Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Liver insulinization as a driver of triglyceride dysmetabolism

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly prevalent fellow traveller with the insulin resistance that underlies type 2 diabetes mellitus. However, the mechanistic connection between MAFLD and impaired insulin action remains unclear. In this Perspective, we review data from humans to elucidate insulin’s aetiological role in MAFLD. We focus particularly on the relative preservation of insulin’s stimulation of triglyceride (TG) biosynthesis despite its waning ability to curb hepatic glucose production (HGP). To explain this apparent ‘selective insulin resistance’, we propose that hepatocellular processes that lead to TG accumulation require less insulin signal transduction, or ‘insulinization,’ than do those that regulate HGP. As such, mounting hyperinsulinaemia that barely compensates for aberrant HGP in insulin-resistant states more than suffices to maintain hepatic TG biosynthesis. Thus, even modestly elevated or context-inappropriate insulin levels, when sustained day and night within a heavily pro-lipogenic metabolic milieu, may translate into substantial cumulative TG biosynthesis in the insulin-resistant state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Insulin dose–response profiles.
Fig. 2: Insulinization requires a lipogenic milieu to provoke MAFLD.
Fig. 3: Insulinaemia and insulinization during the day.

Similar content being viewed by others

References

  1. Bril, F. et al. Intact fasting insulin identifies nonalcoholic fatty liver disease in patients without diabetes. J. Clin. Endocrinol. Metab. 106, e4360–e4371 (2021).

    PubMed  Google Scholar 

  2. Smith, G. I. et al. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J. Clin. Invest. 130, 3305–3314 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox.Cell Metab. 7, 95–96 (2008). In this two-page Preview piece, Brown and Goldstein cogently lay out what is perhaps the definitive statement of the selective-IR model.

    CAS  PubMed  Google Scholar 

  4. Fryk, E. et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: a mechanistic case–control and a population-based cohort study. EBioMedicine 65, 103264 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. van Vliet, S. et al. Obesity is associated with increased basal and postprandial beta cell insulin secretion even in the absence of insulin resistance. Diabetes 69, 2112–2119 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Trico, D., Natali, A., Arslanian, S., Mari, A. & Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 3, e124912 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Rizza, R. A., Mandarino, L. J., Genest, J., Baker, B. A. & Gerich, J. E. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 28, 70–75 (1985).

    CAS  PubMed  Google Scholar 

  8. Johnson, J. D. On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 64, 2138–2146 (2021).

    CAS  PubMed  Google Scholar 

  9. Chandel, S. et al. Hyperinsulinemia promotes endothelial inflammation via increased expression and release of angiopoietin-2. Atherosclerosis 307, 1–10 (2020).

    CAS  PubMed  Google Scholar 

  10. Pramfalk, C. et al. Fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes 65, 1858–1867 (2016).

    CAS  Google Scholar 

  11. Ter Horst, K. W. et al. Hepatic insulin resistance is not pathway selective in humans with nonalcoholic fatty liver disease.Diabetes Care 44, 489–498 (2021). This observational study challenges the selective IR model by demonstrating that a glucose challenge does not acutely stimulate DNL in patients with MAFLD despite a surge in insulin levels, while a fructose challenge that produces a much smaller rise in insulin does promote DNL

    Google Scholar 

  12. Aarsland, A., Chinkes, D. & Wolfe, R. R. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J. Clin. Invest. 98, 2008–2017 (1996).

    CAS  PubMed Central  Google Scholar 

  13. Baykal, A. P. et al. Leptin decreases DNL in patients with lipodystrophy. JCI Insight 5, e137180 (2020).

    PubMed Central  Google Scholar 

  14. Semple, R. K. et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis.J. Clin. Invest. 119, 315–322 (2009). Assembling data from patients with several forms of insulin receptoropathy, this is the most compelling human demonstration to date that hepatic TG biosynthesis requires intact insulin signalling.

    CAS  PubMed Central  Google Scholar 

  15. Cook, J. R., Langlet, F., Kido, Y. & Accili, D. Pathogenesis of selective insulin resistance in isolated hepatocytes.J. Biol. Chem. 290, 13972–13980 (2015). We provide evidence for the cell autonomy of process-specific insulinization thresholds by demonstrating that glucose production and DNL are differentially sensitive to insulin in mouse primary hepatocytes.

