene expression grouped across fine pseudobulks. All 3-cells were
scored for DEG groups with the Scanpy score_genes function and the
scores were averaged within 3-cell clusters. Gene set enrichment was
computed as described for human T1D and T2D genes. Gene member-
ship across groups was compared as the relative overlap normalized
by the size of the smaller group.
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The DEGs in NOD and db/db + mSTZ were compared to three
human datasets with T1D samples and one mouse and seven human
datasets with T2D samples, respectively. We scored cells for each DEG
group activity with the Scanpy score_genes function, followed by [0,1]
normalization across cells and separately plotted cells from healthy
and diabetic samples.

For analysis of the DGE patterns in relationship to the D-inter.
cluster the genesup- or downregulatedinbothNOD and db/db + mSTZ
were obtained. We plotted their expression per diabetes model datasets
across the adult2, D-inter. and 14-16wNOD (for 8-16wNOD dataset) or
db/db + mSTZ (for db/db and mSTZ datasets) clusters. We normalized
gene expressionacross clustersin each datasetto[0,1]. We computed
the genesetenrichment of the shared DEGs as for human T1ID and T2D
genes. The GP differences between adult2 and D-inter. clusters were
computed for individual datasets (db/db, mSTZ and 8-16wNOD) as
described in the section ‘Fine B-cell states’.

Differential expressionin TID model and T2D model
endocrine cells

To compare DEGs across diabetes models and endocrine cell types we
fitted a joint model with edgeR. Cells from healthy adults (datasets
4m, 8-16WwNOD samples aged 8 weeks, db/db control, mSTZ control;
n=10,some samples contained pooled animals),a T1D model (dataset
NOD_progressionsamples aged 14 and 16 weeks; n = 6) and T2D models
(datasets mSTZ and db/db, both without treatment; n = 3) were used
to compute metadata-based pseudobulks per disease status group,
sample, dataset, sex and endocrine cell type. Lowly expressed genes
were removed with edgeR. A single expression model was fitted, using
edgeR GLMwithrobustdispersion, with dataset and sex as covariates.
Atwo-sided likelihood-ratio test was used to compare model factors
for each T1ID model or T2D model cell type to the corresponding
healthy cell type to obtain the TID model or T2D model effect per cell
type. The DEGs were selected based on FDR < 0.05, absolute logFC > 1
andrelative expressioninindividual cell types >0.1to focus on genes
that are less likely to be ambiently expressed. Overlap between DEGs
was computed accounting for DGE direction between the two groups.
Same direction DEGs across «-, - and y-cells in both diabetes types
were extracted and gene set enrichment was computed as for human
T1D and T2D genes.

Sex differencesin B-cells during aging

Two datasets that contained a mixture of male and female cells were
used: P16 and aged. Each dataset was analyzed separately; both data-
sets had three samples per group with pooled animals within samples.
Cells from low-quality coarse (3-cell clusters, genes expressed in less
than 5% of cells and non-f-cell ambient genes were removed. DGE
analysis was performed with sex and samples as covariates using dif-
fxpy two-sided Wald test. We removed genes that could not be fitted,
asindicated by extremely small standard deviations of the regression
coefficient (s.d. 2.2 x10%?). DEGs were selected based on FDR < 0.05
and absolute logFC > 1.

DEGs between sexes in the aged dataset were separated by DGE
direction and hierarchically clustered on the whole 3-cell fine pseu-
dobulk data. Cutting thresholds were selected visually based on heat
map portraying gene expression across fine pseudobulks. All 3-cells
were scored for DEG groups with the Scanpy score_genes function.

Laboratory validation of diabetes markers

For diabetes markers validation we used healthy adult mice from
strains C57BL/6) (three males and three females, aged 2-4 months)
and B6.BKS(D)-Leprdb/J (healthy db/db control), db/db T2D model
mice (three males aged 8 weeks) and NOD T1D model mice (three
females aged 8 weeks). For endocrine markers validation we used
postnatal healthy mice from strain C57BL/6) (two males and one female,
at P9 stage). Mice were housed in groups of two to four animals and

maintained at 23 +1°Cand 45-65% humidity ona12-h dark-light cycle
with ad libitum access to diet (irradiated standard diet for rodents,
Altromin 1314, Altromin Spezialfutter) and water.