    CAS  PubMed Central  Google Scholar 

  16. Owen, J. L. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc. Natl Acad. Sci. USA 109, 16184–16189 (2012).

    CAS  PubMed Central  Google Scholar 

  17. Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease.J. Clin. Invest. 130, 1453–1460 (2020). This study comprehensively metabolically phenotypes patients with obesity, obesity + MAFLD, and healthy controls to argue that hyperinsulinaemia promotes liver fat accumulation despite overall hepatic insulin resistance.

    CAS  PubMed Central  Google Scholar 

  18. Sorensen, L. P. et al. Increased VLDL-triglyceride secretion precedes impaired control of endogenous glucose production in obese, normoglycemic men. Diabetes 60, 2257–2264 (2011).

    PubMed Central  Google Scholar 

  19. Fu, X. et al. Persistent fasting lipogenesis links impaired ketogenesis with citrate synthesis in humans with non-alcoholic fatty liver. J. Clin. Invest. 133, e167442 (2023). The authors simultaneously evaluate multiple metabolic processes in patients with or without MAFLD during longer fasting periods to illustrate insulin’s ‘selective’ regulation of hepatic fat versus glucose metabolism.

  20. Honma, M. et al. Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. Int. J. Obes. 42, 1544–1555 (2018).

    CAS  Google Scholar 

  21. Anderwald, C. et al. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle.Diabetes 51, 3025–3032 (2002). This rigorous prolonged clamp study of patients with MAFLD provides clear support for the ‘gas pedal’ model of insulin’s regulation of hepatic DNL by showing that raising insulin levels increases hepatic DNL and fat content independently of changes in glucose and FFAs.

    CAS  PubMed  Google Scholar 

  22. Santoleri, D. & Titchenell, P. M. Resolving the paradox of hepatic insulin resistance. Cell Mol. Gastroenterol. Hepatol. 7, 447–456 (2019).

    PubMed  Google Scholar 

  23. Lewis, G. F., Vranic, M. & Giacca, A. Role of free fatty acids and glucagon in the peripheral effect of insulin on glucose production in humans. Am. J. Physiol. 275, E177–E186 (1998).

    CAS  PubMed  Google Scholar 

  24. Gastaldelli, A., Gaggini, M. & DeFronzo, R. A. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio Metabolism Study. Diabetes 66, 815–822 (2017).

    PubMed  Google Scholar 

  25. Nurjhan, N., Consoli, A. & Gerich, J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 169–175 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vedala, A., Wang, W., Neese, R. A., Christiansen, M. P. & Hellerstein, M. K. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J. Lipid Res. 47, 2562–2574 (2006).

    CAS  PubMed  Google Scholar 

  28. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    CAS  PubMed  Google Scholar 

  29. Stanhope, K. L. et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL cholesterol, and apolipoprotein-B in young men and women. J. Clin. Endocrinol. Metab. 96, E1596–E1605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hernandez, E. A. et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Invest. 127, 695–708 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Shojaee-Moradie, F., Ma, Y., Lou, S., Hovorka, R. & Umpleby, A. M. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes 62, 4063–4069 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sekizkardes, H. et al. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J. Clin. Invest. 130, 3592–3602 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chudasama, K. K. et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am. J. Hum. Genet. 93, 150–157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang-Doran, I. et al. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight 1, e88766 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Parks, E. J., Krauss, R. M., Christiansen, M. P., Neese, R. A. & Hellerstein, M. K. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Invest. 104, 1087–1096 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Czech, M. P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Challis, B. G. et al. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: implications for pharmacological glucokinase activation. Clin. Endocrinol. 81, 855–861 (2014).

    CAS  Google Scholar 

  39. Duvillard, L. et al. Endogenous chronic hyperinsulinemia does not increase the production rate of VLDL apolipoprotein B: proof from a kinetic study in patients with insulinoma. J. Clin. Endocrinol. Metab. 96, 2163–2170 (2011).

    CAS  PubMed  Google Scholar 

  40. Takeshita, A. et al. Focal hepatic steatosis surrounding a metastatic insulinoma. Pathol. Int. 58, 59–63 (2008).

    CAS  PubMed  Google Scholar 

  41. Markmann, J. F. et al. Magnetic resonance-defined periportal steatosis following intraportal islet transplantation: a functional footprint of islet graft survival? Diabetes 52, 1591–1594 (2003).