Mice pancreases were dissected and fixed (4% PFA-PBS, 24 h
at 4 °C). The organs were cryoprotected in a sequential gradient of
7.5,15 and 30% sucrose-PBS solutions (each solution 2 h at room
temperature). Next, pancreases were incubated in 30% sucrose and
tissue-freezing medium (Leica) (1:1, overnight at 4 °C). Afterward,
they were embedded using a tissue-freezing medium. Sections of
20-pm thickness were cut from each sample mounted on a glass slide
(Thermo Fisher Scientific).

Isletisolation was performed by collagenase P (Roche) digestion of
the adult pancreas. We injected 3 ml collagenase P (1 mg ml™) into the
bile duct and the perfused pancreas was consequently dissected and
placedinto3 mlcollagenase P for15 minat37 °C. Then,10 ml G-solution
(HBSS (Lonza) +1% BSA (Sigma)) was added to the samples followed
by centrifugation at 563g (Eppendorf Centrifuge 5910R) at 4 °C. After
another washing step with G-solution, the pellets were resuspended
in 5.5 ml gradient preparation (5 ml 10% RPMI (Lonza) and 3 ml 40%
Optiprep (Sigma) per sample) and placed on top of 2.5 ml of the same
solution. Toform athree-layer gradient, 6 ml G-solution wasadded on
thetop.Samples were thenincubated for 10 minat roomtemperature
before subjecting to centrifugationat 523g (settings were acceleration
3, stopping O; Eppendorf Centrifuge 5804R). Finally, the interphase
betweenthe upper and the middle layers of the gradient was collected
and filtered through a 70-um nylon filter and washed with G-solution.
Islets were handpicked under the microscope. For fixation, islets were
incubated in 4% PFA-PBS for 15 min at room temperature.

Forimmunostaining, the cryosections were rehydrated and then
permeabilized (0.2% Triton X-100-H,0 for 30 min at room temperature).
Then, the samples were blocked inablocking solution (PBS, 0.1% Tween-
20,1% donkey serum and 5% FCS for 1 hatroom temperature). Primary
antibodies (Supplementary Table 13) were incubated for at least 4 h at
roomtemperature followed by three washes with PBX. The samples were
then incubated with secondary antibodies (Supplementary Table 13)
during 4-5 hofincubation. For the anti-Rbp4 antibody, we performed
antigen retrieval with a citric buffer (10 mM sodium citrate and 0.05%
Tween-20, pH 6) in addition to the above-described protocol. Finally,
the pancreatic sections were stained with 4,6-diamidino-2-phenylindole
(1:500 dilutionin 1x PBS for 30 min). Allimages were obtained onaLeica
microscope of the type DMI6000. Images were analyzed using the LAS
Xv.3.5.6 and/or Image] Fiji-Win32 software.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Up-to-date dataresource links are available from https://github.com/
theislab/mouse_cross-condition_pancreatic_islet_atlas. The two newly
generated scRNA-seq datasets, the integrated atlas and the reference
mapped embedding of the Feng dataset were deposited to the GEO
withinsuper-series GSE211799. The atlasis also available as a cellxgene
instance (https://cellxgene.cziscience.com/collections/296237e2-
393d-4e31-b590-b03f74ac5070). The scArches model for reference
mapping and an example code for reference mapping used for the
Feng dataset are available in https://github.com/theislab/mouse_
cross-condition_pancreatic_islet_atlas/tree/main/reference_map-
ping. The following previously published datasets were included into
the atlas: GSE132188, GSE161966, GSE128565, GSE174194, GSE144471,
GSE117770, GSE142465 (GSM4228185 to GSM4228199). The following
previously published datasets were used for validation: GSE83146,
GSE137909, GSE148073, GSE81608, GSE198623, GSE81547, GSE86469,
GSE124742 (FACS), GSE124742 (patch-seq), GSE164875 (patch-seq),
GSE101207, GSE154126 and GSE83139. Gene sets were obtained from
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MSigDB (v.7.4.1) and ortholog information was obtained from BioMart
(Ensembl Genes v.103).

Code availability

All code is available at https://github.com/theislab/mouse_

cross-condition_pancreatic_islet_atlas. This includes both reproduc-
ibility code and an example of how new datasets can be mapped onto
the atlas.
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Extended Data Fig.1| Comparison of cell types assigned in original studies
andinintegrated atlas re-annotation. (a) Atlas-level cell type re-annotation
within the atlas shown on UMAP, including low-quality and potential doublet
cells. (b) Cell types used for integration evaluation. Annotation was performed
for selected samples (colored in cells) per study; unannotated cells are marked
with NA. Some cell types were later renamed for the final atlas annotation

(for example, the annotations in panel b contain the name pericyte which was
later in panel a corrected to stellate activated). (c) Cell types as reported in the
original publications. Cell type names were unified across studies and cells with

missing annotation are marked with NA. (d) Comparison of integration-based
re-annotated and previously reported cell type labels. Datasets that did not have
previously reported annotation are not shown. Overlaps were normalized per
previously reported cell type. In the P16 dataset, the dotted rectangle indicates
rare Schwann cells that were merged with alarger population of stellate cellsin
the original annotation. In the embryonic dataset, the dotted circle indicates the
mapping of embryonic &-cells to the postnatal 6-cells cluster. Abbreviations: ‘+ -
potential doublet, lowQ - low-quality, EP - endocrine progenitor/precursor, prif.
- proliferative, mat. - mature.

Nature Metabolism


http://www.nature.com/natmetab

Article https://doi.org/10.1038/s42255-023-00876-x

embryonic_E12.5_E12_5
embryonic_E13.5_E13_5
embryonic_E14.5 E14_ 5
embryonic_E15.5_E15_5
P16_mRFP_146_mRFP
P16_mTmG_147_mTmG
P16_mGFP_145 mGFP
4m_head_Fltp-_mousel
4m_tail_Fltp-_mouse3
4m_head_Fltp+_mouse2
4m_tail_Fltp+_mouse4

aged_ mRFP_MUC13974
aged_mTmG_MUC13975
aged_mGFP_MUC13976
chem_DMSO_r1_SRR10751504
chem_DMSO_r2_SRR10751509

log10(N cell
0g10(N cells) chem_DMSO_r3_SRR10751514

-4 chem_GABA r1_SRR10751506
chem_GABA r2_SRR10751511
-3 chem_GABA r3_SRR10751516
chem_A1_rl1_SRR10751502
2 chem_A1_r2_SRR10751507
chem_A1_r3_SRR10751512
1 chem_A10_r1_SRR10751503
chem_A10_r2_SRR10751508
0 chem_A10_r3_SRR10751513
chem_FOXO_r1_SRR10751505
chem_FOXO_r2_SRR10751510
chem_FOXO_r3_SRR10751515
stress 5wNOD_IRE1lalphafl/fl_SRR10985099
== NOD 5wNOD_IRElalphabeta-/- SRR10985097
= mSTZ 5wNOD_IRElalphabeta-/- SRR10985098
. db/db 8-16WNOD_8w_SRR7610295
W= other chemical 8-16wNOD_8w_SRR7610296
none 8-16wNOD_8w_SRR7610297
age group 8-16WNOD_14w_SRR7610298
— 8-16wNOD_14w_SRR7610299
i 8-16wNOD_14w_SRR7610300
— 115 8-16wNOD_16w_SRR7610301
———— 8-16wNOD_16w_SRR7610302
i 8-16wNOD_16w_SRR7610303
mSTZ_control_G1
=il mSTZ_STZ_ G2
2y mSTZ_STZ_GLP-1_G4
dataset mSTZ_STZ_estrogen_G5
mm embryonic mSTZ_STZ_GLP-1_estrogen_G6
P16 mSTZ_STZ_insulin_G3
. 4m mSTZ_STZ_GLP-1_estrogen+insulin_G8
= aged db/db_chow_WT_MUC13633
chem db/db_chow WT_MUC13634
. 5WNOD db/db_sham_Lepr-/- MUC13639
s 8-16WNOD db/db_sham_Lepr-/-_ MUC13641
———— db/db_PF_Lepr-/- MUC13631
db/db db/db_PF_Lepr-/- MUC13632
db/db_VSG_Lepr-/- MUC13640
. . db/db_VSG_Lepr-/-_ MUC13642
§57 $928383E38 85555528
Eo¥ 55SfSLERIZEiEBIESLLS
2 0 w o S S ECT OB oo OO
28 2 ° 2T RESE L
. N o et
©
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Endocrine markers differ in embryonic and postnatal
datasets. (a) Comparison of endocrine markers inembryonic and postnatal data,
showing whether genes were selected as potential markers in each stage (color).
Genes missing from a stage-specific DGE analysis were assigned a logFC of 0.

(b) Expression of CerI across embryonic cell types (original study annotation)
and postnatal cell types (atlas-level re-annotation). (c) Validation of selected
endocrine markers withimmunohistochemistry. Arrows indicate Ttr and Geg
double-positive a-cells (left) and Rbp4 and Sst double-positive 8-cells (right).

Thefirst subplotin the row for either Ttr or Rbp4 experiment shows azoomed-
outsection, with the square denoting the zoomed-in region that is shown on

the rest of the subplots, with an overlay of channels in the middle and individual
channels on the right. Scale bars represent 50 pM for zoomed-out images and
20 pM for zoomed-inimages. The images are representative examples from the
analysis of three independent animals. (d) Number of cells in each endocrine cell
group. Cell groups are as in Fig. 3. (e) Expression of embryonic Fev+ EP markers
from Bastidas-Ponce et al. (2019) across endocrine cell groups.
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Extended Data Fig. 4 | Integrated embedding of B-cells fromindividual samples corresponds to biological conditions. The distribution density of cells from each
sample on a UMAP of the B-cell atlas subset. Sample names are reported with the sample description and identifier. The embryo dataset is not shown due to a small
number of cells within the B-cell cluster.
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Extended DataFig. 5| Different resolution B-cell states correspond state annotation given as anormalized distribution of each fine state across
to biological conditions. (a) Coarse 3-cell states, including low-quality coarse states. (f) AUMAP embedding of male and female 3-cells across ages.
clusters. (b) Fine B-cell states, including low-quality clusters. (c) and (d) Colored in are cells from datasets that have mixed sexes within samples, other
Coarse and fine, respectively, B-cell state proportions in each sample, also B-cells are displayed as a background. (g) Expression of Cfap126 (Flattop gene)
displaying corresponding sample metadata. Sample names are given as study_ across cell populations that were sorted based on the Flattop reporter system.
sampleDescription_sampleldentifier. (e) Comparison of coarse and fine p-cell Abbreviations: hMT - high mitochondrial transcript read fraction.
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Extended Data Fig. 6 | MIA-based B-cell markers are robust across mouse
datasets, but do not directly translate to humans. (a) Expression of proposed
B-cell state markers across coarse 3-cell states per dataset (in brackets).

(b) Number of cluster-specific markers extracted per dataset and state or as the
intersection of all datasets within a state. (c) and (d) Expression of known and
MIA-based, respectively, B-cell state markers on the external Feng mouse dataset.
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Theideal marker bar represents how we would expect markers of specific clusters
to be expressed across the cell groups. (e) and (f) Translation of known and MIA-
based, respectively, B-cell state markers to human datasets. In each dataset (dot)
we compared marker expression within the relevant sample group to all other
samples, showing a comparison IFC and statistical significance as well as the ratio
of cells expressing the gene in the target group. Abbreviations: ins - insulin.
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Right: Reference cell groups showing coarse 3-cell states, as shown in Fig. 5a, and
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Diabetes-related molecular changes of B-cells show
similarities and differences across dysfunctional states and translate to an
external mouse dataset. (a) Design of DGE analysis showing original conditions
ineachused dataset (dataset 8-16wNOD for NOD DGE, datasets db/db and mSTZ
for db/db+mSTZ DGE) and axis used for fitting the DGE model. For NOD we

also show expression of a known T1D marker B2m. (b) Translation of diabetes
model DEG groups (T1D NOD, T2D db/db+mSTZ) to external human and mouse
datasets, indicated as normalized activity of gene groupsin T1D or T2D (in mice

STZ-treated) and healthy samples. Plot titles contain information on species

(hs - human, mm - mouse), dataset and number of cells in healthy (H) and diabetic
(D) groups. Encircled are gene groups that translate to the external mouse
dataset. (c) Expression of genes upregulated in diabetic NOD or db/db+mSTZ
cells shown across fine B-cell states and embryonic cell types as annotated in the
original study. Cell color annotations are based on healthy and developmental
conditions. (d) Overlap between NOD and db/db+mSTZ DEG groups as a ratio of
the smaller group.

Nature Metabolism


http://www.nature.com/natmetab

nature portfolio

Corresponding author(s):  Heiko Lickert and Fabian Theis

Last updated by author(s): 5th of July, 2023

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<

Statistics
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  For scRNA-seq no specific software was used, except for software associated with 10X Chromium Controller, NovaSeq6000 (lllumina),
HiSeq4000 (lllumina), and Bioanalyzer. For FACS we used BD FACS ARIA Ill instrument and BD FACSDiva v6.1.3 software.

Data analysis For the analysis of FACS data we used FlowJo v10.8.1 and for antibody staining images we used Leica Application Suite X (LAS X) v3.5.6 and
Image) Fiji-Win32 software.

Reproducibility code and tutorial for mapping new data onto the atlas are available at https://github.com/theislab/mouse_cross-
condition_pancreatic_islet_atlas.

Below is the list of most relevant software packages and their versions:
Python 3.8.5

R 4.0.2

10x Genomics Cell Ranger 2.2.1-3.1.0
anndata 0.7.4-0.7.6

CellBender 0.2.0

ComplexHeatmap 2.11.1

diffxpy 0.7.4

DecontX from celda v1.5

DropletUtils 1.10.3

edgeR 3.32.1

hypeR 1.6.0




Matplotlib 3.4.0
MELD 1.0.0

NumPy 1.19-1.22.3
pandas 1.0.5-1.3.2
rpy2 3.3.5

Scanpy 1.6 -1.8.1
scArches 0.1.5

scIB developmental version last updated on 17. 1. 2022
SciPy 1.5.1-1.7.1
scran 1.16.0—-1.18.7
Scrublet 0.2.1
scvi-tools 0.7.0a5
seaborn 0.11.1
SoupX 1.5.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Up-to-date data resource links are available from https://github.com/theislab/mouse_cross-condition_pancreatic_islet_atlas. The two newly generated scRNA-seq
datasets, the integrated atlas, and the reference mapped embedding of the Feng dataset were deposited to GEO within super-series GSE211799. The atlas is also
available as a cellxgene instance (https://cellxgene.cziscience.com/collections/296237e2-393d-4e31-b590-b03f74ac5070). The scArches model for reference
mapping and an example code for reference mapping used for the Feng dataset are available in https://github.com/theislab/mouse_cross-
condition_pancreatic_islet_atlas/tree/main/reference_mapping.

The following previously published datasets were included into the atlas: GSE132188, GSE161966, GSE128565, GSE174194, GSE144471, GSE117770, GSE142465
(GSM4228185 - GSM4228199). The following previously published datasets were used for validation: GSE83146, GSE137909, GSE148073, GSE81608, GSE198623,
GSE81547, GSE86469, GSE124742 (FACS), GSE124742, GSE164875 (patch-seq), GSE101207, GSE154126, GSE83139. Gene sets were obtained from MSigDB (v7.4.1)
and orthologue information from BioMart (Ensembl Genes v103).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender NA

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size We used all public datasets that have met our inclusion criteria (see Methods). No prior power calculations for sample size were performed.
For scRNA-seq of aged mice, all subjects that reached the specified age were used. All newly generated scRNA-seq data contained at least 2
subjects per biological condition. Antibody staining was performed in at least 3 mice per condition, imaging at least 5 islets. A representative

>
Q
=)
e
(D
O
@)
=4
o
=
—
(D
O
@)
=
)
(@]
wv
C
=
=
)
<




picture was selected for the publication.

Data exclusions  In scRNA-seq datasets we removed low quality cells based on number of expressed genes, number of counts, and mitochondrial fraction by
visual thresholding. We removed genes expressed in only a few cells. In downstream analyses we further excluded low quality cells based on
clustering, technical cell multiplets based on expression of markers from multiple cell types, additional lowly expressed genes with more
stringent filtering, and likely ambiently expressed genes based on expression in empty droplets and across cell types.

For details see Methods and reproducibility code https://github.com/theislab/mouse_cross-condition_pancreatic_islet_atlas.
Replication We validated the reproducibility of many of our results based on external mouse scRNA-seq data. Some results could not be compared to

external scRNA-seq datasets as no additional appropriate datasets were available. Most results were reproducible in the external data and

where not we could explain the reasons for discrepancies, such as due to different cell states across conditions (see Results section).

Example endocrine markers and genes differentially expressed in diabetes were validated on protein level with antibody staining.

Randomization  Randomization was not performed. We added covariates to statistical tests as cofactors in regression models or performed tests on matched
data subsets where no confounding by additional factors was expected.

Blinding The generation of mouse data was not blinded, but we used standard protocols with all samples being treated equally. Data analysis was not

blinded as the common analysis workflows require metadata availability across different steps, including evaluation, analysis of differences
between groups, and biological interpretation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| |Z| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXOXX[s
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Dual use research of concern

Antibodies

Antibodies used Primary antibody, Company, Order Number:
Insulin, Bio-Rad, 5330-0104G
Aldh1a3, Novus, NBP2-15339
Ucn3, Phoenix Pharmaceuticals, H-019-29
Nucb2, LIFE Technologies, PA578096
Fkbp11, Abcam, ab237528-100ug
Mt3, Abcam, ab214314-100ul
Transthyretin (TTR) / Prealbumin, Abcam, ab215202
RBP4, Abcam, ab109193
Somatostatin, Life-Tech, MA516987
Glucagon, Bio-Rad, 4660-1140
For all primary antibodies dilution IHC/IF 1-300 was used.

Secondary antibody (anti-), Company, Order Number, Label, Dilution IHC/IF:
Rabbit, Invitrogen, A11055, Alexa Flour® 488

Guinea pig, Dianova/Jackson, 706-165-148, Cy™3

Guinea pig, Dianova/Jackson, 706-495-148, Alexa Flour® 647

Goat, Dianova/Jackson, 705-605-147, Alexa Flour® 647

Rat, Dianova/Jackson, 712-605-150, Alexa Flour® 647

For all secondary antibodies dilution IHC/IF 1-800 was used.

Validation We report previous publications or supplier web-pages with antibody validation:
Insulin https://www.bio-rad-antibodies.com/polyclonal/pig-porcine-insulin-antibody-5330-0054.htm|?
f=purified&JSESSIONID_STERLING=EBBF4D2AEB04D4DAB38BB299F522226E.ecommerce2&evCntrylang=DE-
dethirdPartyCookieEnabled, 10.1016/j.molmet.2021.101188
Aldh1a3 https://www.novusbio.com/products/aldhla3-antibody _nbp2-15339, 10.1038/s42255-020-0171-3
Ucn3 https://www.phoenixpeptide.com/products/view/Antibodies/H-019-29, https://www.nature.com/articles/nbt.2141
Nucb2 https://www.thermofisher.com/antibody/product/NUCB2-Antibody-Polyclonal/PA5-78096, https://www.thermofisher.com/
antibody/product/PA5-52551.html?gclid=CjwKCAiAqt-dBhBcEiwATw-ggKNvLkXj1uVFO-wSLearV2RPyivaO_JcmGhdAPHmMAItdPU-
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Xa6_AaxoCkcOQAVD_BwE&ef id=CjwKCAiAqt-dBhBcEiwATw-ggKNvLkXj1uVFO-wSLearV2RPyiva0_JcmGhdAPHmAItdPU-
Xa6_AaxoCkcOQAVD_BWE:G:s&s_kwcid=AL!3652131459736943987!11g!1110950825775!
106531320406&cid=bid_pca_aup_r01_co_cp1359 pjt0000_bidOO000_Ose_gaw_dy pur_con

Fkbp11 https://www.abcam.com/fkbpl1-antibody-ab237528.html?productWallTab=ShowAll, 10.2147/0TT.5273823