    CAS  PubMed  Google Scholar 

  42. Gregory, J. M. et al. Iatrogenic hyperinsulinemia, not hyperglycemia, drives insulin resistance in type 1 diabetes as revealed by comparison with GCK-MODY (MODY2). Diabetes 68, 1565–1576 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Leiter, S. M. et al. Hypoinsulinaemic, hypoketotic hypoglycaemia due to mosaic genetic activation of PI3-kinase. Eur. J. Endocrinol. 177, 175–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hussain, K. et al. An activating mutation of AKT2 and human hypoglycemia. Science 334, 474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Minic, M. et al. Constitutive activation of AKT2 in humans leads to hypoglycemia without fatty liver or metabolic dyslipidemia. J. Clin. Endocrinol. Metab. 102, 2914–2921 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P. & O’Rahilly, S. Genetic syndromes of severe insulin resistance. Endocr. Rev. 32, 498–514 (2011).

    CAS  PubMed  Google Scholar 

  47. Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chait, A., Janus, E., Mason, A. S. & Lewis, B. Lipodystrophy with hyperlipidaemia: the role of insulin in very low density lipoprotein over-synthesis. Clin. Endocrinol. 10, 173–178 (1979).

    CAS  Google Scholar 

  49. Lee, G. A. et al. Effects of ritonavir and amprenavir on insulin sensitivity in healthy volunteers. AIDS 21, 2183–2190 (2007).

    CAS  PubMed  Google Scholar 

  50. Schwarz, J. M. et al. Indinavir increases glucose production in healthy HIV-negative men. AIDS 18, 1852–1854 (2004).

    PubMed  Google Scholar 

  51. Purnell, J. Q. et al. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS 14, 51–57 (2000).

    CAS  PubMed  Google Scholar 

  52. Calza, L. et al. Improvement in insulin sensitivity and serum leptin concentration after the switch from a ritonavir-boosted PI to raltegravir or dolutegravir in non-diabetic HIV-infected patients. J. Antimicrob. Chemother. 74, 731–738 (2019).

    CAS  PubMed  Google Scholar 

  53. Calza, L. et al. Improvement in liver steatosis after the switch from a ritonavir-boosted protease inhibitor to raltegravir in HIV-infected patients with non-alcoholic fatty liver disease. Infect. Dis. 51, 593–601 (2019).

    CAS  Google Scholar 

  54. Lewis, G. F., Uffelman, K. D., Szeto, L. W., Weller, B. & Steiner, G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J. Clin. Invest. 95, 158–166 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Poulsen, M. K. et al. Impaired insulin suppression of VLDL-triglyceride kinetics in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 101, 1637–1646 (2016).

    CAS  PubMed  Google Scholar 

  56. Hudgins, L. C., Parker, T. S., Levine, D. M. & Hellerstein, M. K. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J. Clin. Endocrinol. Metab. 96, 861–868 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Higuchi, N. et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 38, 1122–1129 (2008).

    CAS  PubMed  Google Scholar 

  58. Parks, E. J., Skokan, L. E., Timlin, M. T. & Dingfelder, C. S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 138, 1039–1046 (2008).

    CAS  PubMed  Google Scholar 

  59. Green, C. J. et al. Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis. Eur. J. Endocrinol. 186, 367–377 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Timlin, M. T. & Parks, E. J. Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am. J. Clin. Nutr. 81, 35–42 (2005).

    CAS  PubMed  Google Scholar 

  61. Hudgins, L. C. et al. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res. 41, 595–604 (2000).

    CAS  PubMed  Google Scholar 

  62. Smith, G. I. et al. One day of mixed meal overfeeding reduces hepatic insulin sensitivity and increases VLDL particle but not VLDL-triglyceride secretion in overweight and obese men. J. Clin. Endocrinol. Metab. 98, 3454–3462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Manousaki, D. et al. Toward precision medicine: TBC1D4 disruption is common among the Inuit and leads to underdiagnosis of type 2 diabetes. Diabetes Care 39, 1889–1895 (2016).