Mt3 https://www.abcam.com/mt3-antibody-ab214314.html, 10.1038/541598-021-84185-x

Ttr https://www.abcam.com/products/primary-antibodies/prealbumin-antibody-epr20971-ab215202.html

Rbp4 https://www.abcam.com/products/primary-antibodies/rbp4-antibody-ep3657-ab109193.html

Somatostatin https://www.thermofisher.com/antibody/product/Somatostatin-Antibody-clone-YC7-Monoclonal/MAS5-16987
Glucagon https://www.bio-rad-antibodies.com/polyclonal/human-glucagon-antibody-4660-1140.html?
f=purified&JSESSIONID_STERLING=E6E26457ECD7B7D3FAOB1AAA71BD7030.ecommercel&evCntrylang=US-
enthirdPartyCookieEnabled

Rabbit https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/
A-11055

Guinea pig 706-165-148 https://www.dianova.com/en/shop/706-165-148-donkey-igg-anti-guinea-pig-igg-hl-cy3-minx-
bockgohshohumsrbrtsh/

Guinea pig 706-605-148 https://www.dianova.com/en/shop/706-605-148-donkey-igg-anti-guinea-pig-igg-hl-alexa-fluor-647-minx-
bockgohshohumsrbrtsh/

Goat https://www.dianova.com/en/shop/705-605-147-donkey-igg-anti-goat-igg-hl-alexa-fluor-647-minx-ckgphshohumsrbrt/

Rat https://www.dianova.com/en/shop/712-605-150-donkey-igg-anti-rat-igg-hl-alexa-fluor-647-minx-bockgogphshohurbsh/

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

Newly generated mouse samples:

scRNA-seq of mouse islets:

- Fltp lineage tracing line (Fltp iCre mTmG), older than 2 years, male and female

- Fltp reporter line (Fltp-ZV), aged 4 months, male

Antibody staining of mouse islets:

- C57BL/6J, P9 or aged 2-4 months, male and female

- db/db model (B6.BKS(D)-Leprdb/J, diabetic and healthy control), aged 8 weeks, male
- NOD model, aged 8 weeks, female

No wild animals were used.

We performed differential expression analysis between the sexes in the aged and P16 dataset animals where matched samples of
both sexes were available. Sex differences were observed only among aged animals. Sex was determined on mice subjects or based
on the expression of Y-linked genes in pooled samples.

No field-collected samples were used.

Animal studies were conducted with adherence to relevant ethical guidelines for the use of animals in research in agreement with
German animal welfare legislation with the approved guidelines of the Society of Laboratory Animals (GV-SOLAS) and the Federation
of Laboratory Animal Science Associations (FELASA). The study was approved by the Helmholtz Munich Animal Welfare Body and by
the Government of Upper Bavaria.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

IZ All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Dissociated islets of Langerhans were washed and resuspended in FACS buffer (2 % FCS, 2 mM EDTA in PBS). Prior sorting,
cells were passed through 40 um cell strainer to remove possible clumps.

Single cells were analyzed and sorted by FACS-Aria Ill (BD) with a 100 pm nozzle.

Data were analyzed with the FACS DIVA software v6.1.3 and FlowJo v10.8.1.
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Cell population abundance Abundance of Fltp populations (from living cells = 60-90%) are not reported in this manuscript since they vary according to
age and mouse model utilized, thus going beyond the purpose of the paper.

Gating strategy First, islets' cells were gated using FSC-A and SCA-A to retain the majority of the endocrine cells. Second, doublets were
excluded using FSC-H and FSC-W (FSC-W high excluded) or FSC-A and FSC-H (excluding cells below the diagonal). Third, dead
cells were gated out using a viability dye (DAPI or 7-AAD positive cells excluded). Last, for the FltpiCre mTmG cells, the
endogenous membrane EGFP and membrane TdTomato fluorescent proteins were used to distinguish the three Fltp
populations: mEGFP+ (Fltp positive), mTdtomato+ (Fltp negative), mMEGFP+ and mTdtomato+ double positive (Fltp transient).
These three populations were sorted separately and used for the scRNAseq experiment. For the Fltp Venus Repeorter (FVR)
cells, the endogenous H2B-Venus was used to distinguish cells positive and negative for the Fltp

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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