    CAS  PubMed  Google Scholar 

  64. Mitrakou, A. et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N. Engl. J. Med. 326, 22–29 (1992).

    CAS  PubMed  Google Scholar 

  65. Yadav, Y. et al. Impaired diurnal pattern of meal tolerance and insulin sensitivity in type 2 diabetes: implications for therapy. Diabetes 72, 223–232 (2023).

    CAS  PubMed  Google Scholar 

  66. Page, M. M. & Johnson, J. D. Mild suppression of hyperinsulinemia to treat obesity and insulin resistance. Trends Endocrinol. Metab. 29, 389–399 (2018).

    CAS  PubMed  Google Scholar 

  67. Orskov, L., Moller, N., Bak, J. F., Porksen, N. & Schmitz, O. Effects of the somatostatin analog, octreotide, on glucose metabolism and insulin sensitivity in insulin-dependent diabetes mellitus. Metabolism 45, 211–217 (1996).

    CAS  PubMed  Google Scholar 

  68. Kishore, P. et al. Activation of K(ATP) channels suppresses glucose production in humans. J. Clin. Invest. 121, 4916–4920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Alemzadeh, R., Langley, G., Upchurch, L., Smith, P. & Slonim, A. E. Beneficial effect of diazoxide in obese hyperinsulinemic adults. J. Clin. Endocrinol. Metab. 83, 1911–1915 (1998).

    CAS  PubMed  Google Scholar 

  70. Due, A. et al. No effect of inhibition of insulin secretion by diazoxide on weight loss in hyperinsulinaemic obese subjects during an 8-week weight-loss diet. Diabetes Obes. Metab. 9, 566–574 (2007).

    CAS  PubMed  Google Scholar 

  71. Schreuder, T. et al. Diazoxide-mediated insulin suppression in obese men: a dose–response study. Diabetes Obes. Metab. 7, 239–245 (2005).

    CAS  PubMed  Google Scholar 

  72. Loves, S. et al. Effects of diazoxide-mediated insulin suppression on glucose and lipid metabolism in nondiabetic obese men. J. Clin. Endocrinol. Metab. 103, 2346–2353 (2018).

    PubMed  Google Scholar 

  73. Qvigstad, E., Kollind, M. & Grill, V. Nine weeks of bedtime diazoxide is well tolerated and improves beta-cell function in subjects with type 2 diabetes. Diabet. Med. 21, 73–76 (2004).

    CAS  PubMed  Google Scholar 

  74. Esterson, Y. B. et al. Central regulation of glucose production may be impaired in type 2 diabetes. Diabetes 65, 2569–2579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Juurinen, L., Tiikkainen, M., Hakkinen, A. M., Hakkarainen, A. & Yki-Jarvinen, H. Effects of insulin therapy on liver fat content and hepatic insulin sensitivity in patients with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E829–E835 (2007).

    CAS  PubMed  Google Scholar 

  76. Liu, L. et al. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 36, e3292 (2020).

    CAS  PubMed  Google Scholar 

  77. Tang, A. et al. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care 38, 1339–1346 (2015).

    CAS  PubMed  Google Scholar 

  78. Yan, J. et al. Liraglutide, sitagliptin and insulin glargine added to metformin: the effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Hepatology 69, 2414–2426 (2019).

    CAS  PubMed  Google Scholar 

  79. Shao, N. et al. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 30, 521–529 (2014).

    CAS  PubMed  Google Scholar 

  80. Gastaldelli, A. & Cusi, K. From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options. JHEP Rep. 1, 312–328 (2019).

    PubMed Central  Google Scholar 

  81. Saponaro, C., Gaggini, M., Carli, F. & Gastaldelli, A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7, 9453–9474 (2015).

    CAS  PubMed Central  Google Scholar 

  82. Gastaldelli, A., Stefan, N. & Haring, H. U. Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia 64, 1461–1479 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Edgerton, D. S., Moore, M. C., Gregory, J. M., Kraft, G. & Cherrington, A. D. Importance of the route of insulin delivery to its control of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 320, E891–E897 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ferrannini, E. Physiology of glucose homeostasis and insulin therapy in type 1 and type 2 diabetes. Endocrinol. Metab. Clin. North Am. 41, 25–39 (2012).

    CAS  PubMed  Google Scholar 

  85. Bergenstal, R. M. et al. A randomized, controlled study of once-daily LY2605541, a novel long-acting basal insulin, versus insulin glargine in basal insulin-treated patients with type 2 diabetes. Diabetes Care 35, 2140–2147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cusi, K. et al. Different effects of basal insulin peglispro and insulin glargine on liver enzymes and liver fat content in patients with type 1 and type 2 diabetes. Diabetes Obes. Metab. 18, 50–58 (2016).

    CAS  PubMed  Google Scholar 

  87. Orchard, T. J. et al. The effects of basal insulin peglispro vs. insulin glargine on lipoprotein particles by NMR and liver fat content by MRI in patients with diabetes. Cardiovasc. Diabetol. 16, 73 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Johansen, R. F. et al. Attenuated suppression of lipolysis explains the increases in triglyceride secretion and concentration associated with basal insulin peglispro relative to insulin glargine treatment in patients with type 1 diabetes. Diabetes Obes. Metab. 20, 419–426 (2018).

    CAS  PubMed  Google Scholar 

  89. Ginsberg, H. et al. Lipid changes during basal insulin peglispro, insulin glargine, or NPH treatment in six IMAGINE trials. Diabetes Obes. Metab. 18, 1089–1092 (2016).

    CAS  PubMed  Google Scholar 

  90. Conte, C. et al. Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care 35, 1316–1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nurjhan, N., Campbell, P. J., Kennedy, F. P., Miles, J. M. & Gerich, J. E. Insulin dose–response characteristics for suppression of glycerol release and conversion to glucose in humans. Diabetes 35, 1326–1331 (1986).

    CAS  PubMed  Google Scholar 

  92. Reeds, D. N., Stuart, C. A., Perez, O. & Klein, S. Adipose tissue, hepatic, and skeletal muscle insulin sensitivity in extremely obese subjects with acanthosis nigricans. Metabolism 55, 1658–1663 (2006).

    CAS  PubMed  Google Scholar 

  93. Arioglu, E. et al. Clinical course of the syndrome of autoantibodies to the insulin receptor (type B insulin resistance): a 28-year perspective. Medicine 81, 87–100 (2002).

    CAS  PubMed  Google Scholar 

  94. Juric, D. et al. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol. 5, e184475 (2019).

    PubMed  Google Scholar 

  95. Liu, D. et al. Characterization, management, and risk factors of hyperglycemia during PI3K or AKT inhibitor treatment. Cancer Med. 11, 1796–1804 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Haas, J. T. et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15, 873–884 (2012).

    CAS  PubMed Central  Google Scholar 

  97. Titchenell, P. M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).

    CAS  PubMed Central  Google Scholar 

  98. Chattopadhyay, M., Selinger, E. S., Ballou, L. M. & Lin, R. Z. Ablation of PI3K p110-alpha prevents high-fat diet-induced liver steatosis. Diabetes 60, 1483–1492 (2011).

    CAS  PubMed Central  Google Scholar 

  99. Foukas, L. C. et al. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).

    CAS  Google Scholar 

  100. Hedges, C. P. et al. Efficacy of providing the PI3K p110α inhibitor BYL719 (alpelisib) to middle-aged mice in their diet. Biomolecules 11, 150 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (DK069861 to M.A.H., DK103818 to U.B.P.), the Columbia University Department of Medicine (career startup grant to J.R.C.), the Columbia Diabetes Research Center (2P30DK063608) and the Einstein–Mt. Sinai Diabetes Research Center (5P30DK020541).

Author information

Authors and Affiliations

Authors

Contributions

J.R.C. conceptualized the project, wrote the manuscript and prepared the figures. M.A.H. and U.B.P. critically reviewed and edited the manuscript and figures. All authors discussed the form and content of the manuscript.

Corresponding author

Correspondence to Joshua R. Cook.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Paul Titchenell and the other, anonymous, reviewer for their contribution to the peer review of this work. Primary Handling Editor: Isabella Samuelson, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, J.R., Hawkins, M.A. & Pajvani, U.B. Liver insulinization as a driver of triglyceride dysmetabolism. Nat Metab 5, 1101–1110 (2023). https://doi.org/10.1038/s42255-023-00843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00843-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing